Spaces:
Sleeping
Sleeping
import os | |
import time | |
import random | |
from dotenv import load_dotenv | |
from typing import List, Dict, Any, TypedDict, Annotated | |
import operator | |
from langchain_core.tools import tool | |
from langchain_community.tools.tavily_search import TavilySearchResults | |
from langchain_community.document_loaders import WikipediaLoader | |
from langchain_community.vectorstores import Chroma | |
from langchain.tools.retriever import create_retriever_tool | |
from langchain_text_splitters import RecursiveCharacterTextSplitter | |
from langchain_core.messages import SystemMessage, HumanMessage, AIMessage | |
from langchain_community.embeddings import SentenceTransformerEmbeddings | |
from langgraph.graph import StateGraph, START, END | |
from langgraph.checkpoint.memory import MemorySaver | |
# ---- Tool Definitions ---- | |
def multiply(a: int, b: int) -> int: | |
"""Multiply two integers and return the product.""" | |
return a * b | |
def add(a: int, b: int) -> int: | |
"""Add two integers and return the sum.""" | |
return a + b | |
def subtract(a: int, b: int) -> int: | |
"""Subtract the second integer from the first and return the difference.""" | |
return a - b | |
def divide(a: int, b: int) -> float: | |
"""Divide the first integer by the second and return the quotient.""" | |
if b == 0: | |
raise ValueError("Cannot divide by zero.") | |
return a / b | |
def modulus(a: int, b: int) -> int: | |
"""Return the remainder of the division of the first integer by the second.""" | |
return a % b | |
def optimized_web_search(query: str) -> str: | |
"""Perform an optimized web search using TavilySearchResults and return concatenated document snippets.""" | |
try: | |
time.sleep(random.uniform(1, 2)) | |
docs = TavilySearchResults(max_results=2).invoke(query=query) | |
return "\n\n---\n\n".join( | |
f"<Doc url='{d.get('url','')}'>{d.get('content','')[:500]}</Doc>" | |
for d in docs | |
) | |
except Exception as e: | |
return f"Web search failed: {e}" | |
def optimized_wiki_search(query: str) -> str: | |
"""Perform an optimized Wikipedia search and return concatenated document snippets.""" | |
try: | |
time.sleep(random.uniform(0.5, 1)) | |
docs = WikipediaLoader(query=query, load_max_docs=1).load() | |
return "\n\n---\n\n".join( | |
f"<Doc src='{d.metadata['source']}'>{d.page_content[:800]}</Doc>" | |
for d in docs | |
) | |
except Exception as e: | |
return f"Wikipedia search failed: {e}" | |
# ---- LLM Integrations ---- | |
load_dotenv() | |
from langchain_groq import ChatGroq | |
from langchain_nvidia_ai_endpoints import ChatNVIDIA | |
from google import genai | |
import requests | |
def baidu_ernie_generate(prompt, api_key=None): | |
url = "https://api.baidu.com/ernie/v1/generate" | |
headers = {"Authorization": f"Bearer {api_key}"} | |
data = {"model": "ernie-4.5", "prompt": prompt} | |
try: | |
resp = requests.post(url, headers=headers, json=data, timeout=30) | |
return resp.json().get("result", "") | |
except Exception as e: | |
return f"ERNIE API error: {e}" | |
def deepseek_generate(prompt, api_key=None): | |
url = "https://api.deepseek.com/v1/chat/completions" | |
headers = {"Authorization": f"Bearer {api_key}"} | |
data = {"model": "deepseek-chat", "messages": [{"role": "user", "content": prompt}]} | |
try: | |
resp = requests.post(url, headers=headers, json=data, timeout=30) | |
choices = resp.json().get("choices", [{}]) | |
if choices and "message" in choices[0]: | |
return choices[0]["message"].get("content", "") | |
return "" | |
except Exception as e: | |
return f"DeepSeek API error: {e}" | |
class EnhancedAgentState(TypedDict): | |
messages: Annotated[List[HumanMessage|AIMessage], operator.add] | |
query: str | |
agent_type: str | |
final_answer: str | |
perf: Dict[str,Any] | |
agno_resp: str | |
class HybridLangGraphMultiLLMSystem: | |
def __init__(self): | |
self.tools = [ | |
multiply, add, subtract, divide, modulus, | |
optimized_web_search, optimized_wiki_search | |
] | |
self.graph = self._build_graph() | |
def _build_graph(self): | |
groq_llm = ChatGroq(model="llama3-70b-8192", temperature=0, api_key=os.getenv("GROQ_API_KEY")) | |
nvidia_llm = ChatNVIDIA(model="meta/llama3-70b-instruct", temperature=0, api_key=os.getenv("NVIDIA_API_KEY")) | |
def router(st: EnhancedAgentState) -> EnhancedAgentState: | |
q = st["query"].lower() | |
if "groq" in q: t = "groq" | |
elif "nvidia" in q: t = "nvidia" | |
elif "gemini" in q or "google" in q: t = "gemini" | |
elif "deepseek" in q: t = "deepseek" | |
elif "ernie" in q or "baidu" in q: t = "baidu" | |
else: t = "groq" # default | |
return {**st, "agent_type": t} | |
def groq_node(st: EnhancedAgentState) -> EnhancedAgentState: | |
t0 = time.time() | |
sys = SystemMessage(content="Answer as an expert.") | |
res = groq_llm.invoke([sys, HumanMessage(content=st["query"])]) | |
return {**st, "final_answer": res.content, "perf": {"time": time.time() - t0, "prov": "Groq"}} | |
def nvidia_node(st: EnhancedAgentState) -> EnhancedAgentState: | |
t0 = time.time() | |
sys = SystemMessage(content="Answer as an expert.") | |
res = nvidia_llm.invoke([sys, HumanMessage(content=st["query"])]) | |
return {**st, "final_answer": res.content, "perf": {"time": time.time() - t0, "prov": "NVIDIA"}} | |
def gemini_node(st: EnhancedAgentState) -> EnhancedAgentState: | |
t0 = time.time() | |
genai.configure(api_key=os.getenv("GEMINI_API_KEY")) | |
model = genai.GenerativeModel("gemini-1.5-pro-latest") | |
res = model.generate_content(st["query"]) | |
return {**st, "final_answer": res.text, "perf": {"time": time.time() - t0, "prov": "Gemini"}} | |
def deepseek_node(st: EnhancedAgentState) -> EnhancedAgentState: | |
t0 = time.time() | |
resp = deepseek_generate(st["query"], api_key=os.getenv("DEEPSEEK_API_KEY")) | |
return {**st, "final_answer": resp, "perf": {"time": time.time() - t0, "prov": "DeepSeek"}} | |
def baidu_node(st: EnhancedAgentState) -> EnhancedAgentState: | |
t0 = time.time() | |
resp = baidu_ernie_generate(st["query"], api_key=os.getenv("BAIDU_API_KEY")) | |
return {**st, "final_answer": resp, "perf": {"time": time.time() - t0, "prov": "ERNIE"}} | |
def pick(st: EnhancedAgentState) -> str: | |
return st["agent_type"] | |
g = StateGraph(EnhancedAgentState) | |
g.add_node("router", router) | |
g.add_node("groq", groq_node) | |
g.add_node("nvidia", nvidia_node) | |
g.add_node("gemini", gemini_node) | |
g.add_node("deepseek", deepseek_node) | |
g.add_node("baidu", baidu_node) | |
g.set_entry_point("router") | |
g.add_conditional_edges("router", pick, { | |
"groq": "groq", | |
"nvidia": "nvidia", | |
"gemini": "gemini", | |
"deepseek": "deepseek", | |
"baidu": "baidu" | |
}) | |
for n in ["groq", "nvidia", "gemini", "deepseek", "baidu"]: | |
g.add_edge(n, END) | |
return g.compile(checkpointer=MemorySaver()) | |
def process_query(self, q: str) -> str: | |
state = { | |
"messages": [HumanMessage(content=q)], | |
"query": q, | |
"agent_type": "", | |
"final_answer": "", | |
"perf": {}, | |
"agno_resp": "" | |
} | |
cfg = {"configurable": {"thread_id": f"hyb_{hash(q)}"}} | |
out = self.graph.invoke(state, cfg) | |
raw_answer = out["final_answer"] | |
parts = raw_answer.split('\n\n', 1) | |
answer_part = parts[1].strip() if len(parts) > 1 else raw_answer.strip() | |
return answer_part | |
def build_graph(provider=None): | |
return HybridLangGraphMultiLLMSystem().graph | |