Update app.py
Browse files
app.py
CHANGED
@@ -1,40 +1,110 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
-
import torch
|
4 |
|
5 |
-
# Load model and tokenizer
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
-
#
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
**inputs,
|
18 |
-
max_new_tokens=30,
|
19 |
do_sample=True,
|
20 |
-
|
21 |
-
|
22 |
-
temperature=0.9,
|
23 |
-
top_k=40,
|
24 |
-
top_p=0.85,
|
25 |
-
pad_token_id=tokenizer.pad_token_id,
|
26 |
-
eos_token_id=tokenizer.eos_token_id
|
27 |
)
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
)
|
38 |
|
39 |
if __name__ == "__main__":
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
import gradio as gr
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
4 |
|
5 |
+
# Load model and tokenizer once at startup
|
6 |
+
model_name = "jsbeaudry/makandal-v2"
|
7 |
+
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
+
model = AutoModelForCausalLM.from_pretrained(
|
10 |
+
model_name,
|
11 |
+
torch_dtype=torch.float16,
|
12 |
+
device_map="auto"
|
13 |
+
)
|
14 |
+
|
15 |
+
think_token_id = tokenizer.convert_tokens_to_ids("</think>")
|
16 |
|
17 |
+
def generate_response(prompt):
|
18 |
+
# Format input for chat template
|
19 |
+
messages = [{"role": "user", "content": prompt}]
|
20 |
+
text = tokenizer.apply_chat_template(
|
21 |
+
messages,
|
22 |
+
tokenize=False,
|
23 |
+
add_generation_prompt=True,
|
24 |
+
|
25 |
+
)
|
26 |
+
|
27 |
+
# Tokenize
|
28 |
+
model_inputs = tokenizer([text], return_tensors="pt")
|
29 |
+
model_inputs = {k: v.to(model.device) for k, v in model_inputs.items()}
|
30 |
|
31 |
+
# Generate
|
32 |
+
generated_ids = model.generate(
|
33 |
+
**model_inputs,
|
34 |
+
max_new_tokens=2048,
|
|
|
|
|
35 |
do_sample=True,
|
36 |
+
temperature=0.7,
|
37 |
+
top_p=0.9
|
|
|
|
|
|
|
|
|
|
|
38 |
)
|
39 |
+
|
40 |
+
output_ids = generated_ids[0][len(model_inputs["input_ids"][0]):].tolist()
|
41 |
+
|
42 |
+
try:
|
43 |
+
index = len(output_ids) - output_ids[::-1].index(think_token_id)
|
44 |
+
except ValueError:
|
45 |
+
index = 0
|
46 |
+
|
47 |
+
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
|
48 |
+
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
|
49 |
+
|
50 |
+
return thinking_content, content
|
51 |
+
|
52 |
+
# Gradio Interface
|
53 |
+
demo = gr.Interface(
|
54 |
+
fn=generate_response,
|
55 |
+
inputs=gr.Textbox(label="Your Prompt", placeholder="Ask something..."),
|
56 |
+
outputs=[
|
57 |
+
gr.Textbox(label="Thinking Content"),
|
58 |
+
gr.Textbox(label="Final Response")
|
59 |
+
],
|
60 |
+
title="Qwen3 Thinking Chatbot",
|
61 |
+
description="Ask a question and get both the thinking trace and final answer from Qwen3-0.6B."
|
62 |
)
|
63 |
|
64 |
if __name__ == "__main__":
|
65 |
+
demo.launch()
|
66 |
+
|
67 |
+
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
# import gradio as gr
|
72 |
+
# from transformers import AutoTokenizer, AutoModelForCausalLM
|
73 |
+
# import torch
|
74 |
+
|
75 |
+
# # Load model and tokenizer
|
76 |
+
# tokenizer = AutoTokenizer.from_pretrained("jsbeaudry/makandal-v2")
|
77 |
+
# model = AutoModelForCausalLM.from_pretrained("jsbeaudry/makandal-v2")
|
78 |
+
|
79 |
+
# # Set device
|
80 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
81 |
+
# model.to(device)
|
82 |
+
|
83 |
+
# # Generation function
|
84 |
+
# def generate_text(prompt):
|
85 |
+
# inputs = tokenizer(prompt, return_tensors="pt", padding=True).to(device)
|
86 |
+
# output = model.generate(
|
87 |
+
# **inputs,
|
88 |
+
# max_new_tokens=30,
|
89 |
+
# do_sample=True,
|
90 |
+
# repetition_penalty=1.2,
|
91 |
+
# no_repeat_ngram_size=3,
|
92 |
+
# temperature=0.9,
|
93 |
+
# top_k=40,
|
94 |
+
# top_p=0.85,
|
95 |
+
# pad_token_id=tokenizer.pad_token_id,
|
96 |
+
# eos_token_id=tokenizer.eos_token_id
|
97 |
+
# )
|
98 |
+
# return tokenizer.decode(output[0], skip_special_tokens=True)
|
99 |
+
|
100 |
+
# # Gradio interface
|
101 |
+
# iface = gr.Interface(
|
102 |
+
# fn=generate_text,
|
103 |
+
# inputs=gr.Textbox(lines=2, placeholder="Ekri yon sijè oswa yon fraz..."),
|
104 |
+
# outputs="text",
|
105 |
+
# title="Makandal Text Generator",
|
106 |
+
# description="Ekri yon fraz oswa mo kle pou jenere tèks ak modèl Makandal la. Modèl sa fèt espesyalman pou kontèks Ayiti."
|
107 |
+
# )
|
108 |
+
|
109 |
+
# if __name__ == "__main__":
|
110 |
+
# iface.launch()
|