import gradio as gr from gradio import CSVLogger from huggingface_hub import Repository as repo import os HF_TOKEN = os.getenv('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')# #'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' hf_writer = gr.HuggingFaceDatasetSaver(HF_TOKEN, "tigo_question_answer") def question_answer(context, question): predictions = model.predict([{"context": context, "qas": [{"question": question, "id": "0",}],}]) prediccion = predictions[0][0]['answer'][0] return prediccion iface = gr.Interface(fn=question_answer, inputs=["text", "text"], outputs=["text"], allow_flagging="manual", #manual flagging_options=["correcto", "incorrecto"], flagging_dir='flagged', flagging_callback=hf_writer) iface.launch(enable_queue=True)