Spaces:
Running
Running
Jon Solow
commited on
Commit
·
c412d07
1
Parent(s):
e4a5a25
Add 24 hour player news
Browse files
src/pages/10_Player_News.py
ADDED
|
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import datetime
|
| 2 |
+
import streamlit as st
|
| 3 |
+
|
| 4 |
+
from config import DEFAULT_ICON
|
| 5 |
+
from shared_page import common_page_config
|
| 6 |
+
|
| 7 |
+
from queries.nbcsports.player_news import get_player_news_window_hours
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
@st.cache_data(ttl=60 * 60 * 24)
|
| 11 |
+
def load_data():
|
| 12 |
+
data = get_player_news_window_hours(24)
|
| 13 |
+
teams_list = sorted(filter(None, data.Team.unique()))
|
| 14 |
+
position_list = data.Position.unique()
|
| 15 |
+
data_load_time_str = datetime.datetime.utcnow().strftime("%m/%d/%Y %I:%M %p")
|
| 16 |
+
return data, teams_list, position_list, data_load_time_str
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def get_page():
|
| 20 |
+
page_title = "Player News - Last 24 Hours"
|
| 21 |
+
st.set_page_config(page_title=page_title, page_icon=DEFAULT_ICON, layout="wide")
|
| 22 |
+
common_page_config()
|
| 23 |
+
st.title(page_title)
|
| 24 |
+
if st.button("Refresh Data"):
|
| 25 |
+
st.cache_data.clear()
|
| 26 |
+
data, teams_list, position_list, data_load_time_str = load_data()
|
| 27 |
+
st.write(f"Data loaded as of: {data_load_time_str} UTC")
|
| 28 |
+
|
| 29 |
+
teams_selected = st.multiselect("Team:", teams_list, placeholder="Select a team to filter") or teams_list
|
| 30 |
+
|
| 31 |
+
with st.container():
|
| 32 |
+
filtered_data = data[(data.Team.isin(teams_selected))]
|
| 33 |
+
st.dataframe(
|
| 34 |
+
filtered_data,
|
| 35 |
+
hide_index=True,
|
| 36 |
+
height=35 * (len(filtered_data) + 1) + 12,
|
| 37 |
+
use_container_width=True,
|
| 38 |
+
column_order=[
|
| 39 |
+
"Date/Time",
|
| 40 |
+
"Name",
|
| 41 |
+
"Team",
|
| 42 |
+
"Position",
|
| 43 |
+
"Headline",
|
| 44 |
+
],
|
| 45 |
+
column_config={"Date/Time": st.column_config.DatetimeColumn()},
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
if __name__ == "__main__":
|
| 50 |
+
get_page()
|
src/queries/nbcsports/player_news.py
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from bs4 import BeautifulSoup
|
| 2 |
+
import datetime
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import requests
|
| 5 |
+
from typing import Mapping
|
| 6 |
+
|
| 7 |
+
NEWS_URL = "https://www.nbcsports.com/fantasy/football/player-news"
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def get_text_from_find_all(soup, element: str, find_search_map: Mapping[str, str]):
|
| 11 |
+
find_list = soup.find_all(element, find_search_map)
|
| 12 |
+
assert find_list
|
| 13 |
+
text_list = [x.text.strip() for x in find_list]
|
| 14 |
+
return text_list
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def get_nfl_player_news(page_number: int = 1) -> pd.DataFrame:
|
| 18 |
+
url = f"{NEWS_URL}?p={page_number}"
|
| 19 |
+
request_page = requests.get(url)
|
| 20 |
+
soup = BeautifulSoup(request_page.content)
|
| 21 |
+
player_names_list = get_text_from_find_all(soup, "div", {"class": "PlayerNewsPost-name"})
|
| 22 |
+
team_abbr_list = get_text_from_find_all(soup, "span", {"class": "PlayerNewsPost-team-abbr"})
|
| 23 |
+
position_list = get_text_from_find_all(soup, "span", {"class": "PlayerNewsPost-position"})
|
| 24 |
+
headline_list = get_text_from_find_all(soup, "div", {"class": "PlayerNewsPost-headline"})
|
| 25 |
+
analysis_list = get_text_from_find_all(soup, "div", {"class": "PlayerNewsPost-analysis"})
|
| 26 |
+
datetime_div_list = soup.find_all("div", {"class": "PlayerNewsPost-date"})
|
| 27 |
+
assert datetime_div_list
|
| 28 |
+
datetime_list = [x["data-date"] for x in datetime_div_list]
|
| 29 |
+
assert (
|
| 30 |
+
len(player_names_list) == len(team_abbr_list) == len(position_list) == len(headline_list) == len(analysis_list)
|
| 31 |
+
)
|
| 32 |
+
df = pd.DataFrame(
|
| 33 |
+
zip(datetime_list, player_names_list, team_abbr_list, position_list, headline_list, analysis_list),
|
| 34 |
+
columns=["Date/Time", "Name", "Team", "Position", "Headline", "Analysis"],
|
| 35 |
+
)
|
| 36 |
+
df["Date/Time"] = pd.to_datetime(df["Date/Time"])
|
| 37 |
+
return df
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def get_player_news_window_hours(hours: int = 1):
|
| 41 |
+
end_date = datetime.datetime.now(datetime.timezone.utc) - datetime.timedelta(hours=hours)
|
| 42 |
+
page = 1
|
| 43 |
+
max_pages = 20
|
| 44 |
+
date_reached = False
|
| 45 |
+
df_list = []
|
| 46 |
+
while page < max_pages and not date_reached:
|
| 47 |
+
last_news = get_nfl_player_news(page)
|
| 48 |
+
df_list.append(last_news)
|
| 49 |
+
date_reached = min(last_news["Date/Time"]) < end_date
|
| 50 |
+
page += 1
|
| 51 |
+
return pd.concat(df_list)
|
tests/contract/test_nbcsports_player_news.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pytest
|
| 2 |
+
|
| 3 |
+
from queries.nbcsports import player_news
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
@pytest.mark.parametrize("page_number", [(1), (2)])
|
| 7 |
+
def test_get_nfl_player_news(page_number: int):
|
| 8 |
+
_ = player_news.get_nfl_player_news(page_number)
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
@pytest.mark.parametrize("hours", [(1), (10)])
|
| 12 |
+
def test_get_player_news_window_hours(hours: int):
|
| 13 |
+
_ = player_news.get_player_news_window_hours(hours)
|