File size: 15,499 Bytes
35e66cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import asyncio
import torch
import librosa
import numpy as np
import soundfile as sf
from transformers import (
    AutoProcessor, AutoModelForSpeechSeq2Seq,
    AutoModelForCausalLM, AutoTokenizer,
    pipeline, SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
)
from datasets import load_dataset
import logging
from typing import Optional, Dict, Any
import time
from pathlib import Path

from kokoro import KPipeline
from IPython.display import display, Audio


import gradio as gr
import asyncio
import os


# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class AsyncAIConversation:
    def __init__(self):
        self.stt_processor = None
        self.stt_model = None
        self.llm_tokenizer = None
        self.llm_model = None
        self.tts_synthesizer = None
        self.speaker_embedding = None
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        logger.info(f"Using device: {self.device}")

    async def initialize_models(self):
        """Initialize all models asynchronously"""
        logger.info("Initializing models...")

        # Initialize STT model
        await self._init_stt_model()

        # Initialize LLM model
        await self._init_llm_model()

        # Initialize TTS model
        await self._init_tts_model()

        logger.info("All models initialized successfully!")

    async def _init_stt_model(self):
        """Initialize Speech-to-Text model"""
        logger.info("Loading STT model...")
        try:
            stt_model_id = "unsloth/whisper-small"
            #unsloth/whisper-large-v3-turbo
            self.stt_processor = AutoProcessor.from_pretrained(stt_model_id)
            self.stt_model = AutoModelForSpeechSeq2Seq.from_pretrained(stt_model_id)
            self.stt_model.to(self.device)
            logger.info("STT model loaded successfully")
        except Exception as e:
            logger.error(f"Error loading STT model: {e}")
            raise

    async def _init_llm_model(self):
        """Initialize Large Language Model"""
        logger.info("Loading LLM model...")
        try:
            model_name = "unsloth/Qwen3-0.6B"
            #unsloth/Qwen3-0.6B-unsloth-bnb-4bit
            self.llm_tokenizer = AutoTokenizer.from_pretrained(model_name)
            self.llm_model = AutoModelForCausalLM.from_pretrained(
                model_name,
                torch_dtype="auto",
                device_map="auto"
            )
            logger.info("LLM model loaded successfully")
        except Exception as e:
            logger.error(f"Error loading LLM model: {e}")
            raise

    async def _init_tts_model(self):
        """Initialize Text-to-Speech model"""
        logger.info("Loading TTS model...")
        try:
            # Initialize Kokoro TTS pipeline
            self.tts_synthesizer = KPipeline(lang_code='a')
            logger.info("TTS model loaded successfully")
        except Exception as e:
            logger.error(f"Error loading TTS model: {e}")
            raise

    async def speech_to_text(self, audio_file_path: str) -> str:
        """Convert speech to text asynchronously"""
        logger.info(f"Processing audio file: {audio_file_path}")

        try:
            # Load audio in a separate thread to avoid blocking
            def load_audio():
                return librosa.load(audio_file_path, sr=16000)

            loop = asyncio.get_event_loop()
            speech_array, sampling_rate = await loop.run_in_executor(None, load_audio)

            # Convert to tensor
            speech_array_pt = torch.from_numpy(speech_array).unsqueeze(0).to(self.device)

            # Process input features
            input_features = self.stt_processor(
                speech_array,
                sampling_rate=sampling_rate,
                return_tensors="pt"
            ).input_features.to(self.device)

            # Generate predictions
            with torch.no_grad():
                predicted_ids = self.stt_model.generate(input_features)

            # Decode predictions
            transcription = self.stt_processor.batch_decode(predicted_ids, skip_special_tokens=True)

            result = transcription[0] if transcription else ""
            logger.info(f"STT result: {result}")
            return result

        except Exception as e:
            logger.error(f"Error in speech_to_text: {e}")
            return ""

    async def process_with_llm(self, text: str, system_prompt: Optional[str] = None) -> Dict[str, str]:
        """Process text with LLM and return both thinking and content"""
        logger.info(f"Processing text with LLM: {text[:50]}...")

        try:
            # Prepare messages
            messages = [
                {"role": "user", "content": text}
            ]

            if system_prompt:
                messages.insert(0, {"role": "system", "content": system_prompt})

            # Apply chat template
            formatted_text = self.llm_tokenizer.apply_chat_template(
                messages,
                tokenize=False,
                add_generation_prompt=True,
                enable_thinking=False
            )

            # Tokenize
            model_inputs = self.llm_tokenizer([formatted_text], return_tensors="pt").to(self.llm_model.device)

            # Generate response
            with torch.no_grad():
                generated_ids = self.llm_model.generate(
                    **model_inputs,
                    max_new_tokens=512,
                    temperature=0.7,
                    do_sample=True,
                    pad_token_id=self.llm_tokenizer.eos_token_id
                )

            # Extract new tokens
            output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()

            # Parse thinking content
            try:
                # Find the end of thinking token (</think>)
                index = len(output_ids) - output_ids[::-1].index(151668)
            except ValueError:
                index = 0

            thinking_content = self.llm_tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
            content = self.llm_tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")

            result = {
                "thinking": thinking_content,
                "response": content
            }

            logger.info(f"LLM response generated: {content[:50]}...")
            return result

        except Exception as e:
            logger.error(f"Error in process_with_llm: {e}")
            return {"thinking": "", "response": "Sorry, I encountered an error processing your request."}

    async def text_to_speech(self, text: str, output_path: str = "response.wav") -> str:
        """Convert text to speech asynchronously"""
        logger.info(f"Converting text to speech: {text[:50]}...")

        try:
            # Generate speech in a separate thread to avoid blocking
            def generate_speech():
                # Generate audio using Kokoro TTS
                generator = self.tts_synthesizer(text, voice='af_heart')
                
                # Get the first generated audio chunk
                for i, (gs, ps, audio) in enumerate(generator):
                    if i == 0:  # Use the first chunk
                        return audio
                return None

            loop = asyncio.get_event_loop()
            audio_data = await loop.run_in_executor(None, generate_speech)

            if audio_data is None:
                raise ValueError("Failed to generate audio")

            # Save audio file with Kokoro's default sample rate (24000 Hz)
            sf.write(output_path, audio_data, samplerate=24000)

            logger.info(f"Audio saved to: {output_path}")
            return output_path

        except Exception as e:
            logger.error(f"Error in text_to_speech: {e}")
            return ""

    async def process_conversation(self, audio_file_path: str, system_prompt: Optional[str] = None) -> Dict[str, Any]:
        """Complete conversation pipeline: STT -> LLM -> TTS"""
        start_time = time.time()
        logger.info("Starting conversation processing...")

        try:
            # Step 1: Speech to Text
            stt_start = time.time()
            transcribed_text = await self.speech_to_text(audio_file_path)
            stt_time = time.time() - stt_start

            if not transcribed_text:
                return {"error": "Failed to transcribe audio"}

            # Step 2: Process with LLM
            llm_start = time.time()
            llm_result = await self.process_with_llm(transcribed_text, system_prompt)
            llm_time = time.time() - llm_start

            # Step 3: Text to Speech
            tts_start = time.time()
            audio_output_path = await self.text_to_speech(llm_result["response"])
            tts_time = time.time() - tts_start

            total_time = time.time() - start_time

            result = {
                "input_audio": audio_file_path,
                "transcribed_text": transcribed_text,
                "thinking": llm_result["thinking"],
                "response_text": llm_result["response"],
                "output_audio": audio_output_path,
                "processing_times": {
                    "stt": stt_time,
                    "llm": llm_time,
                    "tts": tts_time,
                    "total": total_time
                }
            }

            logger.info(f"Conversation processed successfully in {total_time:.2f} seconds")
            return result

        except Exception as e:
            logger.error(f"Error in process_conversation: {e}")
            return {"error": str(e)}

    async def batch_process(self, audio_files: list, system_prompt: Optional[str] = None) -> list:
        """Process multiple audio files concurrently"""
        logger.info(f"Processing {len(audio_files)} audio files...")

        # Create tasks for concurrent processing
        tasks = [
            self.process_conversation(audio_file, system_prompt)
            for audio_file in audio_files
        ]

        # Process all files concurrently
        results = await asyncio.gather(*tasks, return_exceptions=True)

        logger.info("Batch processing completed")
        return results

# Usage example and demo functions
# async def demo_conversation():
#     """Demonstration of the conversation system"""
#     # Initialize the conversation system
#     ai_conversation = AsyncAIConversation()

#     # Initialize all models
#     await ai_conversation.initialize_models()

#     # Example usage
#     audio_file = "/content/Recording 2.wav"  # Replace with your audio file path
#     system_prompt = "You are a helpful assistant. Please provide clear and concise responses."

#     # Process the conversation
#     result = await ai_conversation.process_conversation(audio_file, system_prompt)

#     if "error" in result:
#         print(f"Error: {result['error']}")
#     else:
#         print(f"Transcribed: {result['transcribed_text']}")
#         print(f"Thinking: {result['thinking']}")
#         print(f"Response: {result['response_text']}")
#         print(f"Audio saved to: {result['output_audio']}")
#         print(f"Processing times: {result['processing_times']}")

# async def demo_batch_processing():
#     """Demonstration of batch processing"""
#     ai_conversation = AsyncAIConversation()
#     await ai_conversation.initialize_models()

#     # Example batch processing
#     audio_files = [
#         "/content/Recording 1.wav",
#         "/content/Recording 2.wav",
#         "/content/Recording 3.wav"
#     ]

#     results = await ai_conversation.batch_process(audio_files)

#     for i, result in enumerate(results):
#         print(f"File {i+1}: {result}")

# Additional utility function for testing Kokoro TTS standalone
# async def test_kokoro_tts():
#     """Test Kokoro TTS functionality standalone"""
#     try:
#         tts_synthesizer = KPipeline(lang_code='a')
        
#         test_text = "Hello, this is a test of the Kokoro text-to-speech system."
        
#         # Generate audio
#         generator = tts_synthesizer(test_text, voice='af_heart')
        
#         for i, (gs, ps, audio) in enumerate(generator):
#             output_path = f"kokoro_test_{i}.wav"
#             sf.write(output_path, audio, 24000)
#             print(f"Test audio {i} saved to: {output_path}")
            
#             # Only process first chunk for testing
#             if i == 0:
#                 break
                
#     except Exception as e:
#         print(f"Error testing Kokoro TTS: {e}")




# Create the async function wrapper for Gradio
async def process_audio_gradio(audio_file, system_prompt_input):
    """Processes audio file and system prompt for Gradio interface."""
    if audio_file is None:
        return "Please upload an audio file.", "", "", None

    # Gradio provides the file path
    audio_path = audio_file

    # Process the conversation using the initialized ai_conversation instance
    try:
        result = await ai_conversation.process_conversation(
            audio_file_path=audio_path,
            system_prompt=system_prompt_input
        )

        if "error" in result:
            return f"Error: {result['error']}", "", "", None
        else:
            return (
                f"Transcribed: {result['transcribed_text']}\nThinking: {result['thinking']}",
                result['response_text'],
                result['output_audio'],
                result['processing_times']
            )
    except Exception as e:
        return f"An unexpected error occurred: {e}", "", "", None

# Define the Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# Asynchronous AI Conversation System")
    gr.Markdown("Upload an audio file and provide a system prompt to get a response.")

    with gr.Row():
        audio_input = gr.Audio(label="Upload Audio File", type="filepath")
        system_prompt_input = gr.Textbox(label="System Prompt", value=system_prompt_0)

    process_button = gr.Button("Process Conversation")

    with gr.Column():
        status_output = gr.Textbox(label="Status/Transcription/Thinking", interactive=False)
        response_text_output = gr.Textbox(label="AI Response Text", interactive=False)
        response_audio_output = gr.Audio(label="AI Response Audio", interactive=False)
        processing_times_output = gr.JSON(label="Processing Times")

    # Link button click to the async function
    process_button.click(
        fn=process_audio_gradio,
        inputs=[audio_input, system_prompt_input],
        outputs=[status_output, response_text_output, response_audio_output, processing_times_output]
    )

# Launch the Gradio interface
# We need to run the Gradio app within an async context if we're using await inside the handler.
# However, Gradio's launch already handles the async loop for the button clicks.
# The key is that ai_conversation.initialize_models() must be awaited *before* launching Gradio.

# Since the notebook already executed the initialization:
# ai_conversation = AsyncAIConversation()
# await ai_conversation.initialize_models()
# We can directly launch the demo.

if __name__ == "__main__":
    # Gradio launch itself runs an event loop.
    # Ensure ai_conversation is initialized in the notebook before this cell is run.
    demo.launch(debug=False, share=True)