Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Load model and tokenizer
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained("jsbeaudry/makandal-pre-trained")
|
7 |
+
model = AutoModelForCausalLM.from_pretrained("jsbeaudry/makandal-pre-trained")
|
8 |
+
|
9 |
+
# Set device
|
10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
11 |
+
model.to(device)
|
12 |
+
|
13 |
+
# Generation function
|
14 |
+
def generate_text(prompt):
|
15 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True).to(device)
|
16 |
+
output = model.generate(
|
17 |
+
**inputs,
|
18 |
+
max_new_tokens=100,
|
19 |
+
do_sample=True,
|
20 |
+
repetition_penalty=1.2,
|
21 |
+
no_repeat_ngram_size=3,
|
22 |
+
temperature=0.9,
|
23 |
+
top_k=40,
|
24 |
+
top_p=0.85,
|
25 |
+
pad_token_id=tokenizer.pad_token_id,
|
26 |
+
eos_token_id=tokenizer.eos_token_id
|
27 |
+
)
|
28 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
29 |
+
|
30 |
+
# Gradio interface
|
31 |
+
iface = gr.Interface(
|
32 |
+
fn=generate_text,
|
33 |
+
inputs=gr.Textbox(lines=2, placeholder="Ekri yon sijè oswa yon fraz..."),
|
34 |
+
outputs="text",
|
35 |
+
title="Makandal Text Generator",
|
36 |
+
description="Ekri yon fraz oswa mo kle pou jenere tèks ak modèl Makandal la. Modèl sa fèt espesyalman pou kontèks Ayiti."
|
37 |
+
)
|
38 |
+
|
39 |
+
if __name__ == "__main__":
|
40 |
+
iface.launch()
|