yolochess / app.py
jrahn's picture
Update app.py
7763e11
raw
history blame
4.21 kB
import os
import random
from datetime import datetime
import gradio as gr
import chess
import chess.svg
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
token = os.environ['auth_token']
tokenizer = AutoTokenizer.from_pretrained('jrahn/chessv3', use_auth_token=token)
model = AutoModelForSequenceClassification.from_pretrained('jrahn/chessv3', use_auth_token=token)
pipe = pipeline(task="text-classification", model=model, tokenizer=tokenizer)
empty_field = '0'
board_split = ' | '
nums = {str(n): empty_field * n for n in range(1, 9)}
nums_rev = {v:k for k,v in reversed(nums.items())}
def encode_fen(fen):
# decompress fen representation
# prepare for sub-word tokenization
fen_board, fen_rest = fen.split(' ', 1)
for n in nums:
fen_board = fen_board.replace(n, nums[n])
fen_board = '+' + fen_board
fen_board = fen_board.replace('/', ' +')
return board_split.join([fen_board, fen_rest])
def decode_fen_repr(fen_repr):
fen_board, fen_rest = fen_repr.split(board_split, 1)
for n in nums_rev:
fen_board = fen_board.replace(n, nums_rev[n])
fen_board = fen_board.replace(' +', '/')
fen_board = fen_board.replace('+', '')
return ' '.join([fen_board, fen_rest])
def predict_move(fen, top_k=3):
fen_prep = encode_fen(fen)
preds = pipe(fen_prep, top_k=top_k)
weights = [p['score'] for p in preds]
p = random.choices(preds, weights=weights)[0]
# discard illegal moves (https://python-chess.readthedocs.io/en/latest/core.html#chess.Board.legal_moves), then select top_k
return p['label']
def btn_load(inp_fen):
print(f'** log - load - ts {datetime.now().isoformat()}, fen: {inp_fen}')
board = chess.Board()
with open('board.svg', 'w') as f:
f.write(str(chess.svg.board(board)))
return 'board.svg', board.fen(), ''
def btn_play(inp_fen, inp_move, inp_notation, inp_k):
print(f'** log - play - ts {datetime.now().isoformat()}, fen: {inp_fen}, move: {inp_move}, notation: {inp_notation}, top_k: {inp_k}')
board = chess.Board(inp_fen)
if inp_move:
if inp_notation == 'UCI': mv = chess.Move.from_uci(inp_move) #board.push_uci(inp_move)
elif inp_notation == 'SAN': mv = board.parse_san(inp_move) #chess.Move.from_san(inp_move) #board.push_san(inp_move)
else:
mv = chess.Move.from_uci(predict_move(board.fen(), top_k=inp_k))
if mv in board.legal_moves:
board.push(mv)
else:
raise ValueError(f'Illegal Move: {str(mv)} @ {board.fen()}')
with open('board.svg', 'w') as f:
f.write(str(chess.svg.board(board, lastmove=mv)))
return 'board.svg', board.fen(), ''
with gr.Blocks() as block:
gr.Markdown(
'''
# Play YoloChess - Policy Network v0.3
110M Parameter Transformer (BERT-base architecture) trained for text classification from scratch on expert games in modified FEN notation.
'''
)
with gr.Row() as row:
with gr.Column():
with gr.Row():
move = gr.Textbox(label='human player move')
notation = gr.Radio(["SAN", "UCI"], value="SAN", label='move notation')
fen = gr.Textbox(value=chess.Board().fen(), label='FEN')
top_k = gr.Number(value=3, label='pick from top_k moves', precision=0)
with gr.Row():
load_btn = gr.Button("Load")
play_btn = gr.Button("Play")
gr.Markdown(
'''
- Click "Load" button to start and reset board.
- Click "Play" button to get Engine move.
- Enter a "human player move" in UCI or SAN notation and click "Play" to move a piece.
- Output "ERROR" generally occurs on illegal moves (Human or Engine).
- Enter "FEN" to start from a custom position.
'''
)
with gr.Column():
position_output = gr.Image(label='board')
load_btn.click(fn=btn_load, inputs=fen, outputs=[position_output, fen, move])
play_btn.click(fn=btn_play, inputs=[fen, move, notation, top_k], outputs=[position_output, fen, move])
block.launch()