whisperspeech / app.py
Tonic's picture
Update app.py
a479a3f verified
raw
history blame
6.37 kB
import spaces
import tempfile
import wave
import gradio as gr
import os
import re
import torch
import soundfile as sf
import numpy as np
import torch.nn.functional as F
from whisperspeech.pipeline import Pipeline
from whisperspeech.languages import LANGUAGES
from whisperspeech.utils import resampler
title = """# ๐Ÿ™‹๐Ÿปโ€โ™‚๏ธ Welcome to๐ŸŒŸCollabora๐ŸŒฌ๏ธ๐Ÿ’ฌ๐Ÿ“WhisperSpeech
You can use this ZeroGPU Space to test out the current model [๐ŸŒฌ๏ธ๐Ÿ’ฌ๐Ÿ“collabora/whisperspeech](https://huggingface.co/collabora/whisperspeech). ๐ŸŒฌ๏ธ๐Ÿ’ฌ๐Ÿ“collabora/whisperspeech is An Open Source text-to-speech system built by inverting Whisper. Install it and use your command line interface locally with `pip install whisperspeech`. It's like Stable Diffusion but for speech โ€“ both powerful and easily customizable : so you can use it programmatically in your own pipelines! [Contribute to whisperspeech here](https://github.com/collabora/WhisperSpeech)
You can also use ๐ŸŒฌ๏ธ๐Ÿ’ฌ๐Ÿ“WhisperSpeech by cloning this space. ๐Ÿงฌ๐Ÿ”ฌ๐Ÿ” Simply click here: <a style="display:inline-block" href="https://huggingface.co/spaces/Tonic/laion-whisper?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></h3>
We're **celebrating the release of the whisperspeech** at [the LAION community, if you love open source ai learn more here : https://laion.ai/](https://laion.ai/) big thanks to the folks at huggingface for the community grant ๐Ÿค—
### How to Use
Input text with tahe language identifiers provided to create a multilingual speech. Optionally you can add an audiosample to make a voice print.Scroll down and try the api <3 Gradio.
This space runs on ZeroGPU, so **you need to be patient** while you acquire the GPU and load the model the first time you make a request !
"""
text_examples = [
["<en> WhisperSpeech is an opensource library that helps you hack whisper."],
["<de> WhisperSpeech is multi-lingual <es> y puede cambiar de idioma <hi> เคฎเคงเฅเคฏ เคตเคพเค•เฅเคฏ เคฎเฅ‡เค‚"],
["<en> The big difference between Europe <fr> et les Etats Unis <pl> jest to, ลผe mamy tak wiele jฤ™zykรณw <uk> ั‚ัƒั‚, ะฒ ะ„ะฒั€ะพะฟั–"]
]
def parse_multilingual_text(input_text):
pattern = r"<(\w+)>\s(.*?)\s(?=<\w+>|$)"
segments = re.findall(pattern, input_text)
return [(lang, text.strip()) for lang, text in segments if lang in LANGUAGES.keys()]
@spaces.GPU(enable_queue=True)
def generate_segment_audio(text, lang, speaker_audio, pipe):
if not isinstance(text, str):
text = text.decode("utf-8") if isinstance(text, bytes) else str(text)
speaker_audio_data = speaker_audio
audio_data = pipe.generate(text, speaker_audio_data, lang)
resample_audio = resampler(newsr=24000)
audio_data_resampled = next(resample_audio([{'sample_rate': 24000, 'samples': audio_data.cpu()}]))['samples_24k']
audio_np = audio_data_resampled.cpu().numpy()
# Debug statement print("Shape after resampling:", audio_np.shape)
return audio_np
def concatenate_audio_segments(segments):
concatenated_audio = np.concatenate(segments , axis=1)
return concatenated_audio
@spaces.GPU(enable_queue=True)
def whisper_speech_demo(multilingual_text, speaker_audio):
segments = parse_multilingual_text(multilingual_text)
if not segments:
return None, "No valid language segments found. Please use the format: <lang> text"
pipe = Pipeline()
if not hasattr(pipe, 's2a'):
return None, "Pipeline initialization failed. s2a model not loaded."
speaker_url = speaker_audio if speaker_audio is not None else None
audio_segments = []
for lang, text in segments:
text_str = text if isinstance(text, str) else str(text)
audio_np = generate_segment_audio(text_str, lang, speaker_url, pipe)
# Debug statement print("Audio segment shape:", audio_np.shape)
audio_segments.append(audio_np)
concatenated_audio = concatenate_audio_segments(audio_segments)
# Debug statement print("Final concatenated audio shape:", concatenated_audio.shape)
concatenated_audio = concatenated_audio / np.max(np.abs(concatenated_audio))
with tempfile.NamedTemporaryFile(suffix='.wav', delete=False) as tmp_file:
sf.write(tmp_file.name, concatenated_audio.T, 24000, format='WAV', subtype='PCM_16')
return tmp_file.name
with gr.Blocks() as demo:
gr.Markdown(title)
output_audio = gr.Audio(label="๐ŸŒŸCollabora๐ŸŒฌ๏ธ๐Ÿ’ฌ๐Ÿ“WhisperSpeech")
generate_button = gr.Button("Try ๐ŸŒŸCollabora๐ŸŒฌ๏ธ๐Ÿ’ฌ๐Ÿ“WhisperSpeech")
with gr.Accordion("๐ŸŒŸCollabora๐ŸŒฌ๏ธWhisperSpeech๐Ÿ’ฌVoice Print and๐Ÿ“Language List", open=False):
with gr.Row():
speaker_input = gr.Audio(label="Upload or Record Speaker Audio (optional)๐ŸŒฌ๏ธ๐Ÿ’ฌ",
sources=["upload", "microphone"])
with gr.Row():
with gr.Accordion("Available Languages and Their Tags", open=False):
formatted_language_list = "\n".join([f"`<{lang}>` {LANGUAGES[lang]}" for lang in LANGUAGES])
gr.Markdown(formatted_language_list)
with gr.Row():
text_input = gr.Textbox(label="Enter multilingual text๐Ÿ’ฌ๐Ÿ“",
placeholder="e.g., <en> Hello <fr> Bonjour <es> Hola")
with gr.Row():
with gr.Accordion("Try Multilingual Text Examples", open=False):
gr.Examples(
examples=text_examples,
inputs=[text_input],
outputs=[output_audio],
fn=whisper_speech_demo,
cache_examples=False,
label="Try these to get started !๐ŸŒŸ๐ŸŒฌ๏ธ"
)
generate_button.click(whisper_speech_demo, inputs=[text_input, speaker_input], outputs=output_audio)
demo.launch()