Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,21 +5,30 @@ import numpy as np
|
|
5 |
import soundfile as sf
|
6 |
from transformers import (
|
7 |
AutoProcessor, AutoModelForSpeechSeq2Seq,
|
8 |
-
AutoModelForCausalLM, AutoTokenizer
|
|
|
9 |
)
|
|
|
10 |
import logging
|
11 |
from typing import Optional, Dict, Any
|
12 |
import time
|
13 |
from pathlib import Path
|
14 |
|
15 |
from kokoro import KPipeline
|
|
|
|
|
|
|
16 |
import gradio as gr
|
|
|
|
|
17 |
|
18 |
|
19 |
# Set up logging
|
20 |
logging.basicConfig(level=logging.INFO)
|
21 |
logger = logging.getLogger(__name__)
|
22 |
|
|
|
|
|
23 |
system_prompt_0 = """You are a highly trained U.S. Tax Assistant AI, designed to help individuals and small businesses understand, plan, and file their taxes according to federal and state tax laws. You explain complex tax concepts in simple, accurate, and actionable terms, using IRS guidelines, up-to-date tax code knowledge, and best practices for compliance and savings. You act as an explainer, educator, and assistant—not a certified tax preparer or legal advisor."""
|
24 |
|
25 |
|
@@ -30,19 +39,31 @@ class AsyncAIConversation:
|
|
30 |
self.llm_tokenizer = None
|
31 |
self.llm_model = None
|
32 |
self.tts_synthesizer = None
|
|
|
33 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
34 |
logger.info(f"Using device: {self.device}")
|
35 |
|
36 |
async def initialize_models(self):
|
|
|
37 |
logger.info("Initializing models...")
|
|
|
|
|
38 |
await self._init_stt_model()
|
|
|
|
|
39 |
await self._init_llm_model()
|
|
|
|
|
40 |
await self._init_tts_model()
|
|
|
41 |
logger.info("All models initialized successfully!")
|
42 |
|
43 |
async def _init_stt_model(self):
|
|
|
|
|
44 |
try:
|
45 |
stt_model_id = "unsloth/whisper-small"
|
|
|
46 |
self.stt_processor = AutoProcessor.from_pretrained(stt_model_id)
|
47 |
self.stt_model = AutoModelForSpeechSeq2Seq.from_pretrained(stt_model_id)
|
48 |
self.stt_model.to(self.device)
|
@@ -52,8 +73,11 @@ class AsyncAIConversation:
|
|
52 |
raise
|
53 |
|
54 |
async def _init_llm_model(self):
|
|
|
|
|
55 |
try:
|
56 |
model_name = "unsloth/Qwen3-0.6B"
|
|
|
57 |
self.llm_tokenizer = AutoTokenizer.from_pretrained(model_name)
|
58 |
self.llm_model = AutoModelForCausalLM.from_pretrained(
|
59 |
model_name,
|
@@ -66,7 +90,10 @@ class AsyncAIConversation:
|
|
66 |
raise
|
67 |
|
68 |
async def _init_tts_model(self):
|
|
|
|
|
69 |
try:
|
|
|
70 |
self.tts_synthesizer = KPipeline(lang_code='a')
|
71 |
logger.info("TTS model loaded successfully")
|
72 |
except Exception as e:
|
@@ -74,34 +101,56 @@ class AsyncAIConversation:
|
|
74 |
raise
|
75 |
|
76 |
async def speech_to_text(self, audio_file_path: str) -> str:
|
|
|
|
|
|
|
77 |
try:
|
|
|
78 |
def load_audio():
|
79 |
return librosa.load(audio_file_path, sr=16000)
|
80 |
|
81 |
loop = asyncio.get_event_loop()
|
82 |
speech_array, sampling_rate = await loop.run_in_executor(None, load_audio)
|
83 |
|
|
|
|
|
|
|
|
|
84 |
input_features = self.stt_processor(
|
85 |
speech_array,
|
86 |
sampling_rate=sampling_rate,
|
87 |
return_tensors="pt"
|
88 |
).input_features.to(self.device)
|
89 |
|
|
|
90 |
with torch.no_grad():
|
91 |
predicted_ids = self.stt_model.generate(input_features)
|
92 |
|
|
|
93 |
transcription = self.stt_processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
94 |
-
|
|
|
|
|
|
|
|
|
95 |
except Exception as e:
|
96 |
logger.error(f"Error in speech_to_text: {e}")
|
97 |
return ""
|
98 |
|
99 |
async def process_with_llm(self, text: str, system_prompt: Optional[str] = None) -> Dict[str, str]:
|
|
|
|
|
|
|
100 |
try:
|
101 |
-
|
|
|
|
|
|
|
|
|
102 |
if system_prompt:
|
103 |
messages.insert(0, {"role": "system", "content": system_prompt})
|
104 |
|
|
|
105 |
formatted_text = self.llm_tokenizer.apply_chat_template(
|
106 |
messages,
|
107 |
tokenize=False,
|
@@ -109,8 +158,10 @@ class AsyncAIConversation:
|
|
109 |
enable_thinking=False
|
110 |
)
|
111 |
|
|
|
112 |
model_inputs = self.llm_tokenizer([formatted_text], return_tensors="pt").to(self.llm_model.device)
|
113 |
|
|
|
114 |
with torch.no_grad():
|
115 |
generated_ids = self.llm_model.generate(
|
116 |
**model_inputs,
|
@@ -120,9 +171,12 @@ class AsyncAIConversation:
|
|
120 |
pad_token_id=self.llm_tokenizer.eos_token_id
|
121 |
)
|
122 |
|
|
|
123 |
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
124 |
|
|
|
125 |
try:
|
|
|
126 |
index = len(output_ids) - output_ids[::-1].index(151668)
|
127 |
except ValueError:
|
128 |
index = 0
|
@@ -130,21 +184,31 @@ class AsyncAIConversation:
|
|
130 |
thinking_content = self.llm_tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
|
131 |
content = self.llm_tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
|
132 |
|
133 |
-
|
134 |
"thinking": thinking_content,
|
135 |
"response": content
|
136 |
}
|
137 |
|
|
|
|
|
|
|
138 |
except Exception as e:
|
139 |
logger.error(f"Error in process_with_llm: {e}")
|
140 |
return {"thinking": "", "response": "Sorry, I encountered an error processing your request."}
|
141 |
|
142 |
async def text_to_speech(self, text: str, output_path: str = "response.wav") -> str:
|
|
|
|
|
|
|
143 |
try:
|
|
|
144 |
def generate_speech():
|
|
|
145 |
generator = self.tts_synthesizer(text, voice='af_heart')
|
|
|
|
|
146 |
for i, (gs, ps, audio) in enumerate(generator):
|
147 |
-
if i == 0:
|
148 |
return audio
|
149 |
return None
|
150 |
|
@@ -154,47 +218,105 @@ class AsyncAIConversation:
|
|
154 |
if audio_data is None:
|
155 |
raise ValueError("Failed to generate audio")
|
156 |
|
|
|
157 |
sf.write(output_path, audio_data, samplerate=24000)
|
|
|
|
|
158 |
return output_path
|
|
|
159 |
except Exception as e:
|
160 |
logger.error(f"Error in text_to_speech: {e}")
|
161 |
return ""
|
162 |
|
163 |
async def process_conversation(self, audio_file_path: str, system_prompt: Optional[str] = None) -> Dict[str, Any]:
|
|
|
|
|
|
|
|
|
164 |
try:
|
|
|
|
|
165 |
transcribed_text = await self.speech_to_text(audio_file_path)
|
|
|
|
|
166 |
if not transcribed_text:
|
167 |
return {"error": "Failed to transcribe audio"}
|
168 |
|
|
|
|
|
169 |
llm_result = await self.process_with_llm(transcribed_text, system_prompt)
|
|
|
|
|
|
|
|
|
170 |
audio_output_path = await self.text_to_speech(llm_result["response"])
|
|
|
171 |
|
172 |
-
|
|
|
|
|
173 |
"input_audio": audio_file_path,
|
174 |
"transcribed_text": transcribed_text,
|
175 |
"thinking": llm_result["thinking"],
|
176 |
"response_text": llm_result["response"],
|
177 |
"output_audio": audio_output_path,
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
}
|
|
|
|
|
|
|
|
|
179 |
except Exception as e:
|
180 |
logger.error(f"Error in process_conversation: {e}")
|
181 |
return {"error": str(e)}
|
182 |
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
|
186 |
-
#
|
|
|
|
|
|
|
187 |
async def demo_conversation():
|
|
|
|
|
|
|
188 |
await ai_conversation.initialize_models()
|
189 |
|
190 |
-
|
|
|
|
|
191 |
async def process_audio_gradio(audio_file, system_prompt_input):
|
|
|
|
|
192 |
if audio_file is None:
|
193 |
return "Please upload an audio file.", "", "", None
|
194 |
|
|
|
|
|
|
|
|
|
195 |
try:
|
196 |
result = await ai_conversation.process_conversation(
|
197 |
-
audio_file_path=
|
198 |
system_prompt=system_prompt_input
|
199 |
)
|
200 |
|
@@ -205,12 +327,12 @@ async def process_audio_gradio(audio_file, system_prompt_input):
|
|
205 |
f"Transcribed: {result['transcribed_text']}\nThinking: {result['thinking']}",
|
206 |
result['response_text'],
|
207 |
result['output_audio'],
|
208 |
-
|
209 |
)
|
210 |
except Exception as e:
|
211 |
-
return f"
|
212 |
|
213 |
-
#
|
214 |
with gr.Blocks() as demo:
|
215 |
gr.Markdown("# Asynchronous AI Conversation System")
|
216 |
gr.Markdown("Upload an audio file and provide a system prompt to get a response.")
|
@@ -227,16 +349,21 @@ with gr.Blocks() as demo:
|
|
227 |
response_audio_output = gr.Audio(label="AI Response Audio", interactive=False)
|
228 |
processing_times_output = gr.JSON(label="Processing Times")
|
229 |
|
|
|
230 |
process_button.click(
|
231 |
fn=process_audio_gradio,
|
232 |
inputs=[audio_input, system_prompt_input],
|
233 |
outputs=[status_output, response_text_output, response_audio_output, processing_times_output]
|
234 |
)
|
235 |
|
236 |
-
|
237 |
if __name__ == "__main__":
|
238 |
-
|
|
|
239 |
asyncio.run(demo_conversation())
|
240 |
|
241 |
initiate()
|
242 |
-
|
|
|
|
|
|
|
|
5 |
import soundfile as sf
|
6 |
from transformers import (
|
7 |
AutoProcessor, AutoModelForSpeechSeq2Seq,
|
8 |
+
AutoModelForCausalLM, AutoTokenizer,
|
9 |
+
pipeline, SpeechT5Processor, SpeechT5ForTextToSpeech, SpeechT5HifiGan
|
10 |
)
|
11 |
+
from datasets import load_dataset
|
12 |
import logging
|
13 |
from typing import Optional, Dict, Any
|
14 |
import time
|
15 |
from pathlib import Path
|
16 |
|
17 |
from kokoro import KPipeline
|
18 |
+
from IPython.display import display, Audio
|
19 |
+
|
20 |
+
|
21 |
import gradio as gr
|
22 |
+
import asyncio
|
23 |
+
import os
|
24 |
|
25 |
|
26 |
# Set up logging
|
27 |
logging.basicConfig(level=logging.INFO)
|
28 |
logger = logging.getLogger(__name__)
|
29 |
|
30 |
+
|
31 |
+
|
32 |
system_prompt_0 = """You are a highly trained U.S. Tax Assistant AI, designed to help individuals and small businesses understand, plan, and file their taxes according to federal and state tax laws. You explain complex tax concepts in simple, accurate, and actionable terms, using IRS guidelines, up-to-date tax code knowledge, and best practices for compliance and savings. You act as an explainer, educator, and assistant—not a certified tax preparer or legal advisor."""
|
33 |
|
34 |
|
|
|
39 |
self.llm_tokenizer = None
|
40 |
self.llm_model = None
|
41 |
self.tts_synthesizer = None
|
42 |
+
self.speaker_embedding = None
|
43 |
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
44 |
logger.info(f"Using device: {self.device}")
|
45 |
|
46 |
async def initialize_models(self):
|
47 |
+
"""Initialize all models asynchronously"""
|
48 |
logger.info("Initializing models...")
|
49 |
+
|
50 |
+
# Initialize STT model
|
51 |
await self._init_stt_model()
|
52 |
+
|
53 |
+
# Initialize LLM model
|
54 |
await self._init_llm_model()
|
55 |
+
|
56 |
+
# Initialize TTS model
|
57 |
await self._init_tts_model()
|
58 |
+
|
59 |
logger.info("All models initialized successfully!")
|
60 |
|
61 |
async def _init_stt_model(self):
|
62 |
+
"""Initialize Speech-to-Text model"""
|
63 |
+
logger.info("Loading STT model...")
|
64 |
try:
|
65 |
stt_model_id = "unsloth/whisper-small"
|
66 |
+
#unsloth/whisper-large-v3-turbo
|
67 |
self.stt_processor = AutoProcessor.from_pretrained(stt_model_id)
|
68 |
self.stt_model = AutoModelForSpeechSeq2Seq.from_pretrained(stt_model_id)
|
69 |
self.stt_model.to(self.device)
|
|
|
73 |
raise
|
74 |
|
75 |
async def _init_llm_model(self):
|
76 |
+
"""Initialize Large Language Model"""
|
77 |
+
logger.info("Loading LLM model...")
|
78 |
try:
|
79 |
model_name = "unsloth/Qwen3-0.6B"
|
80 |
+
#unsloth/Qwen3-0.6B-unsloth-bnb-4bit
|
81 |
self.llm_tokenizer = AutoTokenizer.from_pretrained(model_name)
|
82 |
self.llm_model = AutoModelForCausalLM.from_pretrained(
|
83 |
model_name,
|
|
|
90 |
raise
|
91 |
|
92 |
async def _init_tts_model(self):
|
93 |
+
"""Initialize Text-to-Speech model"""
|
94 |
+
logger.info("Loading TTS model...")
|
95 |
try:
|
96 |
+
# Initialize Kokoro TTS pipeline
|
97 |
self.tts_synthesizer = KPipeline(lang_code='a')
|
98 |
logger.info("TTS model loaded successfully")
|
99 |
except Exception as e:
|
|
|
101 |
raise
|
102 |
|
103 |
async def speech_to_text(self, audio_file_path: str) -> str:
|
104 |
+
"""Convert speech to text asynchronously"""
|
105 |
+
logger.info(f"Processing audio file: {audio_file_path}")
|
106 |
+
|
107 |
try:
|
108 |
+
# Load audio in a separate thread to avoid blocking
|
109 |
def load_audio():
|
110 |
return librosa.load(audio_file_path, sr=16000)
|
111 |
|
112 |
loop = asyncio.get_event_loop()
|
113 |
speech_array, sampling_rate = await loop.run_in_executor(None, load_audio)
|
114 |
|
115 |
+
# Convert to tensor
|
116 |
+
speech_array_pt = torch.from_numpy(speech_array).unsqueeze(0).to(self.device)
|
117 |
+
|
118 |
+
# Process input features
|
119 |
input_features = self.stt_processor(
|
120 |
speech_array,
|
121 |
sampling_rate=sampling_rate,
|
122 |
return_tensors="pt"
|
123 |
).input_features.to(self.device)
|
124 |
|
125 |
+
# Generate predictions
|
126 |
with torch.no_grad():
|
127 |
predicted_ids = self.stt_model.generate(input_features)
|
128 |
|
129 |
+
# Decode predictions
|
130 |
transcription = self.stt_processor.batch_decode(predicted_ids, skip_special_tokens=True)
|
131 |
+
|
132 |
+
result = transcription[0] if transcription else ""
|
133 |
+
logger.info(f"STT result: {result}")
|
134 |
+
return result
|
135 |
+
|
136 |
except Exception as e:
|
137 |
logger.error(f"Error in speech_to_text: {e}")
|
138 |
return ""
|
139 |
|
140 |
async def process_with_llm(self, text: str, system_prompt: Optional[str] = None) -> Dict[str, str]:
|
141 |
+
"""Process text with LLM and return both thinking and content"""
|
142 |
+
logger.info(f"Processing text with LLM: {text[:50]}...")
|
143 |
+
|
144 |
try:
|
145 |
+
# Prepare messages
|
146 |
+
messages = [
|
147 |
+
{"role": "user", "content": text}
|
148 |
+
]
|
149 |
+
|
150 |
if system_prompt:
|
151 |
messages.insert(0, {"role": "system", "content": system_prompt})
|
152 |
|
153 |
+
# Apply chat template
|
154 |
formatted_text = self.llm_tokenizer.apply_chat_template(
|
155 |
messages,
|
156 |
tokenize=False,
|
|
|
158 |
enable_thinking=False
|
159 |
)
|
160 |
|
161 |
+
# Tokenize
|
162 |
model_inputs = self.llm_tokenizer([formatted_text], return_tensors="pt").to(self.llm_model.device)
|
163 |
|
164 |
+
# Generate response
|
165 |
with torch.no_grad():
|
166 |
generated_ids = self.llm_model.generate(
|
167 |
**model_inputs,
|
|
|
171 |
pad_token_id=self.llm_tokenizer.eos_token_id
|
172 |
)
|
173 |
|
174 |
+
# Extract new tokens
|
175 |
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
176 |
|
177 |
+
# Parse thinking content
|
178 |
try:
|
179 |
+
# Find the end of thinking token (</think>)
|
180 |
index = len(output_ids) - output_ids[::-1].index(151668)
|
181 |
except ValueError:
|
182 |
index = 0
|
|
|
184 |
thinking_content = self.llm_tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
|
185 |
content = self.llm_tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
|
186 |
|
187 |
+
result = {
|
188 |
"thinking": thinking_content,
|
189 |
"response": content
|
190 |
}
|
191 |
|
192 |
+
logger.info(f"LLM response generated: {content[:50]}...")
|
193 |
+
return result
|
194 |
+
|
195 |
except Exception as e:
|
196 |
logger.error(f"Error in process_with_llm: {e}")
|
197 |
return {"thinking": "", "response": "Sorry, I encountered an error processing your request."}
|
198 |
|
199 |
async def text_to_speech(self, text: str, output_path: str = "response.wav") -> str:
|
200 |
+
"""Convert text to speech asynchronously"""
|
201 |
+
logger.info(f"Converting text to speech: {text[:50]}...")
|
202 |
+
|
203 |
try:
|
204 |
+
# Generate speech in a separate thread to avoid blocking
|
205 |
def generate_speech():
|
206 |
+
# Generate audio using Kokoro TTS
|
207 |
generator = self.tts_synthesizer(text, voice='af_heart')
|
208 |
+
|
209 |
+
# Get the first generated audio chunk
|
210 |
for i, (gs, ps, audio) in enumerate(generator):
|
211 |
+
if i == 0: # Use the first chunk
|
212 |
return audio
|
213 |
return None
|
214 |
|
|
|
218 |
if audio_data is None:
|
219 |
raise ValueError("Failed to generate audio")
|
220 |
|
221 |
+
# Save audio file with Kokoro's default sample rate (24000 Hz)
|
222 |
sf.write(output_path, audio_data, samplerate=24000)
|
223 |
+
|
224 |
+
logger.info(f"Audio saved to: {output_path}")
|
225 |
return output_path
|
226 |
+
|
227 |
except Exception as e:
|
228 |
logger.error(f"Error in text_to_speech: {e}")
|
229 |
return ""
|
230 |
|
231 |
async def process_conversation(self, audio_file_path: str, system_prompt: Optional[str] = None) -> Dict[str, Any]:
|
232 |
+
"""Complete conversation pipeline: STT -> LLM -> TTS"""
|
233 |
+
start_time = time.time()
|
234 |
+
logger.info("Starting conversation processing...")
|
235 |
+
|
236 |
try:
|
237 |
+
# Step 1: Speech to Text
|
238 |
+
stt_start = time.time()
|
239 |
transcribed_text = await self.speech_to_text(audio_file_path)
|
240 |
+
stt_time = time.time() - stt_start
|
241 |
+
|
242 |
if not transcribed_text:
|
243 |
return {"error": "Failed to transcribe audio"}
|
244 |
|
245 |
+
# Step 2: Process with LLM
|
246 |
+
llm_start = time.time()
|
247 |
llm_result = await self.process_with_llm(transcribed_text, system_prompt)
|
248 |
+
llm_time = time.time() - llm_start
|
249 |
+
|
250 |
+
# Step 3: Text to Speech
|
251 |
+
tts_start = time.time()
|
252 |
audio_output_path = await self.text_to_speech(llm_result["response"])
|
253 |
+
tts_time = time.time() - tts_start
|
254 |
|
255 |
+
total_time = time.time() - start_time
|
256 |
+
|
257 |
+
result = {
|
258 |
"input_audio": audio_file_path,
|
259 |
"transcribed_text": transcribed_text,
|
260 |
"thinking": llm_result["thinking"],
|
261 |
"response_text": llm_result["response"],
|
262 |
"output_audio": audio_output_path,
|
263 |
+
"processing_times": {
|
264 |
+
"stt": stt_time,
|
265 |
+
"llm": llm_time,
|
266 |
+
"tts": tts_time,
|
267 |
+
"total": total_time
|
268 |
+
}
|
269 |
}
|
270 |
+
|
271 |
+
logger.info(f"Conversation processed successfully in {total_time:.2f} seconds")
|
272 |
+
return result
|
273 |
+
|
274 |
except Exception as e:
|
275 |
logger.error(f"Error in process_conversation: {e}")
|
276 |
return {"error": str(e)}
|
277 |
|
278 |
+
async def batch_process(self, audio_files: list, system_prompt: Optional[str] = None) -> list:
|
279 |
+
"""Process multiple audio files concurrently"""
|
280 |
+
logger.info(f"Processing {len(audio_files)} audio files...")
|
281 |
+
|
282 |
+
# Create tasks for concurrent processing
|
283 |
+
tasks = [
|
284 |
+
self.process_conversation(audio_file, system_prompt)
|
285 |
+
for audio_file in audio_files
|
286 |
+
]
|
287 |
+
|
288 |
+
# Process all files concurrently
|
289 |
+
results = await asyncio.gather(*tasks, return_exceptions=True)
|
290 |
+
|
291 |
+
logger.info("Batch processing completed")
|
292 |
+
return results
|
293 |
|
294 |
+
# Initialize the conversation system
|
295 |
+
ai_conversation = AsyncAIConversation()
|
296 |
+
|
297 |
+
# Usage example and demo functions
|
298 |
async def demo_conversation():
|
299 |
+
"""Demonstration of the conversation system"""
|
300 |
+
|
301 |
+
# Initialize all models
|
302 |
await ai_conversation.initialize_models()
|
303 |
|
304 |
+
|
305 |
+
|
306 |
+
# Create the async function wrapper for Gradio
|
307 |
async def process_audio_gradio(audio_file, system_prompt_input):
|
308 |
+
|
309 |
+
"""Processes audio file and system prompt for Gradio interface."""
|
310 |
if audio_file is None:
|
311 |
return "Please upload an audio file.", "", "", None
|
312 |
|
313 |
+
# Gradio provides the file path
|
314 |
+
audio_path = audio_file
|
315 |
+
|
316 |
+
# Process the conversation using the initialized ai_conversation instance
|
317 |
try:
|
318 |
result = await ai_conversation.process_conversation(
|
319 |
+
audio_file_path=audio_path,
|
320 |
system_prompt=system_prompt_input
|
321 |
)
|
322 |
|
|
|
327 |
f"Transcribed: {result['transcribed_text']}\nThinking: {result['thinking']}",
|
328 |
result['response_text'],
|
329 |
result['output_audio'],
|
330 |
+
result['processing_times']
|
331 |
)
|
332 |
except Exception as e:
|
333 |
+
return f"An unexpected error occurred: {e}", "", "", None
|
334 |
|
335 |
+
# Define the Gradio interface
|
336 |
with gr.Blocks() as demo:
|
337 |
gr.Markdown("# Asynchronous AI Conversation System")
|
338 |
gr.Markdown("Upload an audio file and provide a system prompt to get a response.")
|
|
|
349 |
response_audio_output = gr.Audio(label="AI Response Audio", interactive=False)
|
350 |
processing_times_output = gr.JSON(label="Processing Times")
|
351 |
|
352 |
+
# Link button click to the async function
|
353 |
process_button.click(
|
354 |
fn=process_audio_gradio,
|
355 |
inputs=[audio_input, system_prompt_input],
|
356 |
outputs=[status_output, response_text_output, response_audio_output, processing_times_output]
|
357 |
)
|
358 |
|
359 |
+
|
360 |
if __name__ == "__main__":
|
361 |
+
|
362 |
+
def initiate():
|
363 |
asyncio.run(demo_conversation())
|
364 |
|
365 |
initiate()
|
366 |
+
|
367 |
+
# Gradio launch itself runs an event loop.
|
368 |
+
# Ensure ai_conversation is initialized in the notebook before this cell is run.
|
369 |
+
demo.launch(debug=False, share=True)
|