File size: 3,421 Bytes
09eec9f
 
1cec727
2f9fd39
f38da00
 
 
09eec9f
 
353ee60
 
 
 
 
 
 
 
 
0c95b79
353ee60
0c95b79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f38da00
 
 
353ee60
 
1cec727
 
4c38736
f38da00
 
554c0f8
 
f38da00
dd7bed1
f38da00
 
 
 
 
 
 
 
 
 
0cc8534
09eec9f
 
 
bb0e89d
09eec9f
 
 
 
 
01b0f5b
 
 
c7978e1
0cc8534
 
 
 
 
 
 
2d45620
0cc8534
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# Aplicacion principal para cargar modelo, generar los prompts, y el la explicacion de los datos
import streamlit as st
import os
import re
import pandas as pd

from supabase import create_client, Client
from transformers import pipeline

# funcion para extraccion de codigo del modelo

def extract_code(llm_output):
        
        code_match = re.search(r"```python\n(.*?)\n```", llm_output, re.DOTALL)
        if code_match:
            return code_match.group(1)
        return None

# funcion para prompts y ejemplo basico

#prompt = "Generate a graph idea based on European fertility data."
#output = generator(prompt, max_length=50, num_return_sequences=1)[0]['generated_text']

# Aqui vamos a añadir los prompts, comparativa entre paises, lo ideal es mas de uno, pero podriamos iniciar en un 1v1 con la metrica 
# Vamos a generar un codigo para luego ejecutarlo con un exec() y poder imprimir en Streamlit st.pyplot()

def generate_graph_prompt(country1, country2, metric, start_year, end_year):
    
    prompt = f"""You have access to a database of European countries with data on {metric}, labor force participation, population, and their predictions for future years.
        Generate Python code using matplotlib to create a line graph showing the trend of {metric} for {country1} and {country2} from {start_year} to {end_year}.
        Also, provide a concise explanation of what this graph represents for an end user who might not be familiar with the data.
        """
    return prompt

# Ejemplo de como quedaria el prompt que recibiria el modelo
#prompt = generate_graph_prompt("Germany", "France", "fertility rate", 2020, 2030)


#Aqui van las credenciales, conectar las credenciales de Supabase en "Secrets"
# conexion a supabase

SUPABASE_URL = os.environ.get("SUPABASE_URL")
SUPABASE_KEY = os.environ.get("SUPABASE_KEY")
supabase: Client = create_client(SUPABASE_URL, SUPABASE_KEY)

def load_data():
    
    """fertility, geo data, labor, population y predictions """
    try:
        response = supabase.from_("labor").select("*").execute()
        if response.error:
            st.error(f"Error fetching data: {response.error}")
            return pd.DataFrame()
        else:
            return pd.DataFrame(response.data)
    except Exception as e:
        st.error(f"An error occurred: {e}")
        return pd.DataFrame()


data = load_data()
# Pendiente las Keys, dependiendo del modelo que escojamos

model_name = "google/flan-t5-small"  # Probando modelos
generator = pipeline("text-generation", model=model_name)

# Inicio de Streamlit (hice lo basico, podemos mejorarla)

st.title("_Europe GraphGen_  :blue[Graph generator] :flag-eu:")
user_input = st.text_input("What graphics do you have in mind")
generate_button = st.button("Generate")

if generate_button and user_input:
    
    if data.empty and supabase is not None:
        st.warning("Successfully connected to Supabase, but no data was loaded (either the table is empty or there was a query issue). Check the error message above if any.")
    elif not data.empty:
        st.success("Successfully connected to Supabase and loaded data!")
        st.dataframe(data.head()) # Display a small sample of the data
    elif supabase is None:
        st.error("Failed to initialize Supabase client. Check environment variables in Settings.")
    else:
        st.info("Attempted to load data. Check for any error messages above.")