File size: 13,032 Bytes
ab15ee1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import streamlit as st
import os
import time
import pandas as pd
from dotenv import load_dotenv
from supabase import create_client, Client
from transformers import pipeline
from sentence_transformers import SentenceTransformer
import plotly.graph_objects as go
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
import re


# ---------------------------------------------------------------------------------
# Funciones auxiliares
# ---------------------------------------------------------------------------------

def extract_country_and_dates(prompt, countries):
    country = None
    start_date = None
    end_date = None

    # Buscar el pa铆s (insensible a may煤sculas y min煤sculas)
    for c in countries:
        if re.search(r'\b' + re.escape(c) + r'\b', prompt, re.IGNORECASE):
            country = c
            break

    # Buscar rangos de a帽os con diferentes separadores (-, to, until, from ... to, between ... and)
    date_ranges = re.findall(r'(\d{4})\s*(?:-|to|until|from.*?to|between.*?and)\s*(\d{4})', prompt, re.IGNORECASE)
    if date_ranges:
        start_date = date_ranges[0][0]
        end_date = date_ranges[0][1]
    else:
        # Buscar un solo a帽o
        single_years = re.findall(r'\b(\d{4})\b', prompt)
        if single_years:
            start_date = single_years[0]
            end_date = single_years[0]

    return country, start_date, end_date


def generate_plotly_graph(df, user_query, country=None, start_date=None, end_date=None):
    relevant_data = df.copy()

    if 'geo' in relevant_data.columns and country:
        relevant_data = relevant_data[relevant_data['geo'].str.lower() == country.lower()]

    if 'year' in relevant_data.columns:
        relevant_data['year'] = pd.to_numeric(relevant_data['year'], errors='coerce').dropna().astype(int)
        if start_date and end_date:
            relevant_data = relevant_data[
                (relevant_data['year'] >= int(start_date)) & (relevant_data['year'] <= int(end_date))
                ]
        elif start_date:
            relevant_data = relevant_data[relevant_data['year'] >= int(start_date)]
        elif end_date:
            relevant_data = relevant_data[relevant_data['year'] <= int(end_date)]

    numeric_cols = relevant_data.select_dtypes(include=['number']).columns.tolist()
    if 'year' in relevant_data.columns and numeric_cols:
        fig = go.Figure()
        for col in numeric_cols:
            if col != 'year':
                fig.add_trace(go.Scatter(x=relevant_data['year'], y=relevant_data[col], mode='lines+markers', name=col))

        title = f"Data for {country if country else 'All Regions'}"
        if start_date and end_date:
            title += f" ({start_date}-{end_date})"
        elif start_date:
            title += f" (from {start_date})"
        elif end_date:
            title += f" (up to {end_date})"

        # A帽adir t铆tulo y etiquetas de los ejes
        fig.update_layout(
            title=title,
            xaxis_title="Year",
            yaxis_title="Value"  # Necesitaremos inferir o tener nombres de columnas m谩s descriptivos
        )
        return fig
    else:
        return None


# ---------------------------------------------------------------------------------
# Configuraci贸n de conexi贸n a Supabase
# ---------------------------------------------------------------------------------
load_dotenv()
SUPABASE_URL = os.getenv("SUPABASE_URL")
SUPABASE_KEY = os.getenv("SUPABASE_KEY")
supabase: Client = create_client(SUPABASE_URL, SUPABASE_KEY)


# Funci贸n para cargar datos de una tabla de Supabase
def load_data(table):
    try:
        if supabase:
            response = supabase.from_(table).select("*").execute()
            if hasattr(response, 'data'):
                return pd.DataFrame(response.data)
            elif hasattr(response, '_error'):
                st.error(f"Error fetching data: {response._error}")
                return pd.DataFrame()
            else:
                st.info("Response object does not have 'data' or known error attributes. Check the logs.")
                return pd.DataFrame()
        else:
            st.error("Supabase client not initialized. Check environment variables.")
            return pd.DataFrame()
    except Exception as e:
        st.error(f"An error occurred during data loading: {e}")
        return pd.DataFrame()


# ---------------------------------------------------------------------------------
# Cargar datos iniciales
# ---------------------------------------------------------------------------------
labor_data = load_data("labor")
fertility_data = load_data("fertility")

# ---------------------------------------------------------------------------------
# Inicializaci贸n de modelos para RAG
# ---------------------------------------------------------------------------------
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
llm_pipeline = pipeline("text-generation", model="google/gemma-3-1b-it", token=os.getenv("HF_TOKEN"))

# ---------------------------------------------------------------------------------
# Generaci贸n de Embeddings y Metadatos (en memoria)
# ---------------------------------------------------------------------------------
embeddings_list = []
contents_list = []
metadatas_list = []
ids_list = []

for index, row in labor_data.iterrows():
    doc = f"Country: {row['geo']}, Year: {row['year']}, Employment Rate: {row['labour_force'] if 'labour_force' in row else 'N/A'}"
    embeddings_list.append(embedding_model.encode(doc))
    contents_list.append(doc)
    metadatas_list.append({'country': row['geo'], 'year': str(row['year']), 'source': 'labor'})
    ids_list.append(f"labor_{index}")

for index, row in fertility_data.iterrows():
    doc = f"Country: {row['geo']}, Year: {row['year']}, Fertility Rate: {row['fertility_rate'] if 'fertility_rate' in row else 'N/A'}"
    embeddings_list.append(embedding_model.encode(doc))
    contents_list.append(doc)
    metadatas_list.append({'country': row['geo'], 'year': str(row['year']), 'source': 'fertility'})
    ids_list.append(f"fertility_{index}")

embeddings_array = np.array(embeddings_list)


# ---------------------------------------------------------------------------------
# Funci贸n para recuperar documentos relevantes (en memoria)
# ---------------------------------------------------------------------------------
def retrieve_relevant_documents_in_memory(query_embedding, stored_embeddings, contents, top_k=3):
    similarities = cosine_similarity([query_embedding], stored_embeddings)[0]
    sorted_indices = np.argsort(similarities)[::-1]
    relevant_documents = [contents[i] for i in sorted_indices[:top_k]]
    return relevant_documents


# ---------------------------------------------------------------------------------
# Generaci贸n de la explicaci贸n usando RAG
# ---------------------------------------------------------------------------------
def generate_rag_explanation(user_query, stored_embeddings, contents):
    query_embedding = embedding_model.encode(user_query)
    relevant_docs = retrieve_relevant_documents_in_memory(query_embedding, stored_embeddings, contents)
    if relevant_docs:
        context = "\n".join(relevant_docs)
        augmented_prompt = f"Based on the following information:\n\n{context}\n\nAnswer the question related to: {user_query}"
        output = llm_pipeline(augmented_prompt, max_length=250, num_return_sequences=1)
        return output[0]['generated_text']
    else:
        return "No relevant information found to answer your query."


# ---------------------------------------------------------------------------------
# Generar la lista de pa铆ses autom谩ticamente
# ---------------------------------------------------------------------------------
available_countries_labor = labor_data['geo'].unique().tolist() if 'geo' in labor_data.columns else []
available_countries_fertility = fertility_data['geo'].unique().tolist() if 'geo' in fertility_data.columns else []
all_countries = list(set(available_countries_labor + available_countries_fertility))

# ---------------------------------------------------------------------------------
# Configuraci贸n de la app en Streamlit
# ---------------------------------------------------------------------------------
st.set_page_config(page_title="GraphGen", page_icon="馃嚜馃嚭")
st.title("_Europe GraphGen_ 聽:blue[Graph generator] :flag-eu:")
st.caption("Mapping Europe's data with insights")

if "messages" not in st.session_state:
    st.session_state.messages = []
    st.session_state.messages.append({"role": "assistant", "content": "What graphic and insights do you need?"})

for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

prompt = st.chat_input("Type your message here...", key="chat_input_bottom")

if prompt:
    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):
        st.markdown(prompt)

    with st.spinner('Generating answer...'):

        try:
            # Determinar el a帽o m谩s reciente en los datos
            latest_year_labor = labor_data['year'].max() if 'year' in labor_data else datetime.now().year
            latest_year_fertility = fertility_data['year'].max() if 'year' in fertility_data else datetime.now().year
            latest_year = max(latest_year_labor, latest_year_fertility, datetime.now().year)

            country, start_date, end_date = extract_country_and_dates(prompt, all_countries, latest_year)
            graph_displayed = False

            # Analizar el prompt para determinar la intenci贸n del usuario
            if re.search(r'\b(labor|employment|job|workforce)\b', prompt, re.IGNORECASE):
                # Generar gr谩fica de datos laborales
                labor_fig = generate_plotly_graph(labor_data, prompt, country, start_date, end_date)
                if labor_fig:
                    st.session_state.messages.append(
                        {"role": "assistant", "content": "Here is the labor data graphic:"})
                    with st.chat_message("assistant"):
                        st.plotly_chart(labor_fig)
                    graph_displayed = True
            elif re.search(r'\b(fertility|birth|population growth)\b', prompt, re.IGNORECASE):
                # Generar gr谩fica de datos de fertilidad
                fertility_fig = generate_plotly_graph(fertility_data, prompt, country, start_date, end_date)
                if fertility_fig:
                    st.session_state.messages.append(
                        {"role": "assistant", "content": "Here is the fertility data graphic:"})
                    with st.chat_message("assistant"):
                        st.plotly_chart(fertility_fig)
                    graph_displayed = True
            else:
                # Si no se identifica una intenci贸n clara, intentar mostrar la gr谩fica de datos laborales primero
                labor_fig = generate_plotly_graph(labor_data, prompt, country, start_date, end_date)
                if labor_fig:
                    st.session_state.messages.append(
                        {"role": "assistant", "content": "Here is the labor data graphic:"})
                    with st.chat_message("assistant"):
                        st.plotly_chart(labor_fig)
                    graph_displayed = True
                elif not graph_displayed:
                    fertility_fig = generate_plotly_graph(fertility_data, prompt, country, start_date, end_date)
                    if fertility_fig:
                        st.session_state.messages.append(
                            {"role": "assistant", "content": "Here is the fertility data graphic:"})
                        with st.chat_message("assistant"):
                            st.plotly_chart(fertility_fig)
                        graph_displayed = True

            # Generar explicaci贸n usando RAG
            explanation = generate_rag_explanation(prompt, embeddings_array, contents_list)
            st.session_state.messages.append({"role": "assistant", "content": f"Explanation: {explanation}"})
            with st.chat_message("assistant"):
                st.markdown(f"**Explanation:** {explanation}")

        except Exception as e:
            st.session_state.messages.append({"role": "assistant", "content": f"Error generating answer: {e}"})
            with st.chat_message("assistant"):
                st.error(f"Error generating answer: {e}")

if st.button("Clear chat"):
    st.session_state.messages = []
    st.session_state.messages.append(
        {"role": "assistant", "content": "Chat has been cleared. What graphic and insights do you need now?"})
    st.rerun()