INNO / app.py
juanelot's picture
Update app.py
9c77858 verified
import logging
import numpy as np
import gradio as gr
from rembg import new_session
from cutter import remove, make_label
from utils import *
remove_bg_models = {
"U2NET": "u2net",
"U2NET Human Seg": "u2net_human_seg",
"U2NET Cloth Seg": "u2net_cloth_seg"
}
default_model = "U2NET"
def predict(image):
session = new_session(remove_bg_models[default_model])
smoot = False
matting = (0, 0, 0) # Valores predeterminados para matting
bg_color = False # Color de fondo predeterminado (no cambiar color)
try:
result, _ = remove(session, image, smoot, matting, bg_color)
if isinstance(result, np.ndarray): # Verificar si la salida es un array de numpy
result = Image.fromarray(result.astype('uint8')) # Convertir el array de numpy a una imagen PIL
return result
except ValueError as err:
logging.error(err)
return make_label(str(err)), None
with gr.Blocks(css="custom.css", title="Remove background") as app:
gr.HTML("<center><h1>Background Remover</h1></center>")
with gr.Row(equal_height=False):
with gr.Column():
input_img = gr.Image(type="pil", label="Input image")
with gr.Column():
output_img = gr.Image(type="pil", label="Result image")
with gr.Row(equal_height=True):
run_btn = gr.Button(value="Remove background", variant="primary")
clear_btn = gr.Button(value="Clear", variant="secondary")
run_btn.click(predict, inputs=[input_img], outputs=[output_img])
clear_btn.click(lambda: (None, None), inputs=None, outputs=[input_img, output_img])
app.launch(share=False, debug=True, enable_queue=True, show_error=True)