Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,46 @@
|
|
1 |
from transformers import pipeline
|
2 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
pipe = pipeline(model="jsbeaudry/creole-speech-to-text")
|
5 |
|
6 |
def transcribe(audio):
|
|
|
7 |
text = pipe(audio)["text"]
|
8 |
return text
|
9 |
|
10 |
|
11 |
iface = gr.Interface(
|
12 |
fn=transcribe,
|
13 |
-
inputs=gr.Audio(type="filepath"),
|
14 |
outputs="text",
|
15 |
title="Whisper medium Creole",
|
16 |
description="Realtime demo for Haitian Creole speech recognition using a fine-tuned medium small model.",
|
17 |
)
|
18 |
|
19 |
-
iface.launch()
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
# from transformers import pipeline
|
24 |
-
# import gradio as gr
|
25 |
-
|
26 |
-
# import torch
|
27 |
-
# from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
28 |
-
# from datasets import load_dataset
|
29 |
-
|
30 |
-
|
31 |
-
# device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
32 |
-
# torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
33 |
-
|
34 |
-
# model_id = "jsbeaudry/creole-speech-to-text"
|
35 |
-
|
36 |
-
# model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
37 |
-
# model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
38 |
-
# )
|
39 |
-
# model.to(device)
|
40 |
-
|
41 |
-
# processor = AutoProcessor.from_pretrained(model_id)
|
42 |
-
|
43 |
-
# pipe = pipeline(
|
44 |
-
# "automatic-speech-recognition",
|
45 |
-
# model=model,
|
46 |
-
# tokenizer=processor.tokenizer,
|
47 |
-
# feature_extractor=processor.feature_extractor,
|
48 |
-
# torch_dtype=torch_dtype,
|
49 |
-
# device=device,
|
50 |
-
# )
|
51 |
-
# def transcribe(audio):
|
52 |
-
# # Use the 'whisper' pipeline defined in the previous cell
|
53 |
-
# text = pipe(audio)["text"]
|
54 |
-
# return text
|
55 |
-
|
56 |
-
# iface = gr.Interface(
|
57 |
-
# fn=transcribe,
|
58 |
-
# inputs=gr.Audio(type="filepath"),
|
59 |
-
# outputs="text",
|
60 |
-
# title="Whisper medium Creole",
|
61 |
-
# description="Realtime demo for Haitian Creole speech recognition using a fine-tuned medium small model.",
|
62 |
-
# )
|
63 |
-
|
64 |
-
# iface.launch()
|
|
|
1 |
from transformers import pipeline
|
2 |
import gradio as gr
|
3 |
+
from unsloth import FastModel
|
4 |
+
from transformers import WhisperForConditionalGeneration
|
5 |
+
import torch
|
6 |
+
|
7 |
+
|
8 |
+
model, tokenizer = FastModel.from_pretrained(
|
9 |
+
model_name = "jsbeaudry/creole-speech-to-text",
|
10 |
+
dtype = None, # Leave as None for auto detection
|
11 |
+
load_in_4bit = False, # Set to True to do 4bit quantization which reduces memory
|
12 |
+
auto_model = WhisperForConditionalGeneration,
|
13 |
+
whisper_language = "Haitian",
|
14 |
+
whisper_task = "transcribe",
|
15 |
+
# token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
|
16 |
+
)
|
17 |
+
# Reuse the previously created pipeline object
|
18 |
+
# pipe = pipeline(model) # This line caused the error
|
19 |
+
|
20 |
+
# Initialize the pipeline correctly
|
21 |
+
pipe = pipeline(
|
22 |
+
"automatic-speech-recognition",
|
23 |
+
model=model,
|
24 |
+
tokenizer=tokenizer.tokenizer,
|
25 |
+
feature_extractor=tokenizer.feature_extractor,
|
26 |
+
processor=tokenizer,
|
27 |
+
return_language=True,
|
28 |
+
torch_dtype=torch.float16
|
29 |
+
)
|
30 |
|
|
|
31 |
|
32 |
def transcribe(audio):
|
33 |
+
# Use the 'pipe' pipeline
|
34 |
text = pipe(audio)["text"]
|
35 |
return text
|
36 |
|
37 |
|
38 |
iface = gr.Interface(
|
39 |
fn=transcribe,
|
40 |
+
inputs=gr.Audio(type="filepath"),
|
41 |
outputs="text",
|
42 |
title="Whisper medium Creole",
|
43 |
description="Realtime demo for Haitian Creole speech recognition using a fine-tuned medium small model.",
|
44 |
)
|
45 |
|
46 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|