Spaces:
Sleeping
Sleeping
File size: 1,269 Bytes
2c4cfe6 0493d0d 5bf7330 2c4cfe6 0493d0d 2c4cfe6 0493d0d 5bf7330 2c4cfe6 0493d0d 2c4cfe6 5bf7330 2c4cfe6 0493d0d 07614d2 0493d0d 2c4cfe6 0493d0d 2c4cfe6 0493d0d bfbc50c 0493d0d 2c4cfe6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 |
from transformers import pipeline
import gradio as gr
# Load Whisper model
print("Loading model...")
pipe = pipeline(model="jsbeaudry/oswald-large-v3-turbo-m1")
print("Model loaded successfully.")
# Transcription function
def transcribe(audio_path):
if audio_path is None:
return "Please upload or record an audio file first."
result = pipe(audio_path)
return result["text"]
# Build Gradio interface
def create_interface():
with gr.Blocks(title="Oswald Turbo M1 - Haitian Creole") as demo:
gr.Markdown("# ποΈ oswald turbo m1 Creole ASR")
gr.Markdown(
"Upload an audio file or record your voice in Haitian Creole. "
"Then click **Transcribe** to see the result."
)
with gr.Row():
with gr.Column():
audio_input = gr.Audio( type="filepath", label="π§ Upload Audio")
with gr.Column():
transcribe_button = gr.Button("π Transcribe")
output_text = gr.Textbox(label="π Transcribed Text", lines=4)
transcribe_button.click(fn=transcribe, inputs=audio_input, outputs=output_text)
return demo
if __name__ == "__main__":
interface = create_interface()
interface.launch() |