File size: 17,284 Bytes
4c59e23
 
f01914c
4c59e23
 
 
 
 
 
 
f01914c
 
4c59e23
 
 
f01914c
 
 
 
 
 
 
889a4e9
f01914c
 
 
 
 
 
 
 
4c59e23
f01914c
 
 
 
 
 
 
 
 
e5d7edb
f01914c
 
da921f3
f01914c
4c59e23
f01914c
 
 
 
 
 
 
4c59e23
 
e5d7edb
 
 
6bacb5e
e5d7edb
 
4c59e23
e5d7edb
f01914c
 
4c59e23
e5d7edb
 
 
 
4c59e23
f01914c
 
4c59e23
e5d7edb
4c59e23
f01914c
e5d7edb
 
f01914c
4c59e23
f01914c
4c59e23
e5d7edb
 
f01914c
4c59e23
e5d7edb
 
 
 
fa635ad
18cf37f
e5d7edb
4c59e23
e5d7edb
 
 
 
 
 
 
 
 
 
 
 
 
 
f01914c
e5d7edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18cf37f
e5d7edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f01914c
e5d7edb
 
f01914c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5d7edb
f01914c
e5d7edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f01914c
 
 
 
 
b1de72a
 
f01914c
 
c481f52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f01914c
c481f52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5bf52cf
98816af
f01914c
 
98816af
f01914c
 
98816af
 
f01914c
 
5bf52cf
f01914c
 
 
 
 
 
 
 
 
 
 
 
 
98816af
f01914c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
98816af
 
 
 
 
 
f01914c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e5d7edb
 
4c59e23
e5d7edb
4c59e23
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import os
import streamlit as st
from anthropic import Anthropic
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# Configure Streamlit page settings
st.set_page_config(
    page_title="Practice Difficult Conversations",
    page_icon="🤝",
    layout="centered",
)

# Initialize Anthropic client
def get_api_key():
    # Try getting from Streamlit secrets first (for Hugging Face deployment)
    try:
        if hasattr(st.secrets, "anthropic_key"):
            return st.secrets.anthropic_key
    except Exception as e:
        pass
    
    # Fall back to environment variable (for local development)
    env_key = os.getenv("ANTHROPIC_API_KEY")
    if env_key:
        return env_key
        
    return None

try:
    api_key = get_api_key()
    if not api_key:
        st.error("Anthropic API Key not found. Please ensure it's set in Hugging Face secrets or local .env file.")
        st.markdown("""
        ### Setup Instructions:
        1. For local development: Copy `.env.template` to `.env` and add your Anthropic API key
        2. For Hugging Face: Add anthropic_key to your space's secrets
        3. Restart the application
        """)
        st.stop()
    
    # Initialize client with API key from environment
    client = Anthropic(api_key=api_key)
    
except Exception as e:
    st.error(f"Failed to configure Anthropic client: {e}")
    st.markdown("""
    ### Setup Instructions:
    1. For local development: Copy `.env.template` to `.env` and add your Anthropic API key
    2. For Hugging Face: Add anthropic_key to your space's secrets
    3. Restart the application
    """)
    st.stop()

# Initialize session state for form inputs if not present
if "setup_complete" not in st.session_state:
    st.session_state.setup_complete = False

if "messages" not in st.session_state:
    st.session_state.messages = []

# Main page header
st.markdown("<h1 style='text-align: center; color: #333;'>Practice Difficult Conversations</h1>", unsafe_allow_html=True)
st.markdown("<p style='text-align: center; font-size: 18px; color: #555; margin-bottom: 1em;'>With Your Attachment Style Front and Center!</p>", unsafe_allow_html=True)

# Welcome text and instructions
if not st.session_state.setup_complete:
    st.markdown("""
    ## Practice Hard Conversations—Safely.

    Welcome to a therapeutic roleplay simulator that puts your attachment style at the center of practice.
    This tool helps you rehearse boundary-setting and difficult conversations by simulating realistic relational dynamics—tailored to how you naturally connect and protect.

    You'll choose:

    - Your attachment style (e.g., anxious, avoidant, disorganized)
    - A scenario (e.g., "Ask my mom not to comment on my body")
    - A tone of response (e.g., supportive, guilt-tripping, dismissive)
    - And your practice goal (e.g., "I want to stay calm and not backtrack")

    The AI will respond in character, helping you practice real-world dynamics. When you're ready, you can debrief to explore your patterns and responses.

    ### 🧠 Not sure what your attachment style is?
    You can take this [free quiz from Sarah Peyton](https://www.yourresonantself.com/attachment-assessment) to learn more.
    Or you can just pick the one that resonates:

    - **Anxious** – "I often worry if I've upset people or said too much."
    - **Avoidant** – "I'd rather handle things alone than depend on others."
    - **Disorganized** – "I want closeness, but I also feel overwhelmed or mistrusting."
    - **Secure** – "I can handle conflict and connection without losing myself."

    Complete the simulation setup in the sidebar (desktop) or menu ☰ (mobile) to begin your practice session.
    """)

# Sidebar with setup form
with st.sidebar:
    st.markdown("""
    ### Welcome! 👋

    Hi, I'm Jocelyn Skillman, LMHC — a clinical therapist, relational design ethicist, and creator of experimental tools that explore how AI can support (not replace) human care.

    Each tool in this collection is thoughtfully designed to:

    - Extend therapeutic support between sessions
    - Model emotional safety and relational depth
    - Help clients and clinicians rehearse courage, regulation, and repair
    - Stay grounded in trauma-informed, developmentally sensitive frameworks

    I use powerful language models like Anthropic's Claude for these tools, chosen for their ability to simulate nuanced human interaction and responsiveness to emotionally complex prompts.

    As a practicing therapist, I imagine these resources being especially helpful to clinicians like myself — companions in the work of tending to others with insight, warmth, and care.

    #### Connect With Me
    🌐 [jocelynskillman.com](http://www.jocelynskillman.com)
    📬 [Substack: Relational Code](https://jocelynskillmanlmhc.substack.com/)

    ---
    """)

    st.markdown("### 🎯 Simulation Setup")

    with st.form("simulation_setup"):
        attachment_style = st.selectbox(
            "Your Attachment Style",
            ["Anxious", "Avoidant", "Disorganized", "Secure"],
            help="Select your attachment style for this practice session"
        )

        scenario = st.text_area(
            "Scenario Description",
            placeholder="Example: I want to tell my dad I can't call every night anymore.",
            help="Describe the conversation you want to practice"
        )

        tone = st.text_input(
            "Desired Tone for AI Response",
            placeholder="Example: guilt-tripping, dismissive, supportive",
            help="How should the AI character respond?"
        )

        practice_goal = st.text_area(
            "Your Practice Goal",
            placeholder="Example: staying grounded and not over-explaining",
            help="What would you like to work on in this conversation?"
        )

        submit_setup = st.form_submit_button("Start Simulation")

        if submit_setup and scenario and tone and practice_goal:
            # Create system message with simulation parameters
            system_message_content = f"""You are an AI roleplay partner simulating a conversation. Maintain the requested tone throughout. Keep responses concise (under 3 lines) unless asked to elaborate. Do not break character unless the user types 'pause', 'reflect', or 'debrief'.

User's Attachment Style: {attachment_style}
Scenario: {scenario}
Your Tone: {tone}
User's Goal: {practice_goal}

Begin the simulation based on the scenario."""

            # Store the system message and initial assistant message
            # OpenAI expects the system message as the first message in the list
            st.session_state.messages = [
                {"role": "system", "content": system_message_content},
                {"role": "assistant", "content": "Simulation ready. You can begin the conversation whenever you're ready."}
            ]
            st.session_state.setup_complete = True
            # No need to store system_message separately in session state anymore
            # if "system_message" in st.session_state:
            #      del st.session_state["system_message"]
            st.rerun()


# Display simulation status
if not st.session_state.setup_complete:
    st.info("Complete the simulation setup in the sidebar (desktop) or menu ☰ (mobile).")
else:
    # Display chat history
    # Filter out system message for display purposes
    display_messages = [m for m in st.session_state.messages if m.get("role") != "system"]
    for message in display_messages:
        # Ensure role is valid before creating chat message
        role = message.get("role")
        if role in ["user", "assistant"]:
             with st.chat_message(role):
                 st.markdown(message["content"])
        # else: # Optional: Log or handle unexpected roles
        #    print(f"Skipping display for message with role: {role}")

    # User input field
    if user_prompt := st.chat_input("Type your message here... (or type 'debrief' to end simulation)"):
        # Add user message to chat history
        st.session_state.messages.append({"role": "user", "content": user_prompt})

        # Display user message
        with st.chat_message("user"):
            st.markdown(user_prompt)

        # Prepare messages for API call (already includes system message as the first item)
        api_messages = st.session_state.messages

        # Get Anthropic's response
        with st.spinner("..."):
            try:
                # Convert messages to Anthropic format
                formatted_messages = []
                
                # Add system message as the first user message
                system_msg = next((msg for msg in api_messages if msg["role"] == "system"), None)
                if system_msg:
                    formatted_messages.append({
                        "role": "user",
                        "content": system_msg["content"]
                    })
                
                # Add the rest of the conversation
                for msg in api_messages:
                    if msg["role"] != "system":  # Skip system message as we've already handled it
                        formatted_messages.append({
                            "role": msg["role"],
                            "content": msg["content"]
                        })

                response = client.messages.create(
                    model="claude-3-opus-20240229",
                    messages=formatted_messages,
                    max_tokens=1024
                )
                assistant_response = response.content[0].text

                # Add assistant response to chat history
                st.session_state.messages.append(
                    {"role": "assistant", "content": assistant_response}
                )

                # Display assistant response
                with st.chat_message("assistant"):
                    st.markdown(assistant_response)

            except Exception as e:
                st.error(f"An error occurred: {e}")
                error_message = f"Sorry, I encountered an error: {e}"
                # Add error message to chat history to inform the user
                st.session_state.messages.append({"role": "assistant", "content": error_message})
                with st.chat_message("assistant"):
                     st.markdown(error_message)
                # Avoid adding the failed user message again if an error occurs
                # We might want to remove the last user message or handle differently
                # if st.session_state.messages[-2]["role"] == "user":
                #     st.session_state.messages.pop(-2) # Example: remove user msg that caused error

    # Add debrief button after conversation starts
    if st.session_state.setup_complete and not st.session_state.get('in_debrief', False):
        col1, col2, col3 = st.columns([1, 2, 1])
        with col2:
            if st.button("🤔 I'm Ready to Debrief", use_container_width=True):
                # Clear previous conversation state
                st.session_state.messages = []
                st.session_state.in_debrief = True
                
                # Get the original setup parameters
                system_msg = next((msg for msg in st.session_state.messages if msg["role"] == "system"), None)
                if system_msg:
                    # Extract parameters from the system message
                    content = system_msg["content"]
                    attachment_style = content.split("User's Attachment Style: ")[1].split("\n")[0]
                    scenario = content.split("Scenario: ")[1].split("\n")[0]
                    tone = content.split("Your Tone: ")[1].split("\n")[0]
                    goal = content.split("User's Goal: ")[1].split("\n")[0]
                else:
                    attachment_style = "Not specified"
                    scenario = "Not specified"
                    tone = "Not specified"
                    goal = "Not specified"

                # Get conversation transcript
                conversation_transcript = "\n".join([
                    f"{msg['role'].capitalize()}: {msg['content']}"
                    for msg in st.session_state.messages[1:]  # Skip system message
                ])

                # Prepare debrief system message
                debrief_system_message = f"""You are a therapeutic reflection partner. Your role is to help the user understand how they showed up in a difficult relational roleplay, integrating insights from:

Attachment Theory

Nonviolent Communication (NVC)

Dialectical Behavior Therapy (DBT)

Relational Accountability (inspired by Terry Real)

⚠️ This is not therapy. This is guided reflection designed to increase emotional literacy, nervous system awareness, and relational growth.

Use the following session context:

Attachment Style: {attachment_style}

Scenario Practiced: {scenario}

Client's Practice Goal: {goal}

AI Persona Tone Used: {tone}

Roleplay Transcript: {conversation_transcript}

Please include in your debrief:

Emotional Arc – What emotional shifts did the user experience? (e.g., freeze, protest, courage, collapse)

Goal Alignment – In what ways did the user align with or move toward their practice goal?

Attachment Insight – Reflect on the user's interaction style based on their attachment lens. Offer brief normalization or gentle naming of the pattern.

Practical Skill – Provide one actionable takeaway grounded in NVC or DBT (e.g., a skill or micro-practice to revisit).

Bold Reframe – Suggest one powerful, self-trusting statement the user could try out next time.

Journaling Prompt – Offer one reflective or integrative question to deepen their self-awareness.

Tone: Warm, precise, emotionally attuned. Do not overuse praise, avoid pathologizing, and refrain from offering generic feedback."""

                # Initialize debrief conversation with just the system message
                st.session_state.debrief_messages = []
                
                try:
                    # Get the initial response using the system message as a parameter
                    response = client.messages.create(
                        model="claude-3-opus-20240229",
                        system=debrief_system_message,
                        messages=[{"role": "user", "content": "Please help me process this conversation."}],
                        max_tokens=1000
                    )
                    # Add the response to the messages
                    st.session_state.debrief_messages.append(
                        {"role": "assistant", "content": response.content[0].text}
                    )
                except Exception as e:
                    st.error(f"An error occurred starting the debrief: {e}")
                
                st.rerun()

    # Handle debrief mode
    if st.session_state.get('in_debrief', False):
        st.markdown("## 🤝 Let's Process Together")
        
        # Display debrief conversation
        for message in st.session_state.debrief_messages:
            with st.chat_message(message["role"]):
                st.markdown(message["content"])
        
        # Chat input for debrief
        if debrief_prompt := st.chat_input("Share what comes up for you..."):
            st.session_state.debrief_messages.append({"role": "user", "content": debrief_prompt})
            
            with st.chat_message("user"):
                st.markdown(debrief_prompt)
                
            with st.chat_message("assistant"):
                with st.spinner("Reflecting..."):
                    try:
                        response = client.messages.create(
                            model="claude-3-opus-20240229",
                            system=debrief_system_message,
                            messages=[
                                {"role": "user", "content": msg["content"]} 
                                for msg in st.session_state.debrief_messages 
                                if msg["role"] == "user"
                            ],
                            max_tokens=1000
                        )
                        assistant_response = response.content[0].text
                        st.markdown(assistant_response)
                        st.session_state.debrief_messages.append(
                            {"role": "assistant", "content": assistant_response}
                        )
                    except Exception as e:
                        st.error(f"An error occurred during debrief: {e}")
        
        # Add button to start new session
        col1, col2, col3 = st.columns([1, 2, 1])
        with col2:
            if st.button("Start New Practice Session", use_container_width=True):
                st.session_state.clear()
                st.rerun()

# Footer
st.markdown("---")
st.markdown("<p style='text-align: center; font-size: 16px; color: #666;'>by <a href='http://www.jocelynskillman.com' target='_blank'>Jocelyn Skillman LMHC</a> - to learn more check out: <a href='https://jocelynskillmanlmhc.substack.com/' target='_blank'>jocelynskillmanlmhc.substack.com</a></p>", unsafe_allow_html=True)