Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import tensorflow as tf
|
|
3 |
from transformers import pipeline
|
4 |
import os
|
5 |
|
6 |
-
|
7 |
try:
|
8 |
model_transformer_encoder = tf.keras.models.load_model('stacked_transformer_encoder.keras')
|
9 |
model_transformer_positional_encoding = tf.keras.models.load_model('transformer_encoder_pos.keras')
|
@@ -17,7 +17,7 @@ except Exception as e:
|
|
17 |
model_simple_rnn = None
|
18 |
model_lstm = None
|
19 |
|
20 |
-
# Cargar el pipeline de traducci贸n de Hugging Face
|
21 |
try:
|
22 |
translator_en_es = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es")
|
23 |
except Exception as e:
|
@@ -25,31 +25,10 @@ except Exception as e:
|
|
25 |
translator_en_es = None
|
26 |
|
27 |
def clasificar_noticia(texto, modelo_seleccionado):
|
28 |
-
|
29 |
-
modelo_a_usar = None
|
30 |
-
if modelo_seleccionado == "Transformer Encoder Apilado" and model_transformer_encoder is not None:
|
31 |
-
modelo_a_usar = model_transformer_encoder
|
32 |
-
elif modelo_seleccionado == "Transformer Positional Encoding" and model_transformer_positional_encoding is not None:
|
33 |
-
modelo_a_usar = model_transformer_positional_encoding
|
34 |
-
elif modelo_seleccionado == "Simple RNN" and model_simple_rnn is not None:
|
35 |
-
modelo_a_usar = model_simple_rnn
|
36 |
-
elif modelo_seleccionado == "LSTM" and model_lstm is not None:
|
37 |
-
modelo_a_usar = model_lstm
|
38 |
-
|
39 |
-
if modelo_a_usar:
|
40 |
-
|
41 |
-
prediction = modelo_a_usar.predict([texto])
|
42 |
-
return f"Clase predicha ({modelo_seleccionado}): {prediction}"
|
43 |
-
else:
|
44 |
-
return f"El modelo '{modelo_seleccionado}' no est谩 disponible."
|
45 |
|
46 |
def traducir_texto_en_es(texto_en):
|
47 |
-
|
48 |
-
if translator_en_es:
|
49 |
-
result = translator_en_es(texto_en)[0]['translation_text']
|
50 |
-
return result
|
51 |
-
else:
|
52 |
-
return "El modelo de traducci贸n (ingl茅s a espa帽ol) no est谩 disponible."
|
53 |
|
54 |
def main():
|
55 |
with gr.Blocks() as demo:
|
@@ -84,23 +63,9 @@ def main():
|
|
84 |
],
|
85 |
],
|
86 |
["Clasificaci贸n de Noticias", "Traducci贸n (Ingl茅s a Espa帽ol)"]
|
87 |
-
) as tabs:
|
88 |
-
boton_clasificar.click(fn=clasificar_noticia, inputs=[input_texto_clasificacion, modelo_seleccion], outputs=output_clasificacion)
|
89 |
-
boton_traducir.click(fn=traducir_texto_en_es, inputs=[input_texto_traduccion], outputs=output_traduccion)
|
90 |
-
|
91 |
-
demo.launch()'''
|
92 |
-
|
93 |
-
import gradio as gr
|
94 |
-
|
95 |
-
def greet(name):
|
96 |
-
return "Hello, " + name + "!"
|
97 |
-
|
98 |
-
def main():
|
99 |
-
with gr.Blocks() as demo:
|
100 |
-
name_input = gr.Textbox(label="Name")
|
101 |
-
output_text = gr.Textbox(label="Output")
|
102 |
-
greet_button = gr.Button("Greet")
|
103 |
-
greet_button.click(fn=greet, inputs=name_input, outputs=output_text)
|
104 |
|
105 |
demo.launch()
|
106 |
|
|
|
3 |
from transformers import pipeline
|
4 |
import os
|
5 |
|
6 |
+
# Cargar tus modelos de clasificaci贸n (asumiendo que est谩n en la ra铆z del proyecto)
|
7 |
try:
|
8 |
model_transformer_encoder = tf.keras.models.load_model('stacked_transformer_encoder.keras')
|
9 |
model_transformer_positional_encoding = tf.keras.models.load_model('transformer_encoder_pos.keras')
|
|
|
17 |
model_simple_rnn = None
|
18 |
model_lstm = None
|
19 |
|
20 |
+
# Cargar el pipeline de traducci贸n de Hugging Face (ingl茅s a espa帽ol)
|
21 |
try:
|
22 |
translator_en_es = pipeline("translation", model="Helsinki-NLP/opus-mt-en-es")
|
23 |
except Exception as e:
|
|
|
25 |
translator_en_es = None
|
26 |
|
27 |
def clasificar_noticia(texto, modelo_seleccionado):
|
28 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
def traducir_texto_en_es(texto_en):
|
31 |
+
pass
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
def main():
|
34 |
with gr.Blocks() as demo:
|
|
|
63 |
],
|
64 |
],
|
65 |
["Clasificaci贸n de Noticias", "Traducci贸n (Ingl茅s a Espa帽ol)"]
|
66 |
+
) #as tabs:
|
67 |
+
#boton_clasificar.click(fn=clasificar_noticia, inputs=[input_texto_clasificacion, modelo_seleccion], outputs=output_clasificacion)
|
68 |
+
#boton_traducir.click(fn=traducir_texto_en_es, inputs=[input_texto_traduccion], outputs=output_traduccion)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
demo.launch()
|
71 |
|