Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,8 @@
|
|
1 |
-
from unsloth import FastLanguageModel
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
5 |
from threading import Thread
|
6 |
|
7 |
-
|
8 |
# Load model and tokenizer once at startup
|
9 |
model_name = "jsbeaudry/makandal-v2"
|
10 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
@@ -14,13 +12,9 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
14 |
device_map="auto"
|
15 |
)
|
16 |
|
17 |
-
# Prepare model for inference
|
18 |
-
FastLanguageModel.for_inference(model)
|
19 |
-
|
20 |
think_token_id = tokenizer.convert_tokens_to_ids("</think>")
|
21 |
|
22 |
def generate_response_stream(prompt):
|
23 |
-
"""Generator function that yields streaming responses"""
|
24 |
# Format input for chat template
|
25 |
messages = [{"role": "user", "content": prompt}]
|
26 |
text = tokenizer.apply_chat_template(
|
@@ -34,7 +28,7 @@ def generate_response_stream(prompt):
|
|
34 |
model_inputs = tokenizer([text], return_tensors="pt")
|
35 |
model_inputs = {k: v.to(model.device) for k, v in model_inputs.items()}
|
36 |
|
37 |
-
#
|
38 |
text_streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
39 |
|
40 |
# Generation parameters
|
@@ -53,52 +47,22 @@ def generate_response_stream(prompt):
|
|
53 |
thread.start()
|
54 |
|
55 |
# Stream the response
|
56 |
-
|
57 |
-
thinking_content = ""
|
58 |
-
content = ""
|
59 |
-
|
60 |
for new_text in text_streamer:
|
61 |
-
|
62 |
-
|
63 |
-
# Check if we've hit the think token
|
64 |
-
if "</think>" in full_response:
|
65 |
-
parts = full_response.split("</think>", 1)
|
66 |
-
thinking_content = parts[0].strip()
|
67 |
-
content = parts[1].strip() if len(parts) > 1 else ""
|
68 |
-
yield thinking_content, content
|
69 |
-
else:
|
70 |
-
# If no think token yet, everything is thinking content
|
71 |
-
thinking_content = full_response.strip()
|
72 |
-
yield thinking_content, content
|
73 |
-
|
74 |
-
# Final yield with complete response
|
75 |
-
if "</think>" in full_response:
|
76 |
-
parts = full_response.split("</think>", 1)
|
77 |
-
thinking_content = parts[0].strip()
|
78 |
-
content = parts[1].strip() if len(parts) > 1 else ""
|
79 |
-
else:
|
80 |
-
# If no think token found, treat everything as content
|
81 |
-
thinking_content = ""
|
82 |
-
content = full_response.strip()
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
def generate_response_interface(prompt):
|
87 |
-
"""Interface function for Gradio that handles streaming"""
|
88 |
-
for thinking, content in generate_response_stream(prompt):
|
89 |
-
yield thinking, content
|
90 |
|
91 |
# Gradio Interface with streaming
|
92 |
demo = gr.Interface(
|
93 |
-
fn=
|
94 |
inputs=gr.Textbox(lines=2, placeholder="Ekri yon sijè oswa yon fraz..."),
|
95 |
-
outputs=
|
96 |
-
gr.Textbox(label="Thinking Content", interactive=False),
|
97 |
-
gr.Textbox(label="Respons", interactive=False)
|
98 |
-
],
|
99 |
title="Makandal Text Generator (Streaming)",
|
100 |
description="Ekri yon fraz oswa mo kle pou jenere tèks ak modèl Makandal la. Modèl sa fèt espesyalman pou kontèks Ayiti.",
|
101 |
-
live=False # Set to
|
102 |
)
|
103 |
|
104 |
if __name__ == "__main__":
|
@@ -107,14 +71,6 @@ if __name__ == "__main__":
|
|
107 |
|
108 |
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
# import torch
|
119 |
# import gradio as gr
|
120 |
# from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
4 |
from threading import Thread
|
5 |
|
|
|
6 |
# Load model and tokenizer once at startup
|
7 |
model_name = "jsbeaudry/makandal-v2"
|
8 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
12 |
device_map="auto"
|
13 |
)
|
14 |
|
|
|
|
|
|
|
15 |
think_token_id = tokenizer.convert_tokens_to_ids("</think>")
|
16 |
|
17 |
def generate_response_stream(prompt):
|
|
|
18 |
# Format input for chat template
|
19 |
messages = [{"role": "user", "content": prompt}]
|
20 |
text = tokenizer.apply_chat_template(
|
|
|
28 |
model_inputs = tokenizer([text], return_tensors="pt")
|
29 |
model_inputs = {k: v.to(model.device) for k, v in model_inputs.items()}
|
30 |
|
31 |
+
# Create streamer
|
32 |
text_streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
33 |
|
34 |
# Generation parameters
|
|
|
47 |
thread.start()
|
48 |
|
49 |
# Stream the response
|
50 |
+
partial_response = ""
|
|
|
|
|
|
|
51 |
for new_text in text_streamer:
|
52 |
+
partial_response += new_text
|
53 |
+
yield partial_response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
# Wait for thread to complete
|
56 |
+
thread.join()
|
|
|
|
|
|
|
|
|
57 |
|
58 |
# Gradio Interface with streaming
|
59 |
demo = gr.Interface(
|
60 |
+
fn=generate_response_stream,
|
61 |
inputs=gr.Textbox(lines=2, placeholder="Ekri yon sijè oswa yon fraz..."),
|
62 |
+
outputs=gr.Textbox(label="Respons"),
|
|
|
|
|
|
|
63 |
title="Makandal Text Generator (Streaming)",
|
64 |
description="Ekri yon fraz oswa mo kle pou jenere tèks ak modèl Makandal la. Modèl sa fèt espesyalman pou kontèks Ayiti.",
|
65 |
+
live=False # Set to False to prevent auto-triggering
|
66 |
)
|
67 |
|
68 |
if __name__ == "__main__":
|
|
|
71 |
|
72 |
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
# import torch
|
75 |
# import gradio as gr
|
76 |
# from transformers import AutoTokenizer, AutoModelForCausalLM
|