File size: 16,289 Bytes
4c59e23 f01914c 4c59e23 f01914c 4c59e23 f01914c 4c59e23 f01914c e5d7edb f01914c 4c59e23 f01914c 4c59e23 e5d7edb 6bacb5e e5d7edb 4c59e23 e5d7edb f01914c 4c59e23 e5d7edb 4c59e23 f01914c 4c59e23 e5d7edb 4c59e23 f01914c e5d7edb f01914c 4c59e23 f01914c 4c59e23 e5d7edb f01914c 4c59e23 e5d7edb 4c59e23 e5d7edb f01914c e5d7edb f01914c e5d7edb f01914c e5d7edb f01914c e5d7edb f01914c e5d7edb 4c59e23 e5d7edb 4c59e23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
import os
import streamlit as st
from anthropic import Anthropic
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
# Configure Streamlit page settings
st.set_page_config(
page_title="Practice Difficult Conversations",
page_icon="🤝",
layout="centered",
)
# Initialize Anthropic client
def get_api_key():
# Try getting from Streamlit secrets first (for Hugging Face deployment)
try:
if hasattr(st.secrets, "anthropic_key"):
st.write("Debug: Found key in Streamlit secrets")
return st.secrets.anthropic_key
except Exception as e:
st.write(f"Debug: Error accessing Streamlit secrets: {e}")
# Fall back to environment variable (for local development)
env_key = os.getenv("ANTHROPIC_API_KEY")
if env_key:
st.write("Debug: Found key in environment variables")
return env_key
else:
st.write("Debug: No key found in environment variables")
return None
try:
api_key = get_api_key()
if not api_key:
st.error("Anthropic API Key not found. Please ensure it's set in Hugging Face secrets or local .env file.")
st.markdown("""
### Setup Instructions:
1. For local development: Copy `.env.template` to `.env` and add your Anthropic API key
2. For Hugging Face: Add anthropic_key to your space's secrets
3. Restart the application
""")
st.stop()
# Initialize client with API key from environment
client = Anthropic(api_key=api_key)
st.write("Debug: Successfully created Anthropic client")
except Exception as e:
st.error(f"Failed to configure Anthropic client: {e}")
st.markdown("""
### Setup Instructions:
1. For local development: Copy `.env.template` to `.env` and add your Anthropic API key
2. For Hugging Face: Add anthropic_key to your space's secrets
3. Restart the application
""")
st.stop()
# Initialize session state for form inputs if not present
if "setup_complete" not in st.session_state:
st.session_state.setup_complete = False
if "messages" not in st.session_state:
st.session_state.messages = []
# Main page header
st.markdown("<h1 style='text-align: center; color: #333;'>Practice Difficult Conversations</h1>", unsafe_allow_html=True)
st.markdown("<p style='text-align: center; font-size: 18px; color: #555; margin-bottom: 1em;'>With Your Attachment Style Front and Center!</p>", unsafe_allow_html=True)
# Welcome text and instructions
if not st.session_state.setup_complete:
st.markdown("""
## Practice Hard Conversations—Safely.
Welcome to a therapeutic roleplay simulator that puts your attachment style at the center of practice.
This tool helps you rehearse boundary-setting and difficult conversations by simulating realistic relational dynamics—tailored to how you naturally connect and protect.
You'll choose:
- Your attachment style (e.g., anxious, avoidant, disorganized)
- A scenario (e.g., "Ask my mom not to comment on my body")
- A tone of response (e.g., supportive, guilt-tripping, dismissive)
- And your practice goal (e.g., "I want to stay calm and not backtrack")
The AI will respond in character, helping you practice real-world dynamics. When you're ready, you can debrief to explore your patterns and responses.
### 🧠 Not sure what your attachment style is?
You can take this [free quiz from Sarah Peyton](https://www.yourresonantself.com/attachment-assessment) to learn more.
Or you can just pick the one that resonates:
- **Anxious** – "I often worry if I've upset people or said too much."
- **Avoidant** – "I'd rather handle things alone than depend on others."
- **Disorganized** – "I want closeness, but I also feel overwhelmed or mistrusting."
- **Secure** – "I can handle conflict and connection without losing myself."
""")
# Sidebar with setup form
with st.sidebar:
st.markdown("""
### Welcome! 👋
Hi, I'm Jocelyn Skillman, LMHC — a clinical therapist, relational design ethicist, and creator of experimental tools that explore how AI can support (not replace) human care.
Each tool in this collection is thoughtfully designed to:
- Extend therapeutic support between sessions
- Model emotional safety and relational depth
- Help clients and clinicians rehearse courage, regulation, and repair
- Stay grounded in trauma-informed, developmentally sensitive frameworks
I use powerful language models like Anthropic's Claude for these tools, chosen for their ability to simulate nuanced human interaction and responsiveness to emotionally complex prompts.
As a practicing therapist, I imagine these resources being especially helpful to clinicians like myself — companions in the work of tending to others with insight, warmth, and care.
#### Connect With Me
🌐 [jocelynskillman.com](http://www.jocelynskillman.com)
📬 [Substack: Relational Code](https://jocelynskillmanlmhc.substack.com/)
---
""")
st.markdown("### 🎯 Simulation Setup")
with st.form("simulation_setup"):
attachment_style = st.selectbox(
"Your Attachment Style",
["Anxious", "Avoidant", "Disorganized", "Secure"],
help="Select your attachment style for this practice session"
)
scenario = st.text_area(
"Scenario Description",
placeholder="Example: I want to tell my dad I can't call every night anymore.",
help="Describe the conversation you want to practice"
)
tone = st.text_input(
"Desired Tone for AI Response",
placeholder="Example: guilt-tripping, dismissive, supportive",
help="How should the AI character respond?"
)
practice_goal = st.text_area(
"Your Practice Goal",
placeholder="Example: staying grounded and not over-explaining",
help="What would you like to work on in this conversation?"
)
submit_setup = st.form_submit_button("Start Simulation")
if submit_setup and scenario and tone and practice_goal:
# Create system message with simulation parameters
system_message_content = f"""You are an AI roleplay partner simulating a conversation. Maintain the requested tone throughout. Keep responses concise (under 3 lines) unless asked to elaborate. Do not break character unless the user types 'pause', 'reflect', or 'debrief'.
User's Attachment Style: {attachment_style}
Scenario: {scenario}
Your Tone: {tone}
User's Goal: {practice_goal}
Begin the simulation based on the scenario."""
# Store the system message and initial assistant message
# OpenAI expects the system message as the first message in the list
st.session_state.messages = [
{"role": "system", "content": system_message_content},
{"role": "assistant", "content": "Simulation ready. You can begin the conversation whenever you're ready."}
]
st.session_state.setup_complete = True
# No need to store system_message separately in session state anymore
# if "system_message" in st.session_state:
# del st.session_state["system_message"]
st.rerun()
# Display simulation status
if not st.session_state.setup_complete:
st.info("👈 Please complete the simulation setup in the sidebar to begin.")
else:
# Display chat history
# Filter out system message for display purposes
display_messages = [m for m in st.session_state.messages if m.get("role") != "system"]
for message in display_messages:
# Ensure role is valid before creating chat message
role = message.get("role")
if role in ["user", "assistant"]:
with st.chat_message(role):
st.markdown(message["content"])
# else: # Optional: Log or handle unexpected roles
# print(f"Skipping display for message with role: {role}")
# User input field
if user_prompt := st.chat_input("Type your message here... (or type 'debrief' to end simulation)"):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": user_prompt})
# Display user message
with st.chat_message("user"):
st.markdown(user_prompt)
# Prepare messages for API call (already includes system message as the first item)
api_messages = st.session_state.messages
# Get Anthropic's response
with st.spinner("..."):
try:
# Convert messages to Anthropic format
formatted_messages = []
# Add system message as the first user message
system_msg = next((msg for msg in api_messages if msg["role"] == "system"), None)
if system_msg:
formatted_messages.append({
"role": "user",
"content": system_msg["content"]
})
# Add the rest of the conversation
for msg in api_messages:
if msg["role"] != "system": # Skip system message as we've already handled it
formatted_messages.append({
"role": msg["role"],
"content": msg["content"]
})
response = client.messages.create(
model="claude-3-opus-20240229",
messages=formatted_messages,
max_tokens=1024
)
assistant_response = response.content[0].text
# Add assistant response to chat history
st.session_state.messages.append(
{"role": "assistant", "content": assistant_response}
)
# Display assistant response
with st.chat_message("assistant"):
st.markdown(assistant_response)
except Exception as e:
st.error(f"An error occurred: {e}")
error_message = f"Sorry, I encountered an error: {e}"
# Add error message to chat history to inform the user
st.session_state.messages.append({"role": "assistant", "content": error_message})
with st.chat_message("assistant"):
st.markdown(error_message)
# Avoid adding the failed user message again if an error occurs
# We might want to remove the last user message or handle differently
# if st.session_state.messages[-2]["role"] == "user":
# st.session_state.messages.pop(-2) # Example: remove user msg that caused error
# Add debrief button after conversation starts
if st.session_state.setup_complete and not st.session_state.get('in_debrief', False):
col1, col2, col3 = st.columns([1, 2, 1])
with col2:
if st.button("🤔 I'm Ready to Debrief", use_container_width=True):
st.session_state.in_debrief = True
# Prepare debrief system message
debrief_system_message = """You are a warm, trauma-informed reflection guide. Your role is to help users process their experience from the previous roleplay conversation. Important notes:
- Start with: "I'm not a therapist, even though I may sound relational. I've been trained as a language model to support emotional reflection, but I encourage you to bring these insights into connection with a trusted therapist, mentor, or support circle who can help you explore them more deeply."
Then analyze the conversation following this structure:
1. Tone / Persona Used:
- Note the AI role they interacted with
- Describe key patterns in that communication style
- Ask how that style impacted them
2. Emotional Shifts:
- Track their emotional journey
- Note any significant changes in tone or engagement
- Invite reflection on those shifts
3. Signs of:
- Courage: Moments of speaking up, setting boundaries, expressing needs
- Avoidance: When they might have pulled back or deflected
- Protest: Times they pushed back or expressed disagreement
4. Rupture & Repair:
- Identify moments of disconnection or tension
- Note any attempts to rebuild connection
- Ask about the felt experience of these moments
5. Integration:
- Offer a gentle somatic or journaling prompt
- Focus on body awareness and felt sense
- Use language like "if you're willing..." or "you might notice..."
Remember to:
- Use phrases like "I notice..." or "I'm curious about..."
- Validate all emotional responses
- Keep focus on their experience, not your analysis
- Offer observations as invitations, not declarations
- Stay grounded in the present moment"""
# Store previous conversation for analysis
conversation_history = st.session_state.messages[1:] # Skip system message
# Initialize debrief conversation
st.session_state.debrief_messages = [
{"role": "system", "content": debrief_system_message},
{"role": "user", "content": f"Please help me process this conversation. Here's what happened: {str(conversation_history)}"}
]
try:
response = client.messages.create(
model="claude-3-opus-20240229",
messages=st.session_state.debrief_messages,
max_tokens=1000
)
st.session_state.debrief_messages.append(
{"role": "assistant", "content": response.content[0].text}
)
except Exception as e:
st.error(f"An error occurred starting the debrief: {e}")
st.rerun()
# Handle debrief mode
if st.session_state.get('in_debrief', False):
st.markdown("## 🤝 Let's Process Together")
# Display debrief conversation
for message in st.session_state.debrief_messages[1:]: # Skip system message
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input for debrief
if debrief_prompt := st.chat_input("Share what comes up for you..."):
st.session_state.debrief_messages.append({"role": "user", "content": debrief_prompt})
with st.chat_message("user"):
st.markdown(debrief_prompt)
with st.chat_message("assistant"):
with st.spinner("Reflecting..."):
try:
response = client.messages.create(
model="claude-3-opus-20240229",
messages=st.session_state.debrief_messages,
max_tokens=1000
)
assistant_response = response.content[0].text
st.markdown(assistant_response)
st.session_state.debrief_messages.append(
{"role": "assistant", "content": assistant_response}
)
except Exception as e:
st.error(f"An error occurred during debrief: {e}")
# Add button to start new session
col1, col2, col3 = st.columns([1, 2, 1])
with col2:
if st.button("Start New Practice Session", use_container_width=True):
st.session_state.clear()
st.rerun()
# Footer
st.markdown("---")
st.markdown("<p style='text-align: center; font-size: 16px; color: #666;'>by <a href='http://www.jocelynskillman.com' target='_blank'>Jocelyn Skillman LMHC</a> - to learn more check out: <a href='https://jocelynskillmanlmhc.substack.com/' target='_blank'>jocelynskillmanlmhc.substack.com</a></p>", unsafe_allow_html=True)
|