import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained("jsbeaudry/makandal-pre-trained") model = AutoModelForCausalLM.from_pretrained("jsbeaudry/makandal-pre-trained") # Set device device = "cuda" if torch.cuda.is_available() else "cpu" model.to(device) # Generation function def generate_text(prompt): inputs = tokenizer(prompt, return_tensors="pt", padding=True).to(device) output = model.generate( **inputs, max_new_tokens=30, do_sample=True, repetition_penalty=1.2, no_repeat_ngram_size=3, temperature=0.9, top_k=40, top_p=0.85, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id ) return tokenizer.decode(output[0], skip_special_tokens=True) # Gradio interface iface = gr.Interface( fn=generate_text, inputs=gr.Textbox(lines=2, placeholder="Ekri yon sijè oswa yon fraz..."), outputs="text", title="Makandal Text Generator", description="Ekri yon fraz oswa mo kle pou jenere tèks ak modèl Makandal la. Modèl sa fèt espesyalman pou kontèks Ayiti." ) if __name__ == "__main__": iface.launch()