Upload 23 files
Browse files- .gitattributes +2 -0
- RNA_protein/.DS_Store +0 -0
- RNA_protein/model/.DS_Store +0 -0
- RNA_protein/model/atn_gz.py +342 -0
- RPcontact_pipline.sh +71 -0
- app.py +661 -0
- benchmark/.DS_Store +0 -0
- benchmark/readme.txt +1 -0
- evaluate.py +209 -0
- example/inputs/8DMB_W.8DMB_P.fasta +2 -0
- example/inputs/readme.txt +6 -0
- example/outputs/8DMB_W.8DMB_P.txt +0 -0
- example/outputs/8DMB_W.8DMB_P_0_binary.png +0 -0
- example/outputs/8DMB_W.8DMB_P_0_evaluate.png +3 -0
- example/outputs/8DMB_W.8DMB_P_0_prob.png +3 -0
- example/outputs/8DMB_W.8DMB_P_topL.txt +1026 -0
- example/outputs/predict_scores.csv +20 -0
- predict.py +318 -0
- predict_batch.py +312 -0
- readme.md +116 -0
- requirements.txt +10 -0
- third_part_tool/ernie_rna/readme.txt +1 -0
- third_part_tool/esm2/readme.txt +4 -0
- weight/readme.txt +4 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
example/outputs/8DMB_W.8DMB_P_0_evaluate.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
example/outputs/8DMB_W.8DMB_P_0_prob.png filter=lfs diff=lfs merge=lfs -text
|
RNA_protein/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
RNA_protein/model/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
RNA_protein/model/atn_gz.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
# from torch.nn import Module
|
6 |
+
# # for gzlabel contable_gpu env
|
7 |
+
# class MultiheadAttention(Module):
|
8 |
+
# r"""Allows the model to jointly attend to information
|
9 |
+
# from different representation subspaces.
|
10 |
+
# See `Attention Is All You Need <https://arxiv.org/abs/1706.03762>`_.
|
11 |
+
#
|
12 |
+
# .. math::
|
13 |
+
# \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
|
14 |
+
#
|
15 |
+
# where :math:`head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)`.
|
16 |
+
#
|
17 |
+
# Args:
|
18 |
+
# embed_dim: Total dimension of the model.
|
19 |
+
# num_heads: Number of parallel attention heads. Note that ``embed_dim`` will be split
|
20 |
+
# across ``num_heads`` (i.e. each head will have dimension ``embed_dim // num_heads``).
|
21 |
+
# dropout: Dropout probability on ``attn_output_weights``. Default: ``0.0`` (no dropout).
|
22 |
+
# bias: If specified, adds bias to input / output projection layers. Default: ``True``.
|
23 |
+
# add_bias_kv: If specified, adds bias to the key and value sequences at dim=0. Default: ``False``.
|
24 |
+
# add_zero_attn: If specified, adds a new batch of zeros to the key and value sequences at dim=1.
|
25 |
+
# Default: ``False``.
|
26 |
+
# kdim: Total number of features for keys. Default: ``None`` (uses ``kdim=embed_dim``).
|
27 |
+
# vdim: Total number of features for values. Default: ``None`` (uses ``vdim=embed_dim``).
|
28 |
+
# batch_first: If ``True``, then the input and output tensors are provided
|
29 |
+
# as (batch, seq, feature). Default: ``False`` (seq, batch, feature).
|
30 |
+
#
|
31 |
+
# Examples::
|
32 |
+
#
|
33 |
+
# >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
|
34 |
+
# >>> attn_output, attn_output_weights = multihead_attn(query, key, value)
|
35 |
+
# """
|
36 |
+
# __constants__ = ['batch_first']
|
37 |
+
# bias_k: Optional[torch.Tensor]
|
38 |
+
# bias_v: Optional[torch.Tensor]
|
39 |
+
#
|
40 |
+
# def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False,
|
41 |
+
# kdim=None, vdim=None, batch_first=False, device=None, dtype=None) -> None:
|
42 |
+
# factory_kwargs = {'device': device, 'dtype': dtype}
|
43 |
+
# super(MultiheadAttention, self).__init__()
|
44 |
+
# self.embed_dim = embed_dim
|
45 |
+
# self.kdim = kdim if kdim is not None else embed_dim
|
46 |
+
# self.vdim = vdim if vdim is not None else embed_dim
|
47 |
+
# self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
|
48 |
+
#
|
49 |
+
# self.num_heads = num_heads
|
50 |
+
# self.dropout = dropout
|
51 |
+
# self.batch_first = batch_first
|
52 |
+
# self.head_dim = embed_dim // num_heads
|
53 |
+
# assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
|
54 |
+
#
|
55 |
+
# if self._qkv_same_embed_dim is False:
|
56 |
+
# self.q_proj_weight = Parameter(torch.empty((embed_dim, embed_dim), **factory_kwargs))
|
57 |
+
# self.k_proj_weight = Parameter(torch.empty((embed_dim, self.kdim), **factory_kwargs))
|
58 |
+
# self.v_proj_weight = Parameter(torch.empty((embed_dim, self.vdim), **factory_kwargs))
|
59 |
+
# self.register_parameter('in_proj_weight', None)
|
60 |
+
# else:
|
61 |
+
# self.in_proj_weight = Parameter(torch.empty((3 * embed_dim, embed_dim), **factory_kwargs))
|
62 |
+
# self.register_parameter('q_proj_weight', None)
|
63 |
+
# self.register_parameter('k_proj_weight', None)
|
64 |
+
# self.register_parameter('v_proj_weight', None)
|
65 |
+
#
|
66 |
+
# if bias:
|
67 |
+
# self.in_proj_bias = Parameter(torch.empty(3 * embed_dim, **factory_kwargs))
|
68 |
+
# else:
|
69 |
+
# self.register_parameter('in_proj_bias', None)
|
70 |
+
# self.out_proj = NonDynamicallyQuantizableLinear(embed_dim, embed_dim, bias=bias, **factory_kwargs)
|
71 |
+
#
|
72 |
+
# if add_bias_kv:
|
73 |
+
# self.bias_k = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
74 |
+
# self.bias_v = Parameter(torch.empty((1, 1, embed_dim), **factory_kwargs))
|
75 |
+
# else:
|
76 |
+
# self.bias_k = self.bias_v = None
|
77 |
+
#
|
78 |
+
# self.add_zero_attn = add_zero_attn
|
79 |
+
#
|
80 |
+
# self._reset_parameters()
|
81 |
+
#
|
82 |
+
# def _reset_parameters(self):
|
83 |
+
# if self._qkv_same_embed_dim:
|
84 |
+
# xavier_uniform_(self.in_proj_weight)
|
85 |
+
# else:
|
86 |
+
# xavier_uniform_(self.q_proj_weight)
|
87 |
+
# xavier_uniform_(self.k_proj_weight)
|
88 |
+
# xavier_uniform_(self.v_proj_weight)
|
89 |
+
#
|
90 |
+
# if self.in_proj_bias is not None:
|
91 |
+
# constant_(self.in_proj_bias, 0.)
|
92 |
+
# constant_(self.out_proj.bias, 0.)
|
93 |
+
# if self.bias_k is not None:
|
94 |
+
# xavier_normal_(self.bias_k)
|
95 |
+
# if self.bias_v is not None:
|
96 |
+
# xavier_normal_(self.bias_v)
|
97 |
+
#
|
98 |
+
# def __setstate__(self, state):
|
99 |
+
# # Support loading old MultiheadAttention checkpoints generated by v1.1.0
|
100 |
+
# if '_qkv_same_embed_dim' not in state:
|
101 |
+
# state['_qkv_same_embed_dim'] = True
|
102 |
+
#
|
103 |
+
# super(MultiheadAttention, self).__setstate__(state)
|
104 |
+
#
|
105 |
+
# def forward(self, query: Tensor, key: Tensor, value: Tensor, key_padding_mask: Optional[Tensor] = None,
|
106 |
+
# need_weights: bool = True, attn_mask: Optional[Tensor] = None) -> Tuple[Tensor, Optional[Tensor]]:
|
107 |
+
# r"""
|
108 |
+
# Args:
|
109 |
+
# query: Query embeddings of shape :math:`(L, N, E_q)` when ``batch_first=False`` or :math:`(N, L, E_q)`
|
110 |
+
# when ``batch_first=True``, where :math:`L` is the target sequence length, :math:`N` is the batch size,
|
111 |
+
# and :math:`E_q` is the query embedding dimension ``embed_dim``. Queries are compared against
|
112 |
+
# key-value pairs to produce the output. See "Attention Is All You Need" for more details.
|
113 |
+
# key: Key embeddings of shape :math:`(S, N, E_k)` when ``batch_first=False`` or :math:`(N, S, E_k)` when
|
114 |
+
# ``batch_first=True``, where :math:`S` is the source sequence length, :math:`N` is the batch size, and
|
115 |
+
# :math:`E_k` is the key embedding dimension ``kdim``. See "Attention Is All You Need" for more details.
|
116 |
+
# value: Value embeddings of shape :math:`(S, N, E_v)` when ``batch_first=False`` or :math:`(N, S, E_v)` when
|
117 |
+
# ``batch_first=True``, where :math:`S` is the source sequence length, :math:`N` is the batch size, and
|
118 |
+
# :math:`E_v` is the value embedding dimension ``vdim``. See "Attention Is All You Need" for more details.
|
119 |
+
# key_padding_mask: If specified, a mask of shape :math:`(N, S)` indicating which elements within ``key``
|
120 |
+
# to ignore for the purpose of attention (i.e. treat as "padding"). Binary and byte masks are supported.
|
121 |
+
# For a binary mask, a ``True`` value indicates that the corresponding ``key`` value will be ignored for
|
122 |
+
# the purpose of attention. For a byte mask, a non-zero value indicates that the corresponding ``key``
|
123 |
+
# value will be ignored.
|
124 |
+
# need_weights: If specified, returns ``attn_output_weights`` in addition to ``attn_outputs``.
|
125 |
+
# Default: ``True``.
|
126 |
+
# attn_mask: If specified, a 2D or 3D mask preventing attention to certain positions. Must be of shape
|
127 |
+
# :math:`(L, S)` or :math:`(N\cdot\text{num\_heads}, L, S)`, where :math:`N` is the batch size,
|
128 |
+
# :math:`L` is the target sequence length, and :math:`S` is the source sequence length. A 2D mask will be
|
129 |
+
# broadcasted across the batch while a 3D mask allows for a different mask for each entry in the batch.
|
130 |
+
# Binary, byte, and float masks are supported. For a binary mask, a ``True`` value indicates that the
|
131 |
+
# corresponding position is not allowed to attend. For a byte mask, a non-zero value indicates that the
|
132 |
+
# corresponding position is not allowed to attend. For a float mask, the mask values will be added to
|
133 |
+
# the attention weight.
|
134 |
+
#
|
135 |
+
# Outputs:
|
136 |
+
# - **attn_output** - Attention outputs of shape :math:`(L, N, E)` when ``batch_first=False`` or
|
137 |
+
# :math:`(N, L, E)` when ``batch_first=True``, where :math:`L` is the target sequence length, :math:`N` is
|
138 |
+
# the batch size, and :math:`E` is the embedding dimension ``embed_dim``.
|
139 |
+
# - **attn_output_weights** - Attention output weights of shape :math:`(N, L, S)`, where :math:`N` is the batch
|
140 |
+
# size, :math:`L` is the target sequence length, and :math:`S` is the source sequence length. Only returned
|
141 |
+
# when ``need_weights=True``.
|
142 |
+
# """
|
143 |
+
# if self.batch_first:
|
144 |
+
# query, key, value = [x.transpose(1, 0) for x in (query, key, value)]
|
145 |
+
#
|
146 |
+
# if not self._qkv_same_embed_dim:
|
147 |
+
# attn_output, attn_output_weights = F.multi_head_attention_forward(
|
148 |
+
# query, key, value, self.embed_dim, self.num_heads,
|
149 |
+
# self.in_proj_weight, self.in_proj_bias,
|
150 |
+
# self.bias_k, self.bias_v, self.add_zero_attn,
|
151 |
+
# self.dropout, self.out_proj.weight, self.out_proj.bias,
|
152 |
+
# training=self.training,
|
153 |
+
# key_padding_mask=key_padding_mask, need_weights=need_weights,
|
154 |
+
# attn_mask=attn_mask, use_separate_proj_weight=True,
|
155 |
+
# q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
|
156 |
+
# v_proj_weight=self.v_proj_weight)
|
157 |
+
# else:
|
158 |
+
# attn_output, attn_output_weights = F.multi_head_attention_forward(
|
159 |
+
# query, key, value, self.embed_dim, self.num_heads,
|
160 |
+
# self.in_proj_weight, self.in_proj_bias,
|
161 |
+
# self.bias_k, self.bias_v, self.add_zero_attn,
|
162 |
+
# self.dropout, self.out_proj.weight, self.out_proj.bias,
|
163 |
+
# training=self.training,
|
164 |
+
# key_padding_mask=key_padding_mask, need_weights=need_weights,
|
165 |
+
# attn_mask=attn_mask)
|
166 |
+
# if self.batch_first:
|
167 |
+
# return attn_output.transpose(1, 0), attn_output_weights
|
168 |
+
# else:
|
169 |
+
# return attn_output, attn_output_weights
|
170 |
+
class PositionalEncoding(nn.Module):
|
171 |
+
"Implement the PE function."
|
172 |
+
def __init__(self, d_model, dropout, max_len=5000):
|
173 |
+
#d_model=512,dropout=0.1,
|
174 |
+
#max_len=5000代表事先准备好长度为5000的序列的位置编码,其实没必要,
|
175 |
+
#一般100或者200足够了。
|
176 |
+
super(PositionalEncoding, self).__init__()
|
177 |
+
self.dropout = nn.Dropout(p=dropout)
|
178 |
+
|
179 |
+
# Compute the positional encodings once in log space.
|
180 |
+
pe = torch.zeros(max_len, d_model)
|
181 |
+
#(5000,512)矩阵,保持每个位置的位置编码,一共5000个位置,
|
182 |
+
#每个位置用一个512维度向量来表示其位置编码
|
183 |
+
position = torch.arange(0, max_len).unsqueeze(1)
|
184 |
+
# (5000) -> (5000,1)
|
185 |
+
div_term = torch.exp(torch.arange(0, d_model, 2) *
|
186 |
+
-(math.log(10000.0) / d_model))
|
187 |
+
# (0,2,…, 4998)一共准备2500个值,供sin, cos调用
|
188 |
+
pe[:, 0::2] = torch.sin(position * div_term) # 偶数下标的位置
|
189 |
+
pe[:, 1::2] = torch.cos(position * div_term) # 奇数下标的位置
|
190 |
+
pe = pe.unsqueeze(0)
|
191 |
+
# (5000, 512) -> (1, 5000, 512) 为batch.size留出位置
|
192 |
+
self.register_buffer('pe', pe)
|
193 |
+
def forward(self, x):
|
194 |
+
x = x + self.pe[:, :x.size(1)]
|
195 |
+
# 接受1.Embeddings的词嵌入结果x,
|
196 |
+
#然后把自己的位置编码pe,封装成torch的Variable(不需要梯度),加上去。
|
197 |
+
#例如,假设x是(30,10,512)的一个tensor,
|
198 |
+
#30是batch.size, 10是该batch的序列长度, 512是每个词的词嵌入向量;
|
199 |
+
#则该行代码的第二项是(1, min(10, 5000), 512)=(1,10,512),
|
200 |
+
#在具体相加的时候,会扩展(1,10,512)为(30,10,512),
|
201 |
+
#保证一个batch中的30个序列,都使用(叠加)一样的位置编码。
|
202 |
+
return self.dropout(x) # 增加一次dropout操作
|
203 |
+
# 注意,位置编码不会更新,是写死的,所以这个class里面没有可训练的参数。
|
204 |
+
class TwoTrackAttention(nn.Module):
|
205 |
+
def __init__(self, d_attn, n_head, d_ff=512, dropout=0.1) -> None:
|
206 |
+
super().__init__()
|
207 |
+
|
208 |
+
self.self_attn = torch.nn.MultiheadAttention(
|
209 |
+
d_attn, n_head,
|
210 |
+
dropout = dropout,
|
211 |
+
batch_first=True # gzbl 这边的pytorch版本没有这个参数
|
212 |
+
)
|
213 |
+
self.dropout_self = nn.Dropout(dropout)
|
214 |
+
|
215 |
+
self.cross_attn = torch.nn.MultiheadAttention(
|
216 |
+
d_attn, n_head,
|
217 |
+
dropout = dropout,
|
218 |
+
batch_first=True
|
219 |
+
)
|
220 |
+
self.dropout_cross = nn.Dropout(dropout)
|
221 |
+
|
222 |
+
self.norm1 = nn.LayerNorm(d_attn)
|
223 |
+
|
224 |
+
self.ff1 = nn.Linear(d_attn, d_ff)
|
225 |
+
self.dropout_ff = nn.Dropout(dropout)
|
226 |
+
self.ff2 = nn.Linear(d_ff, d_attn)
|
227 |
+
|
228 |
+
self.norm2 = nn.LayerNorm(d_attn)
|
229 |
+
self.dropout = nn.Dropout(dropout)
|
230 |
+
|
231 |
+
self.activation = nn.ReLU()
|
232 |
+
|
233 |
+
# self.s_query = nn.Linear(d_attn,d_attn)
|
234 |
+
# self.s_key = nn.Linear(d_attn,d_attn)
|
235 |
+
# self.s_value = nn.Linear(d_attn,d_attn)
|
236 |
+
#
|
237 |
+
# self.c_query = nn.Linear(d_attn,d_attn)
|
238 |
+
# self.c_key = nn.Linear(d_attn,d_attn)
|
239 |
+
# self.c_value = nn.Linear(d_attn,d_attn)
|
240 |
+
|
241 |
+
def forward(self, obj_update, obj_message):
|
242 |
+
self_update = self.self_attn(
|
243 |
+
query = obj_update,
|
244 |
+
key = obj_update,
|
245 |
+
value = obj_update
|
246 |
+
)[0]
|
247 |
+
|
248 |
+
cross_update = self.cross_attn(
|
249 |
+
query = obj_update, # [1, 299, 128]
|
250 |
+
key = obj_message, # [1, 74, 128]
|
251 |
+
value = obj_message # [1, 74, 128]
|
252 |
+
)[0]
|
253 |
+
# [torch.Size([1, 299, 128]), torch.Size([1, 74, 128]), torch.Size([1, 74, 128])]
|
254 |
+
obj_update = obj_update + self.dropout_self(self_update) + self.dropout_cross(cross_update)
|
255 |
+
obj_update = self.norm1(obj_update)
|
256 |
+
|
257 |
+
ff_update = self.ff2(self.dropout_ff(self.activation(self.ff1(obj_update))))
|
258 |
+
|
259 |
+
obj_update = obj_update + self.dropout(ff_update)
|
260 |
+
obj_update = self.norm2(obj_update)
|
261 |
+
|
262 |
+
return obj_update
|
263 |
+
|
264 |
+
|
265 |
+
class SymertricTwoTrackAttention(nn.Module):
|
266 |
+
def __init__(self, d_attn, n_head, d_ff=512, dropout=0.1,sync = False) -> None:
|
267 |
+
super().__init__()
|
268 |
+
self.tta1 = TwoTrackAttention(d_attn, n_head, d_ff, dropout)
|
269 |
+
self.tta2 = TwoTrackAttention(d_attn, n_head, d_ff, dropout)
|
270 |
+
self.sync = sync
|
271 |
+
def forward(self, obj_1, obj_2):
|
272 |
+
if self.sync:
|
273 |
+
return self.tta1(obj_1, obj_2), self.tta2(obj_2, obj_1)
|
274 |
+
else:
|
275 |
+
obj_1 = self.tta1(obj_1, obj_2)
|
276 |
+
obj_2 = self.tta2(obj_2, obj_1)
|
277 |
+
return obj_1, obj_2
|
278 |
+
|
279 |
+
|
280 |
+
class LinearFF(nn.Module):
|
281 |
+
def __init__(self, d_in, d_out, dropout=0.1) -> None:
|
282 |
+
super().__init__()
|
283 |
+
self.emb = nn.Linear(d_in, d_out)
|
284 |
+
self.norm = nn.LayerNorm(d_out)
|
285 |
+
self.dropout = nn.Dropout(dropout)
|
286 |
+
self.activation = nn.ReLU()
|
287 |
+
|
288 |
+
def forward(self, f_in):
|
289 |
+
f_in = f_in.permute(0,2,1)
|
290 |
+
return self.norm(self.dropout(self.activation(self.emb(f_in))))
|
291 |
+
|
292 |
+
|
293 |
+
class ProteinRNAInteraction(nn.Module):
|
294 |
+
def __init__(self, d_pro, d_rna, n_layers, d_attn, n_head=4, d_ff=512, dropout=0.1,sync=False) -> None:
|
295 |
+
super().__init__()
|
296 |
+
print('sync update ProteinRNAInteraction',sync)
|
297 |
+
self.pro_emb = LinearFF(d_pro, d_attn)
|
298 |
+
self.pro_rna = LinearFF(d_rna, d_attn)
|
299 |
+
|
300 |
+
self.pro_pos = PositionalEncoding(d_attn,dropout)
|
301 |
+
self.rna_pos = PositionalEncoding(d_attn,dropout)
|
302 |
+
|
303 |
+
self.layers = nn.ModuleList([
|
304 |
+
SymertricTwoTrackAttention(d_attn, n_head, d_ff, dropout,sync = sync) for _ in range(n_layers)
|
305 |
+
])
|
306 |
+
|
307 |
+
self.pred = nn.Linear(d_attn, 1)
|
308 |
+
# self.pred = nn.Linear(2*d_attn, 1)
|
309 |
+
self.sigmoid = nn.Sigmoid()
|
310 |
+
|
311 |
+
def forward(self, f_pro, f_rna):
|
312 |
+
# print(f_pro.shape)
|
313 |
+
# print(f_pro.device)
|
314 |
+
f_pro = self.pro_emb(f_pro)
|
315 |
+
f_rna = self.pro_rna(f_rna)
|
316 |
+
|
317 |
+
f_pro = self.pro_pos(f_pro)
|
318 |
+
f_rna = self.rna_pos(f_rna)
|
319 |
+
|
320 |
+
for layer in self.layers:
|
321 |
+
f_pro, f_rna = layer(f_pro, f_rna)
|
322 |
+
|
323 |
+
|
324 |
+
f_pro = f_pro.unsqueeze(2) # [B, L, R, D]
|
325 |
+
f_rna = f_rna.unsqueeze(1)
|
326 |
+
prob = self.sigmoid(self.pred(f_rna.mul(f_pro)))
|
327 |
+
return prob
|
328 |
+
|
329 |
+
|
330 |
+
# f_pro = f_pro.unsqueeze(2) # [1, 299, 1, 128]
|
331 |
+
# f_rna = f_rna.unsqueeze(1) # [1, 1, 74, 128]
|
332 |
+
# f_pro = f_pro.repeat(1, 1, f_rna.shape[2], 1) # [B, L, R, D]
|
333 |
+
# f_rna = f_rna.repeat(1, f_pro.shape[1], 1, 1) # [B, L, R, D]
|
334 |
+
#
|
335 |
+
# # prob = self.pred(f_rna.mul(f_pro))
|
336 |
+
# prob = self.pred(torch.cat([f_pro, f_rna], -1))
|
337 |
+
# # print(prob.max(),prob.min(),prob.mean())
|
338 |
+
# prob = torch.sigmoid(prob)
|
339 |
+
# # prob = self.sigmoid(prob)
|
340 |
+
# # prob = self.sigmoid(self.pred(torch.cat([f_pro, f_rna], -1))) # pred : -0.06, 0.619
|
341 |
+
# return prob
|
342 |
+
|
RPcontact_pipline.sh
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/bash
|
2 |
+
|
3 |
+
# 检查参数数量
|
4 |
+
if [ "$#" -ne 4 ]; then
|
5 |
+
echo "Usage: $0 <fin_fasta> <dirout> <esm2_env_path> <ernie_rna_env_path>"
|
6 |
+
exit 1
|
7 |
+
fi
|
8 |
+
|
9 |
+
fin_fasta=$1
|
10 |
+
dirout=$2
|
11 |
+
esm2_env_path=$3
|
12 |
+
ernie_rna_env_path=$4
|
13 |
+
|
14 |
+
# 设置默认值
|
15 |
+
WDIR=$dirout
|
16 |
+
rna_fasta=$WDIR/_0_process/rna_sequences.fasta
|
17 |
+
pro_fasta=$WDIR/_0_process/protein_sequences.fasta
|
18 |
+
fcombinations=$WDIR/_0_process/combinations.csv
|
19 |
+
finfo=$WDIR/_0_process/info.csv
|
20 |
+
|
21 |
+
current_path=$WDIR/_0_process/
|
22 |
+
|
23 |
+
# 创建所需目录
|
24 |
+
mkdir -p $current_path
|
25 |
+
mkdir -p $current_path/ernie_rna_emb
|
26 |
+
mkdir -p $current_path/esm2_emb
|
27 |
+
mkdir -p $current_path/rpcontact
|
28 |
+
mkdir -p $current_path/no_constrained
|
29 |
+
mkdir -p $current_path/constrained
|
30 |
+
|
31 |
+
# 写入组合文件
|
32 |
+
while IFS= read -r line; do
|
33 |
+
rna_id=$(echo $line | cut -d ',' -f 1)
|
34 |
+
rna_seq=$(echo $line | cut -d ',' -f 2)
|
35 |
+
pro_id=$(echo $line | cut -d ',' -f 3)
|
36 |
+
pro_seq=$(echo $line | cut -d ',' -f 4)
|
37 |
+
rna_len=$(echo $line | cut -d ',' -f 5)
|
38 |
+
pro_len=$(echo $line | cut -d ',' -f 6)
|
39 |
+
echo "$rna_id.$pro_id,$rna_seq,$pro_seq,$rna_len,$pro_len" >> $fcombinations
|
40 |
+
done < $fin_fasta
|
41 |
+
|
42 |
+
# 打印信息
|
43 |
+
echo "Done. RNA sequences are in $rna_fasta, protein sequences are in $pro_fasta, and combinations are in $fcombinations."
|
44 |
+
echo "RNA count: $(wc -l < $rna_fasta), RNA max length: $(awk -F',' '{print $5}' $fcombinations | sort -nr | head -n 1), RNA min length: $(awk -F',' '{print $5}' $fcombinations | sort -n | head -n 1), total fragments: $(wc -l < $fcombinations)"
|
45 |
+
echo "Protein count: $(wc -l < $pro_fasta), Protein max length: $(awk -F',' '{print $6}' $fcombinations | sort -nr | head -n 1), Protein min length: $(awk -F',' '{print $6}' $fcombinations | sort -n | head -n 1), total fragments: $(wc -l < $fcombinations)"
|
46 |
+
echo "Sequence length longer than 1000 were truncated and kept head and tail with the length of 1000, sliding 500 as step, 1000 as window"
|
47 |
+
|
48 |
+
# ERNIE-RNA 嵌入
|
49 |
+
ERNIE_RNA_script="cd /public/home/jiang_jiuhong/soft/ERNIE-RNA/
|
50 |
+
$ernie_rna_env_path/miniconda3/envs/ERNIE-RNA/bin/python extract_embedding_jh.py --seqs_path='$rna_fasta' --save_path='$current_path/ernie_rna_emb/' --device=cpu"
|
51 |
+
|
52 |
+
echo "$ERNIE_RNA_script" > $current_path/ernie_rna_emb.sh
|
53 |
+
chmod +x $current_path/ernie_rna_emb.sh
|
54 |
+
|
55 |
+
nohup srun -p hebhcnormal01 -c 32 sh $current_path/ernie_rna_emb.sh > $current_path/log_ernie_rna_emb.txt 2>&1 &
|
56 |
+
|
57 |
+
# ESM2 嵌入
|
58 |
+
ESM2_script="cd /public/home/jiang_jiuhong/code/esm/
|
59 |
+
$esm2_env_path/miniconda3/envs/esm2_env/bin/python scripts/extract.py esm2_t48_15B_UR50D $pro_fasta $current_path/esm2_emb/ --repr_layers 48 --include mean per_tok"
|
60 |
+
|
61 |
+
echo "$ESM2_script" > $current_path/esm2_emb.sh
|
62 |
+
chmod +x $current_path/esm2_emb.sh
|
63 |
+
|
64 |
+
nohup srun -p hebhcnormal01 -c 32 sh $current_path/esm2_emb.sh > $current_path/log_esm2_emb.txt 2>&1 &
|
65 |
+
|
66 |
+
# 等待嵌入完成
|
67 |
+
wait
|
68 |
+
|
69 |
+
# 执行 RPcontact 获取 contactmap
|
70 |
+
python process_rna_protein.py --rna_fasta=$rna_fasta --pro_fasta=$pro_fasta --csv=$fcombinations --WDIR=$WDIR --out=$dirout
|
71 |
+
|
app.py
ADDED
@@ -0,0 +1,661 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
import numpy as np
|
4 |
+
import random
|
5 |
+
import tempfile
|
6 |
+
import os
|
7 |
+
import zipfile
|
8 |
+
import io
|
9 |
+
from Bio import SeqIO
|
10 |
+
import torch
|
11 |
+
from sklearn.preprocessing import OneHotEncoder
|
12 |
+
import plotly.graph_objects as go
|
13 |
+
|
14 |
+
|
15 |
+
class RPContactPredictor:
|
16 |
+
def __init__(self, model_path='./weight/model_roc_0_56=0.779.pt'):
|
17 |
+
|
18 |
+
"""Initialize RNA-protein contact predictor"""
|
19 |
+
self.model = torch.load(model_path, map_location=torch.device('cpu'))
|
20 |
+
self.model.eval()
|
21 |
+
self.seed_everything()
|
22 |
+
|
23 |
+
def seed_everything(self, seed=2022):
|
24 |
+
"""Set random seed for reproducibility"""
|
25 |
+
random.seed(seed)
|
26 |
+
os.environ['PYTHONHASHSEED'] = str(seed)
|
27 |
+
np.random.seed(seed)
|
28 |
+
torch.manual_seed(seed)
|
29 |
+
torch.cuda.manual_seed(seed)
|
30 |
+
torch.backends.cudnn.deterministic = True
|
31 |
+
torch.backends.cudnn.benchmark = False
|
32 |
+
|
33 |
+
def one_hot_encode(self, sequences, alpha='ACGU'):
|
34 |
+
"""One-hot encode biological sequences"""
|
35 |
+
sequences_array = np.array(list(sequences)).reshape(-1, 1)
|
36 |
+
label = np.array(list(alpha)).reshape(-1, 1)
|
37 |
+
enc = OneHotEncoder(handle_unknown='ignore')
|
38 |
+
enc.fit(label)
|
39 |
+
seq_encode = enc.transform(sequences_array).toarray()
|
40 |
+
return seq_encode
|
41 |
+
|
42 |
+
def contact_partner_constrained(self, prob_matrix, colmax=12, rowmax=24):
|
43 |
+
"""Apply contact partner constraints to probability matrix"""
|
44 |
+
row_max_indices = np.argsort(-prob_matrix, axis=1)[:, :rowmax]
|
45 |
+
row_max_mask = np.zeros_like(prob_matrix)
|
46 |
+
row_max_mask[np.arange(prob_matrix.shape[0])[:, np.newaxis], row_max_indices] = 1
|
47 |
+
|
48 |
+
col_max_indices = np.argsort(-prob_matrix, axis=0)[:colmax, :]
|
49 |
+
col_max_mask = np.zeros_like(prob_matrix)
|
50 |
+
col_max_mask[col_max_indices, np.arange(prob_matrix.shape[1])] = 1
|
51 |
+
|
52 |
+
mask = np.logical_and(row_max_mask, col_max_mask).astype(np.float32)
|
53 |
+
prob_matrix = np.where(mask == 1, prob_matrix, 0)
|
54 |
+
return prob_matrix
|
55 |
+
|
56 |
+
def read_fasta(self, fasta_content):
|
57 |
+
"""Parse FASTA format content"""
|
58 |
+
sequences = {}
|
59 |
+
with tempfile.NamedTemporaryFile(mode='w', suffix='.fasta', delete=False) as tmp_file:
|
60 |
+
tmp_file.write(fasta_content)
|
61 |
+
tmp_file_path = tmp_file.name
|
62 |
+
|
63 |
+
try:
|
64 |
+
for record in SeqIO.parse(tmp_file_path, 'fasta'):
|
65 |
+
pdbid, seq = record.id, str(record.seq)
|
66 |
+
rnaid, proid = pdbid.split('.')
|
67 |
+
rnaseq, proseq = seq.split('.')
|
68 |
+
sequences = {
|
69 |
+
'rna': (rnaid, rnaseq),
|
70 |
+
'protein': (proid, proseq)
|
71 |
+
}
|
72 |
+
break
|
73 |
+
finally:
|
74 |
+
os.unlink(tmp_file_path)
|
75 |
+
|
76 |
+
return sequences
|
77 |
+
|
78 |
+
def predict_contact(self, rna_seq, protein_seq):
|
79 |
+
"""Predict RNA-protein contact matrix"""
|
80 |
+
# Encode sequences
|
81 |
+
rna_oh = self.one_hot_encode(rna_seq, alpha='ACGU')
|
82 |
+
pro_oh = self.one_hot_encode(protein_seq, alpha='GAVLIFWYDNEKQMSTCPHR')
|
83 |
+
|
84 |
+
# Prepare input tensors
|
85 |
+
x_rna = torch.from_numpy(np.expand_dims(rna_oh, 0)).transpose(-1, -2).float()
|
86 |
+
x_pro = torch.from_numpy(np.expand_dims(pro_oh, 0)).transpose(-1, -2).float()
|
87 |
+
|
88 |
+
# Run prediction
|
89 |
+
with torch.no_grad():
|
90 |
+
outputs = self.model(x_pro, x_rna)
|
91 |
+
|
92 |
+
# Process outputs
|
93 |
+
outputs = torch.squeeze(outputs, -1).permute(0, 2, 1)
|
94 |
+
contact_matrix = outputs[0].cpu().numpy()
|
95 |
+
|
96 |
+
# Apply constraints and normalization
|
97 |
+
contact_matrix = self.contact_partner_constrained(contact_matrix)
|
98 |
+
contact_matrix = (contact_matrix - contact_matrix.min()) / (contact_matrix.max() - contact_matrix.min() + 1e-8)
|
99 |
+
|
100 |
+
return contact_matrix
|
101 |
+
|
102 |
+
|
103 |
+
def create_heatmap(contact_matrix, rna_labels, protein_labels, rna_name, protein_name, Threshold=0.0):
|
104 |
+
"""Create interactive contact heatmap with threshold filtering"""
|
105 |
+
# Apply Threshold threshold
|
106 |
+
filtered_matrix = contact_matrix.copy()
|
107 |
+
filtered_matrix[filtered_matrix < Threshold] = 0
|
108 |
+
|
109 |
+
fig = go.Figure(data=go.Heatmap(
|
110 |
+
z=filtered_matrix,
|
111 |
+
x=protein_labels,
|
112 |
+
y=rna_labels,
|
113 |
+
colorscale='Reds',
|
114 |
+
showscale=True,
|
115 |
+
colorbar=dict(title="Predicted Probability"),
|
116 |
+
hovertemplate='RNA: %{y}<br>Protein: %{x}<br>Probability: %{z:.4f}<extra></extra>'
|
117 |
+
))
|
118 |
+
|
119 |
+
fig.update_layout(
|
120 |
+
title={
|
121 |
+
'text': f"{rna_name} vs {protein_name} (Threshold ≥ {Threshold:.3f})",
|
122 |
+
'x': 0.5,
|
123 |
+
'xanchor': 'center',
|
124 |
+
'yanchor': 'top'
|
125 |
+
},
|
126 |
+
xaxis_title=f"Protein Residues ({protein_name})",
|
127 |
+
yaxis_title=f"RNA Nucleotides ({rna_name})",
|
128 |
+
width=800,
|
129 |
+
height=600,
|
130 |
+
font=dict(size=12)
|
131 |
+
)
|
132 |
+
|
133 |
+
return fig
|
134 |
+
|
135 |
+
|
136 |
+
def get_contact_pairs(contact_matrix, rna_labels, protein_labels, Threshold=0.0):
|
137 |
+
"""Get filtered contact pairs list above threshold"""
|
138 |
+
df = pd.DataFrame(contact_matrix, index=rna_labels, columns=protein_labels)
|
139 |
+
df_stacked = df.stack().reset_index()
|
140 |
+
df_stacked.columns = ['RNA', 'Protein', 'Probability']
|
141 |
+
df_filtered = df_stacked[df_stacked['Probability'] > Threshold].sort_values('Probability', ascending=False)
|
142 |
+
return df_filtered
|
143 |
+
|
144 |
+
|
145 |
+
def create_download_files(contact_matrix, rna_labels, protein_labels, rna_name, protein_name):
|
146 |
+
"""Create downloadable result files package"""
|
147 |
+
# Create temporary directory
|
148 |
+
temp_dir = tempfile.mkdtemp()
|
149 |
+
|
150 |
+
# Save heatmap raw data
|
151 |
+
heatmap_df = pd.DataFrame(contact_matrix, index=rna_labels, columns=protein_labels)
|
152 |
+
heatmap_file = os.path.join(temp_dir, f"{rna_name}_{protein_name}_heatmap.csv")
|
153 |
+
heatmap_df.to_csv(heatmap_file, index=True)
|
154 |
+
|
155 |
+
# Save contact pairs list
|
156 |
+
pairs_df = get_contact_pairs(contact_matrix, rna_labels, protein_labels, Threshold=0.0)
|
157 |
+
pairs_file = os.path.join(temp_dir, f"{rna_name}_{protein_name}_contact_pairs.csv")
|
158 |
+
pairs_df.to_csv(pairs_file, index=False)
|
159 |
+
|
160 |
+
# Create ZIP file
|
161 |
+
zip_path = os.path.join(temp_dir, f"{rna_name}_{protein_name}_results.zip")
|
162 |
+
with zipfile.ZipFile(zip_path, 'w') as zipf:
|
163 |
+
zipf.write(heatmap_file, os.path.basename(heatmap_file))
|
164 |
+
zipf.write(pairs_file, os.path.basename(pairs_file))
|
165 |
+
|
166 |
+
return zip_path
|
167 |
+
|
168 |
+
|
169 |
+
def process_prediction(fasta_file, rna_sequence, protein_sequence, input_method):
|
170 |
+
"""Process prediction request and return initial results"""
|
171 |
+
if not fasta_file and not (rna_sequence and protein_sequence):
|
172 |
+
return "❌ Please upload a FASTA file or enter RNA and protein sequences",None, None, None, None, None, None
|
173 |
+
|
174 |
+
try:
|
175 |
+
# Process input
|
176 |
+
if input_method == "Upload FASTA File" and fasta_file:
|
177 |
+
fasta_content = fasta_file.decode('utf-8')
|
178 |
+
sequences = predictor.read_fasta(fasta_content)
|
179 |
+
else:
|
180 |
+
# Create sequences from text input
|
181 |
+
sequences = {
|
182 |
+
'rna': ('RNA', rna_sequence),
|
183 |
+
'protein': ('Protein', protein_sequence)
|
184 |
+
}
|
185 |
+
|
186 |
+
rna_id, rna_seq = sequences['rna']
|
187 |
+
protein_id, protein_seq = sequences['protein']
|
188 |
+
|
189 |
+
# Validate sequences
|
190 |
+
if len(set(rna_seq) - set('ACGU')) > 0:
|
191 |
+
return f"❌ RNA sequence contains invalid characters: {set(rna_seq) - set('ACGU')}",None, None, None, None, None, None
|
192 |
+
if len(set(protein_seq) - set('GAVLIFWYDNEKQMSTCPHR')) > 0:
|
193 |
+
return f"❌ Protein sequence contains invalid characters: {set(protein_seq) - set('GAVLIFWYDNEKQMSTCPHR')}",None, None, None, None, None, None
|
194 |
+
|
195 |
+
# Run contact prediction
|
196 |
+
contact_matrix = predictor.predict_contact(rna_seq, protein_seq)
|
197 |
+
|
198 |
+
# Generate residue labels
|
199 |
+
rna_labels = [f'{nt}{i + 1}' for i, nt in enumerate(rna_seq)]
|
200 |
+
protein_labels = [f'{aa}{i + 1}' for i, aa in enumerate(protein_seq)]
|
201 |
+
|
202 |
+
# Calculate default Threshold (minimum non-zero value)
|
203 |
+
non_zero_values = contact_matrix[contact_matrix > 0]
|
204 |
+
default_threshold = float(np.min(non_zero_values)) if len(non_zero_values) > 0 else 0.0
|
205 |
+
max_threshold = float(np.max(contact_matrix))
|
206 |
+
|
207 |
+
# Create initial heatmap with default Threshold
|
208 |
+
heatmap = create_heatmap(contact_matrix, rna_labels, protein_labels, rna_id, protein_id, default_threshold)
|
209 |
+
|
210 |
+
# Create initial contact pairs table
|
211 |
+
contact_pairs = get_contact_pairs(contact_matrix, rna_labels, protein_labels, default_threshold)
|
212 |
+
|
213 |
+
# Create download file
|
214 |
+
download_file = create_download_files(contact_matrix, rna_labels, protein_labels, rna_id, protein_id)
|
215 |
+
|
216 |
+
# Prepare status message
|
217 |
+
status = f"✅ Prediction completed!\n"
|
218 |
+
status += f"RNA length: {len(rna_seq)}\n"
|
219 |
+
status += f"Protein length: {len(protein_seq)}\n"
|
220 |
+
status += f"Total predicted contacts: {len(contact_pairs)}"
|
221 |
+
|
222 |
+
# Prepare result state for threshold updates
|
223 |
+
result_state = {
|
224 |
+
'contact_matrix': contact_matrix,
|
225 |
+
'rna_labels': rna_labels,
|
226 |
+
'protein_labels': protein_labels,
|
227 |
+
'rna_id': rna_id,
|
228 |
+
'protein_id': protein_id
|
229 |
+
}
|
230 |
+
|
231 |
+
# Update slider configuration
|
232 |
+
slider_update = gr.update(
|
233 |
+
minimum=default_threshold,
|
234 |
+
maximum=max_threshold,
|
235 |
+
value=default_threshold,
|
236 |
+
step=(max_threshold - default_threshold) / 100,
|
237 |
+
visible=True
|
238 |
+
)
|
239 |
+
|
240 |
+
# Create contact pairs info
|
241 |
+
contact_info = f"📊 Found {len(contact_pairs)} contacts (Threshold ≥ {default_threshold:.3f})"
|
242 |
+
|
243 |
+
return status, heatmap, contact_pairs, contact_info, download_file, result_state, slider_update
|
244 |
+
|
245 |
+
except Exception as e:
|
246 |
+
return f"❌ Prediction failed: {str(e)}", None, None, None, None, None, None
|
247 |
+
|
248 |
+
def update_results_with_threshold(Threshold, result_state):
|
249 |
+
"""Update heatmap and contact table based on Threshold threshold"""
|
250 |
+
if result_state is None:
|
251 |
+
return None, None, None
|
252 |
+
# Create updated heatmap
|
253 |
+
heatmap = create_heatmap(
|
254 |
+
result_state['contact_matrix'],
|
255 |
+
result_state['rna_labels'],
|
256 |
+
result_state['protein_labels'],
|
257 |
+
result_state['rna_id'],
|
258 |
+
result_state['protein_id'],
|
259 |
+
Threshold
|
260 |
+
)
|
261 |
+
|
262 |
+
# Create updated contact pairs table
|
263 |
+
contact_pairs = get_contact_pairs(
|
264 |
+
result_state['contact_matrix'],
|
265 |
+
result_state['rna_labels'],
|
266 |
+
result_state['protein_labels'],
|
267 |
+
Threshold
|
268 |
+
)
|
269 |
+
|
270 |
+
# Create contact pairs info
|
271 |
+
contact_info = f"📊 Found {len(contact_pairs)} contacts (Probability ≥ {Threshold:.3f})"
|
272 |
+
|
273 |
+
|
274 |
+
return heatmap, contact_pairs, contact_info
|
275 |
+
|
276 |
+
|
277 |
+
def reset_threshold(result_state):
|
278 |
+
if result_state is None:
|
279 |
+
return gr.update(value=0.0)
|
280 |
+
|
281 |
+
contact_matrix = result_state['contact_matrix']
|
282 |
+
non_zero_values = contact_matrix[contact_matrix > 0]
|
283 |
+
|
284 |
+
if len(non_zero_values) > 0:
|
285 |
+
default_threshold = float(np.min(non_zero_values))
|
286 |
+
else:
|
287 |
+
default_threshold = 0.0
|
288 |
+
|
289 |
+
# 返回滑块更新对象
|
290 |
+
return gr.update(
|
291 |
+
minimum=default_threshold,
|
292 |
+
maximum=float(np.max(non_zero_values)),
|
293 |
+
value=default_threshold,
|
294 |
+
interactive=True)
|
295 |
+
|
296 |
+
|
297 |
+
def load_example_data(fasta_input, rna_input, protein_input):
|
298 |
+
# 如果fasta有值(非空),则返回"Upload FASTA File"
|
299 |
+
if fasta_input is not None:
|
300 |
+
return gr.update(value="Upload FASTA File")
|
301 |
+
else:
|
302 |
+
return gr.update(value="Enter Sequences Directly")
|
303 |
+
def create_interface():
|
304 |
+
"""Create Gradio interface with threshold control"""
|
305 |
+
custom_css = """
|
306 |
+
.gradio-dataframe {
|
307 |
+
background: white !important;
|
308 |
+
border: 1px solid #e0e0e0;
|
309 |
+
border-radius: 8px;
|
310 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
|
311 |
+
}
|
312 |
+
.dataframe-container {
|
313 |
+
padding: 12px;
|
314 |
+
background: white;
|
315 |
+
border-radius: 8px;
|
316 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.05);
|
317 |
+
}
|
318 |
+
.contact-info {
|
319 |
+
font-size: 14px;
|
320 |
+
font-weight: 500;
|
321 |
+
margin-bottom: 8px;
|
322 |
+
color: #4a5568;
|
323 |
+
}
|
324 |
+
"""
|
325 |
+
|
326 |
+
with gr.Blocks(title="RNA-Protein Contact Prediction Tool",
|
327 |
+
theme=gr.themes.Soft(primary_hue="blue", secondary_hue="teal"),
|
328 |
+
css=custom_css) as app:
|
329 |
+
gr.Markdown("""
|
330 |
+
<center>
|
331 |
+
|
332 |
+
# 🧬 RPcontact: RNA-Protein Contact Prediction
|
333 |
+
**Direct Nucleotide–Residue Contact Prediction from Primary Sequences**
|
334 |
+
|
335 |
+
[Paper](https://www.biorxiv.org/content/10.1101/2025.06.02.657171v1.full) |
|
336 |
+
[Code](https://github.com/rpcontact) |
|
337 |
+
[Demo](https://julse-rpcontact.hf.space/)
|
338 |
+
|
339 |
+
</center>
|
340 |
+
|
341 |
+
|
342 |
+
> RPcontact predicts direct nucleotide-residue contacts between RNA and protein sequences.
|
343 |
+
Leveraging **ERNIE-RNA** for RNA and **ESM-2** for protein modeling, the method provides high-resolution insights into RNA-protein interactions at the atomic level.
|
344 |
+
<br><br>Current Demo (auROC 0.779 on VL-49) is optimized for limited CPU environments using efficient one-hot encoding<br>
|
345 |
+
Advanced Model (auROC 0.845 on VL-49), the Embedding-based approach will be released upon paper publication ([contact us](mailto:[email protected]) for early access)
|
346 |
+
|
347 |
+
""")
|
348 |
+
with gr.Tab("🔬 Contact Prediction"):
|
349 |
+
with gr.Row():
|
350 |
+
with gr.Column(scale=1):
|
351 |
+
gr.Markdown("## ⚙️ Input Options")
|
352 |
+
with gr.Group(elem_classes="input-group"):
|
353 |
+
input_method = gr.Radio(
|
354 |
+
choices=["Upload FASTA File", "Enter Sequences Directly"],
|
355 |
+
value="Upload FASTA File",
|
356 |
+
label="Input Method"
|
357 |
+
)
|
358 |
+
|
359 |
+
fasta_input = gr.File(
|
360 |
+
label="FASTA File",
|
361 |
+
file_types=['.fasta', '.fa', '.txt'],
|
362 |
+
type='binary'
|
363 |
+
)
|
364 |
+
|
365 |
+
rna_input = gr.Textbox(
|
366 |
+
label="RNA Sequence",
|
367 |
+
placeholder="Enter RNA sequence (use A,C,G,U)",
|
368 |
+
lines=3,
|
369 |
+
visible=False
|
370 |
+
)
|
371 |
+
|
372 |
+
protein_input = gr.Textbox(
|
373 |
+
label="Protein Sequence",
|
374 |
+
placeholder="Enter protein sequence (standard amino acid codes)",
|
375 |
+
lines=3,
|
376 |
+
visible=False
|
377 |
+
)
|
378 |
+
|
379 |
+
# Example data
|
380 |
+
gr.Examples(
|
381 |
+
examples=[
|
382 |
+
["./example/inputs/8DMB_W.8DMB_P.fasta", "GGGCCUUAUUAAAUGACUUC", "MDVPRKMETRRNLRRARRYRK"],
|
383 |
+
],
|
384 |
+
inputs=[fasta_input, rna_input, protein_input],
|
385 |
+
outputs=[input_method],
|
386 |
+
label="📋 Example Data (click to load)",
|
387 |
+
run_on_click=True,
|
388 |
+
fn = load_example_data
|
389 |
+
)
|
390 |
+
|
391 |
+
|
392 |
+
|
393 |
+
# Submit button at the bottom of input column
|
394 |
+
predict_btn = gr.Button("🚀 Run Prediction", variant="primary", size="lg")
|
395 |
+
|
396 |
+
# Status output
|
397 |
+
status_output = gr.Textbox(label="Prediction Status", lines=5)
|
398 |
+
|
399 |
+
|
400 |
+
|
401 |
+
with gr.Column(scale=2):
|
402 |
+
# Results section - initially hidden
|
403 |
+
gr.Markdown("""
|
404 |
+
## 📊 Results
|
405 |
+
""")
|
406 |
+
# Threshold control section
|
407 |
+
with gr.Row():
|
408 |
+
threshold_slider = gr.Slider(
|
409 |
+
label="Contact Probability Threshold",
|
410 |
+
minimum=0.0,
|
411 |
+
maximum=1.0,
|
412 |
+
value=0.0,
|
413 |
+
step=0.001,
|
414 |
+
visible=True,
|
415 |
+
interactive=True
|
416 |
+
)
|
417 |
+
reset_btn = gr.Button("Reset to Default", size="sm")
|
418 |
+
gr.Markdown("""
|
419 |
+
### 🎯Contact Map
|
420 |
+
""")
|
421 |
+
# Heatmap display
|
422 |
+
heatmap_plot = gr.Plot(label='Contact Map')
|
423 |
+
|
424 |
+
# Contact pairs table with info header
|
425 |
+
gr.Markdown("### 🎯Contact Pairs")
|
426 |
+
contact_info = gr.Markdown("", elem_classes="contact-info")
|
427 |
+
contact_table = gr.Dataframe(
|
428 |
+
headers=["RNA", "Protein", "Probability"],
|
429 |
+
datatype=["str", "str", "number"],
|
430 |
+
row_count=15,
|
431 |
+
interactive=False,
|
432 |
+
elem_classes="gradio-dataframe"
|
433 |
+
)
|
434 |
+
|
435 |
+
# Download button
|
436 |
+
download_btn = gr.File(
|
437 |
+
label="📥 Download Results Package",
|
438 |
+
visible=True
|
439 |
+
)
|
440 |
+
|
441 |
+
# User Guide tab remains unchanged
|
442 |
+
with gr.Tab("📖 User Guide"):
|
443 |
+
# ... (unchanged user guide content) ...
|
444 |
+
gr.Markdown("""
|
445 |
+
# 📖 Comprehensive User Guide
|
446 |
+
|
447 |
+
## 🎯 Overview
|
448 |
+
|
449 |
+
This tool predicts direct contacts between nucleotides in RNA sequences and residues in protein sequences using a deep learning model based on ERNIE-RNA and ESM-2 embeddings. The tool provides:
|
450 |
+
|
451 |
+
- **Interactive contact matrix visualization** with adjustable probability thresholds
|
452 |
+
- **Detailed contact pairs list** sorted by prediction confidence
|
453 |
+
- **Downloadable results** in CSV and ZIP formats
|
454 |
+
- **Real-time threshold filtering** for result exploration
|
455 |
+
|
456 |
+
## 📋 Input Formats
|
457 |
+
|
458 |
+
### Method 1: FASTA File Upload
|
459 |
+
|
460 |
+
Upload a FASTA file containing both RNA and protein sequences in the following format:
|
461 |
+
|
462 |
+
```
|
463 |
+
>RNA_ID.PROTEIN_ID
|
464 |
+
RNA_SEQUENCE.PROTEIN_SEQUENCE
|
465 |
+
```
|
466 |
+
|
467 |
+
**Example:**
|
468 |
+
```
|
469 |
+
>8DMB_W.8DMB_P
|
470 |
+
GGGCCUUAUUAAAUGACUUC.MDVPRKMETRRNLRRARRYRK
|
471 |
+
```
|
472 |
+
|
473 |
+
### Method 2: Direct Sequence Input
|
474 |
+
|
475 |
+
Enter RNA and protein sequences directly in the respective text boxes:
|
476 |
+
|
477 |
+
- **RNA Sequence**: Use standard nucleotide codes (A, U, G, C)
|
478 |
+
- **Protein Sequence**: Use standard single-letter amino acid codes (GAVLIFWYDNEKQMSTCPHR)
|
479 |
+
|
480 |
+
## 🔬 Understanding Results
|
481 |
+
|
482 |
+
### Contact Heatmap
|
483 |
+
|
484 |
+
- **X-axis**: Protein residue positions (e.g., M1, D2, V3...)
|
485 |
+
- **Y-axis**: RNA nucleotide positions (e.g., G1, G2, G3...)
|
486 |
+
- **Color Intensity**: Contact probability (0.0 to 1.0)
|
487 |
+
- **Red Colors**: Higher contact probability
|
488 |
+
- **White/Light**: Lower or no contact probability
|
489 |
+
|
490 |
+
### Contact Pairs Table
|
491 |
+
|
492 |
+
Lists all predicted contacts above the selected threshold, showing:
|
493 |
+
- **RNA**: Nucleotide position and type
|
494 |
+
- **Protein**: Residue position and type
|
495 |
+
- **Probability**: Contact prediction confidence (0.0-1.0)
|
496 |
+
|
497 |
+
### Threshold Control
|
498 |
+
|
499 |
+
Use the **Contact Probability Threshold** slider to:
|
500 |
+
- Filter contacts by minimum probability
|
501 |
+
- Focus on high-confidence predictions
|
502 |
+
- Explore different confidence levels
|
503 |
+
- Click **"Reset to Default"** to return to the minimum non-zero value
|
504 |
+
|
505 |
+
## 📥 Download Options
|
506 |
+
|
507 |
+
The results package (ZIP file) contains:
|
508 |
+
|
509 |
+
1. **`*_heatmap.csv`**: Complete contact probability matrix
|
510 |
+
- Rows: RNA nucleotides
|
511 |
+
- Columns: Protein residues
|
512 |
+
- Values: Contact probabilities
|
513 |
+
|
514 |
+
2. **`*_contact_pairs.csv`**: All contact pairs above zero probability
|
515 |
+
- RNA: Nucleotide identifier
|
516 |
+
- Protein: Residue identifier
|
517 |
+
- Probability: Contact prediction score
|
518 |
+
|
519 |
+
## ⚡ Performance Guidelines
|
520 |
+
|
521 |
+
- **Processing Time**: Scales quadratically with sequence length
|
522 |
+
|
523 |
+
### Quality Considerations
|
524 |
+
- Higher probabilities indicate more confident predictions
|
525 |
+
- Consider biological context when interpreting results
|
526 |
+
- Cross-validate important contacts with experimental data
|
527 |
+
|
528 |
+
## 🔧 Troubleshooting
|
529 |
+
|
530 |
+
### Common Issues
|
531 |
+
|
532 |
+
**Invalid Characters Error:**
|
533 |
+
- RNA: Only A, U, G, C are allowed
|
534 |
+
- Protein: Only standard 20 amino acids are supported
|
535 |
+
- Check for lowercase letters, numbers, or special characters
|
536 |
+
|
537 |
+
**File Format Error:**
|
538 |
+
- Ensure FASTA format: `>ID\\nSEQUENCE`
|
539 |
+
- Use period (.) to separate RNA and protein sequences
|
540 |
+
- Check file encoding (UTF-8 recommended)
|
541 |
+
|
542 |
+
**Empty Results:**
|
543 |
+
- Very short sequences may produce no significant contacts
|
544 |
+
- Try lowering the probability threshold
|
545 |
+
- Verify sequence quality and biological relevance
|
546 |
+
|
547 |
+
## 📊 Interpretation Guidelines
|
548 |
+
|
549 |
+
### High-Confidence Predictions (≥0.7)
|
550 |
+
- Strong likelihood of direct contact
|
551 |
+
- Priority targets for experimental validation
|
552 |
+
- Suitable for structural modeling constraints
|
553 |
+
|
554 |
+
### Medium-Confidence Predictions (0.3-0.7)
|
555 |
+
- Moderate likelihood of interaction
|
556 |
+
- Consider in context with other evidence
|
557 |
+
- Useful for identifying interaction regions
|
558 |
+
|
559 |
+
### Low-Confidence Predictions (<0.3)
|
560 |
+
- May represent weak or indirect interactions
|
561 |
+
- Use with caution for biological interpretation
|
562 |
+
- Good for exploratory analysis
|
563 |
+
|
564 |
+
## 🔬 Technical Details
|
565 |
+
|
566 |
+
### Model Architecture
|
567 |
+
- Based on attention mechanisms and transformer models
|
568 |
+
- Trained on experimentally validated RNA-protein complexes
|
569 |
+
- Uses one-hot encoding for sequence representation
|
570 |
+
- Applies contact partner constraints for biological realism
|
571 |
+
|
572 |
+
### Validation Metrics
|
573 |
+
- Cross-validated on diverse RNA-protein complex datasets
|
574 |
+
- Performance metrics available in the original publication
|
575 |
+
- Benchmarked against existing prediction methods
|
576 |
+
|
577 |
+
### 📊 Difference between current demo and final model
|
578 |
+
| Model Type | Checkpoint File | auROC (VL-49) | LLM embeddings |
|
579 |
+
|---------------------|---------------------------|---------------|-------------------|
|
580 |
+
| OH + RP_Emb (final) | `model_roc_0_38=0.845.pt` | 0.845 | ✓ |
|
581 |
+
| OH (demo) | `model_roc_0_56=0.779.pt` | 0.779 | ✗ |
|
582 |
+
|
583 |
+
## 📚 Citation & Contact
|
584 |
+
|
585 |
+
If you use this tool in your research, please cite:
|
586 |
+
|
587 |
+
**Jiang, J., Zhang, X., Zhan, J., Miao, Z., & Zhou, Y. (2025). RPcontact: Improved prediction of RNA-protein contacts using RNA and protein language models. bioRxiv, 2025-06.**
|
588 |
+
|
589 |
+
### Contact Information
|
590 |
+
For technical issues, feature requests, or collaboration inquiries, please contact the development team.
|
591 |
+
|
592 |
+
- **Primary Contact**: Jiuhong Jiang
|
593 |
+
- **Email**: [email protected]
|
594 |
+
- **Institution**: ShanghaiTech University, Shanghai, China
|
595 |
+
---
|
596 |
+
|
597 |
+
<p align="center"><em>Making RNA-protein interaction prediction accessible and accurate for the research community.</em></p>
|
598 |
+
|
599 |
+
""")
|
600 |
+
|
601 |
+
# Hidden state to store prediction results
|
602 |
+
result_state = gr.State()
|
603 |
+
|
604 |
+
# Event handlers
|
605 |
+
def toggle_inputs(method):
|
606 |
+
"""Toggle input visibility based on selected method"""
|
607 |
+
if method == "Upload FASTA File":
|
608 |
+
return gr.update(visible=True), gr.update(visible=False), gr.update(visible=False)
|
609 |
+
else:
|
610 |
+
return gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
|
611 |
+
|
612 |
+
# Input method change
|
613 |
+
input_method.change(
|
614 |
+
fn=toggle_inputs,
|
615 |
+
inputs=[input_method],
|
616 |
+
outputs=[fasta_input, rna_input, protein_input]
|
617 |
+
)
|
618 |
+
|
619 |
+
# Prediction button
|
620 |
+
predict_btn.click(
|
621 |
+
fn=process_prediction,
|
622 |
+
inputs=[fasta_input, rna_input, protein_input, input_method],
|
623 |
+
outputs=[
|
624 |
+
status_output,
|
625 |
+
heatmap_plot,
|
626 |
+
contact_table,
|
627 |
+
contact_info,
|
628 |
+
download_btn,
|
629 |
+
result_state,
|
630 |
+
threshold_slider
|
631 |
+
]
|
632 |
+
)
|
633 |
+
|
634 |
+
# Threshold slider change
|
635 |
+
threshold_slider.change(
|
636 |
+
fn=update_results_with_threshold,
|
637 |
+
inputs=[threshold_slider, result_state],
|
638 |
+
outputs=[heatmap_plot, contact_table, contact_info]
|
639 |
+
)
|
640 |
+
|
641 |
+
# Reset button
|
642 |
+
reset_btn.click(
|
643 |
+
fn=reset_threshold,
|
644 |
+
inputs=[result_state],
|
645 |
+
outputs=[threshold_slider]
|
646 |
+
)
|
647 |
+
|
648 |
+
return app
|
649 |
+
|
650 |
+
|
651 |
+
# Initialize predictor
|
652 |
+
predictor = RPContactPredictor()
|
653 |
+
|
654 |
+
if __name__ == "__main__":
|
655 |
+
app = create_interface()
|
656 |
+
app.launch(
|
657 |
+
server_name="0.0.0.0",
|
658 |
+
server_port=7860,
|
659 |
+
share=False,
|
660 |
+
debug=True
|
661 |
+
)
|
benchmark/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
benchmark/readme.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
the results predicted by all the methods on TS_nt can download after the paper accepted by journal
|
evaluate.py
ADDED
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
# Created by: [email protected]
|
4 |
+
# des : evaluate RPcontact
|
5 |
+
import glob
|
6 |
+
import os
|
7 |
+
import pickle
|
8 |
+
import random
|
9 |
+
from argparse import ArgumentParser
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
import pandas as pd
|
12 |
+
|
13 |
+
import torch
|
14 |
+
from Bio import SeqIO
|
15 |
+
from sklearn.preprocessing import OneHotEncoder
|
16 |
+
import numpy as np
|
17 |
+
|
18 |
+
from predict import check_path, one_hot_encode, get_bin_pred, doSavePredict
|
19 |
+
|
20 |
+
|
21 |
+
def get_bin_label(df_label,distance_cutoff):
|
22 |
+
bin_label = df_label < distance_cutoff
|
23 |
+
bin_label = bin_label.astype(int)
|
24 |
+
return bin_label
|
25 |
+
|
26 |
+
def view_evaluate_contact_prob(df_label, bin_pred,ax=None,markersize=5):
|
27 |
+
confusing_matrix = np.zeros_like(df_label)
|
28 |
+
r, p = confusing_matrix.shape
|
29 |
+
if ax is None:
|
30 |
+
ax = plt
|
31 |
+
ax.xlim([-2, p + 2])
|
32 |
+
ax.ylim([-2, r + 2])
|
33 |
+
# plt.xticks(rotation=90)
|
34 |
+
else:
|
35 |
+
|
36 |
+
ax.set_xlim([-2, p + 2])
|
37 |
+
ax.set_ylim([-2, r + 2])
|
38 |
+
# plt.setp(ax.get_xticklabels(), rotation=90)
|
39 |
+
ax.set_title('performance')
|
40 |
+
|
41 |
+
colors = [
|
42 |
+
'#f5e0c4', # lightblue for FP
|
43 |
+
# '#aaa6ce','#66609c','k',# light purple, dark purple,black, for Groud truth
|
44 |
+
'#b0d9db','#61b3b6','k',# light purple, dark purple,black, for Groud truth
|
45 |
+
'#ecbbd8','#9d4e7d','r' # for TP
|
46 |
+
|
47 |
+
]
|
48 |
+
tps = []
|
49 |
+
bin_label = df_label<8
|
50 |
+
temp = bin_pred - bin_label
|
51 |
+
fn = ax.plot(*np.where(temp.T == 1), ".", c=colors[0], markersize=markersize,label='False Positive')[0]
|
52 |
+
# 绘制NaN值的数据点为灰色
|
53 |
+
oc = ax.plot(*np.where(df_label.T.isna()), ".", c='gray', markersize=markersize, label='Missing in PDB')[0]
|
54 |
+
confusing_matrix[bin_label == 1] = 1 #ground truth
|
55 |
+
oc = ax.plot(*np.where(bin_label.T == 1), ".", c=colors[1],markersize=markersize, label='Ground truth (8Å)')[0]
|
56 |
+
temp = bin_label + bin_pred
|
57 |
+
tps.append(len(confusing_matrix[np.where(temp == 2)]))
|
58 |
+
confusing_matrix[np.where(temp == 2)] = 2 # TP : blue
|
59 |
+
tp = ax.plot(*np.where(temp.T == 2), "o", c=colors[4],markersize=markersize, label='True Positive (8Å)')[0]
|
60 |
+
tp.set_markerfacecolor(colors[1])
|
61 |
+
tp.set_markeredgecolor(colors[4])
|
62 |
+
|
63 |
+
bin_label = df_label<5
|
64 |
+
temp = bin_label + bin_pred
|
65 |
+
tps.append(len(confusing_matrix[np.where(temp == 2)]))
|
66 |
+
|
67 |
+
oc = ax.plot(*np.where(bin_label.T == 1), ".", c=colors[2],markersize=markersize, label='Ground truth (5Å)')[0]
|
68 |
+
confusing_matrix[np.where(temp == 2)] = 2 # TP : blue
|
69 |
+
tp = ax.plot(*np.where(temp.T == 2), "o", c=colors[5],markersize=markersize, label='True Positive (5Å)')[0]
|
70 |
+
tp.set_markerfacecolor(colors[2])
|
71 |
+
tp.set_markeredgecolor(colors[5])
|
72 |
+
bin_label = df_label<3.5
|
73 |
+
oc = ax.plot(*np.where(bin_label.T == 1), ".", c=colors[3],markersize=markersize, label='Ground truth (3.5Å)')[0]
|
74 |
+
temp = bin_label + bin_pred
|
75 |
+
tps.append(len(confusing_matrix[np.where(temp == 2)]))
|
76 |
+
|
77 |
+
confusing_matrix[np.where(temp == 2)] = 2 # TP : blue
|
78 |
+
tp = ax.plot(*np.where(temp.T == 2), "o", c=colors[6],markersize=markersize, label='True Positive (3.5Å)')[0]
|
79 |
+
tp.set_markerfacecolor(colors[3])
|
80 |
+
tp.set_markeredgecolor(colors[6])
|
81 |
+
|
82 |
+
# ax.legend()
|
83 |
+
# plt.show()
|
84 |
+
# tp = len(confusing_matrix[np.where(temp == 2)])
|
85 |
+
print(len(confusing_matrix[np.where(temp == 2)]))
|
86 |
+
return '/'.join([str(e) for e in tps[::-1]]),confusing_matrix
|
87 |
+
def seed_everything(seed=2022):
|
88 |
+
print('seed_everything to ',seed)
|
89 |
+
random.seed(seed)
|
90 |
+
os.environ['PYTHONHASHSEED'] = str(seed)
|
91 |
+
np.random.seed(seed)
|
92 |
+
torch.manual_seed(seed) # 程序每次运行结果一致,但是程序中多次生成随机数每次不一致 # https://blog.csdn.net/qq_42951560/article/details/112174334
|
93 |
+
torch.cuda.manual_seed(seed)
|
94 |
+
torch.backends.cudnn.deterministic = True
|
95 |
+
torch.backends.cudnn.benchmark = False # minbatch的长度一直在变化,这个优化比较浪费时间
|
96 |
+
|
97 |
+
|
98 |
+
def getParam():
|
99 |
+
parser = ArgumentParser()
|
100 |
+
# data
|
101 |
+
parser.add_argument('--rootdir', default='',
|
102 |
+
type=str)
|
103 |
+
parser.add_argument('--fasta', default='./example/inputs/8DMB_W.8DMB_P.fasta',
|
104 |
+
type=str)
|
105 |
+
parser.add_argument('--out', default='./example/outputs/',
|
106 |
+
type=str)
|
107 |
+
parser.add_argument('--ffeat', default='./example/inputs/{pdbid}.pickle',
|
108 |
+
type=str)
|
109 |
+
parser.add_argument('--fmodel', default='./weight/model_roc_0_38=0.845.pt',
|
110 |
+
type=str)
|
111 |
+
parser.add_argument('--device', default='cpu',
|
112 |
+
type=str)
|
113 |
+
parser.add_argument('--flabel', default='./example/inputs/{pdbid}.pickle',
|
114 |
+
type=str)
|
115 |
+
parser.add_argument('--draw', default=True,
|
116 |
+
type=bool)
|
117 |
+
args = parser.parse_args()
|
118 |
+
return args
|
119 |
+
if __name__ == '__main__':
|
120 |
+
args = getParam()
|
121 |
+
rootdir = args.rootdir
|
122 |
+
fasta = args.fasta
|
123 |
+
ffeat = args.ffeat
|
124 |
+
fmodel = args.fmodel
|
125 |
+
device = args.device
|
126 |
+
flabel = args.flabel
|
127 |
+
draw = args.draw
|
128 |
+
out = args.out
|
129 |
+
check_path(out)
|
130 |
+
|
131 |
+
# pdbid = fasta.rsplit('/',1)[0].split('.')[0]
|
132 |
+
seed_everything(seed=2022)
|
133 |
+
models = [(model_path,torch.load(model_path, map_location=torch.device(device))) for model_path in glob.glob(fmodel)]
|
134 |
+
print('loading existed model', fmodel)
|
135 |
+
with torch.no_grad():
|
136 |
+
for pdbid,seq in [(record.id,record.seq) for record in SeqIO.parse(fasta,'fasta')]:
|
137 |
+
rnaid,proid= pdbid.split('.')
|
138 |
+
rnaseq,proseq= seq.split('.')
|
139 |
+
|
140 |
+
with open(ffeat.format_map({'pdbid':rnaid}),'rb') as f:
|
141 |
+
rna_emb = pickle.load(f)
|
142 |
+
with open(ffeat.format_map({'pdbid':proid}),'rb') as f:
|
143 |
+
pro_emb = pickle.load(f)
|
144 |
+
|
145 |
+
rna_oh = one_hot_encode(rnaseq, alpha='ACGU')
|
146 |
+
pro_oh = one_hot_encode(proseq, alpha='GAVLIFWYDNEKQMSTCPHR')
|
147 |
+
|
148 |
+
# mask = np.ones((emb.shape[0],1)) # mask missing nt when evaluate the model
|
149 |
+
x_train = np.concatenate([rna_oh,rna_emb],axis=1)
|
150 |
+
x_train = np.expand_dims(x_train,0)
|
151 |
+
x_train = torch.from_numpy(x_train).transpose(-1,-2)
|
152 |
+
x_train = x_train.to(device, dtype=torch.float)
|
153 |
+
x_rna = x_train
|
154 |
+
|
155 |
+
x_train = np.concatenate([pro_oh, pro_emb], axis=1)
|
156 |
+
x_train = np.expand_dims(x_train, 0)
|
157 |
+
x_train = torch.from_numpy(x_train).transpose(-1, -2)
|
158 |
+
x_train = x_train.to(device, dtype=torch.float)
|
159 |
+
x_pro = x_train
|
160 |
+
|
161 |
+
print('input data shape for rna and protein:',x_rna.shape,x_pro.shape)
|
162 |
+
|
163 |
+
x_rna = x_rna.to(device, dtype=torch.float32)
|
164 |
+
x_pro = x_pro.to(device, dtype=torch.float32)
|
165 |
+
plt.figure(figsize=(20, 15))
|
166 |
+
for i,(model_path,model) in enumerate(models):
|
167 |
+
model.eval()
|
168 |
+
outputs = model(x_pro, x_rna) # [1, 299, 74, 1]
|
169 |
+
# print('outputs,',outputs.device)
|
170 |
+
outputs = torch.squeeze(outputs, -1)
|
171 |
+
outputs = outputs.permute(0, 2, 1)
|
172 |
+
|
173 |
+
df_pred = outputs[0].cpu().detach().numpy()
|
174 |
+
# seq = data._seq[pdbid] if pdbid in data._seq else None
|
175 |
+
des = f'predict by {__file__}\n#{model_path}'
|
176 |
+
doSavePredict(pdbid, {'rna':rnaseq,'protein':proseq}, df_pred,
|
177 |
+
out,
|
178 |
+
des
|
179 |
+
)
|
180 |
+
top = sum(df_pred.shape)
|
181 |
+
df_pred = pd.DataFrame(df_pred)
|
182 |
+
threshold = df_pred.stack().nlargest(top).iloc[-1]
|
183 |
+
if draw:
|
184 |
+
with open(flabel.format_map({'pdbid': pdbid}), 'rb') as f:
|
185 |
+
df_label = pickle.load(f)
|
186 |
+
df_label = df_label.squeeze()
|
187 |
+
bin_pred = get_bin_pred(df_pred, threshold=threshold)
|
188 |
+
view_evaluate_contact_prob(df_label, bin_pred, ax=None)
|
189 |
+
plt.title(f'Predicted contact map of {pdbid}\nPredidcted by RPcontact, top L=r+p')
|
190 |
+
plt.xlabel(proid)
|
191 |
+
plt.ylabel(rnaid)
|
192 |
+
handles, labels = plt.gca().get_legend_handles_labels()
|
193 |
+
|
194 |
+
plt.legend(handles, labels, bbox_to_anchor=(1.05, 1), loc='upper left', ncol=1, borderaxespad=1,
|
195 |
+
frameon=False)
|
196 |
+
# 设置坐标轴的相同缩放
|
197 |
+
ax = plt.gca()
|
198 |
+
ax.set_aspect('equal')
|
199 |
+
plt.tight_layout()
|
200 |
+
plt.savefig(f'{out}/{pdbid}_{i}_evaluate.png',dpi=900)
|
201 |
+
plt.show()
|
202 |
+
print(f'predict {pdbid} with {len(seq)} nts')
|
203 |
+
|
204 |
+
|
205 |
+
|
206 |
+
|
207 |
+
|
208 |
+
|
209 |
+
|
example/inputs/8DMB_W.8DMB_P.fasta
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
>8DMB_W.8DMB_P
|
2 |
+
GGGCCUUAUUAAAUGACUUCUCGUCAACCACCCCUGACUGAAGUCAGAGGCUUGCUUCUGGCCUGAGUUGGGGGCCCGGUUUGGCGGGGCCGGGGGCAACUGGCUGACCAGGCGGCCCGGUUCGCCGGGCAGGGGUCCGCGGGGCUACCAAGGACUUCCGGGUGUUUCGCCAGCCCGGACUAUCUCCGGCAGAACCGCUCAAUGCCGCGGCCGGCCAAGACCGGCCUAAGCCCUGCGGACAGCGCCGAGGCGACAAUCACUCCGAAAGGAGGCCGUGUAUCGGC.MGSSHHHHHHSSGLVPRGSHMASWSHPQFEKGGGSGGGSGGSAWSHPQFEKMSDSEVNQEAKPEVKPEVKPETHINLKVSDGSSEIFFKIKKTTPLRRLMEAFAKRQGKEMDSLRFLYDGIRIQADQTPEDLDMEDNDIIEAHREQIGGSMSTSITRVPVVGVDGRPLMPTTPRKARLLIRDGLAVPRRNKLGLFYIQMLRPVGTRTQPVALAVDPGAKYDGVAVASHRRVELRAMVFLPDDVPRKMETRRNLRRARRYRKTPRRPARFDNRRRKGYWLAPTQRFKVEARLKVVRELCRIYPVQLIVTEDVRFNHARDRNGKYFSTVEIGKTLTYREYRKLAELRLVEVSETDAWRERFGLEKRTERKCEQVPETHANDAAAMLMGVTGCAHNPAAPFFVWRRLRYARRSLFRQNPQKDGVRPRFGGTANGGFFRKGDWVEAEKAGKVYRGWVCGLPTETTKLVGVADADGKRIGQFSPKKVRLLARSTGFSWKEVAAHSSPEVSKGEELFTGVVPILVELDGDVNGHKFSVRGEGEGDATNGKLTLKFICTTGKLPVPWPTLVTTLTYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTISFKDDGTYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNFNSHNVYITADKQKNGIKANFKIRHNVEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSKLSKDPNEKRDHMVLLEFVTAAGITLGMDELYK
|
example/inputs/readme.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
sequence of RNA and protein: 8DMB_W.8DMB_P.fasta
|
2 |
+
|
3 |
+
rna embedding from ERNIE-RNA: 8DMB_W.pickle
|
4 |
+
protein embedding from esm2: 8DMB_P.pickle
|
5 |
+
|
6 |
+
Label is needed in the evaluate mdoe: 8DMB_W.8DMB_P.pickle
|
example/outputs/8DMB_W.8DMB_P.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|
example/outputs/8DMB_W.8DMB_P_0_binary.png
ADDED
![]() |
example/outputs/8DMB_W.8DMB_P_0_evaluate.png
ADDED
![]() |
Git LFS Details
|
example/outputs/8DMB_W.8DMB_P_0_prob.png
ADDED
![]() |
Git LFS Details
|
example/outputs/8DMB_W.8DMB_P_topL.txt
ADDED
@@ -0,0 +1,1026 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
rna protein pred
|
2 |
+
U35 R17 1.00000
|
3 |
+
A37 R17 0.99522
|
4 |
+
A8 R17 0.98054
|
5 |
+
U7 R17 0.97008
|
6 |
+
U39 R17 0.95614
|
7 |
+
C34 R17 0.95496
|
8 |
+
C33 R17 0.94333
|
9 |
+
U9 R17 0.94329
|
10 |
+
A27 R17 0.94328
|
11 |
+
G36 R17 0.94095
|
12 |
+
U6 R17 0.94029
|
13 |
+
G1 R17 0.93609
|
14 |
+
C38 R17 0.93235
|
15 |
+
A26 R17 0.91772
|
16 |
+
C32 R17 0.91758
|
17 |
+
A30 R17 0.91663
|
18 |
+
G2 R17 0.90895
|
19 |
+
U10 R17 0.90053
|
20 |
+
C28 R17 0.89455
|
21 |
+
C31 R17 0.89061
|
22 |
+
A41 R17 0.88997
|
23 |
+
U44 R17 0.88463
|
24 |
+
C29 R17 0.88146
|
25 |
+
G3 R17 0.87936
|
26 |
+
A42 R17 0.87429
|
27 |
+
A16 R17 0.87417
|
28 |
+
C5 R17 0.87406
|
29 |
+
A11 R17 0.87328
|
30 |
+
U14 R17 0.87179
|
31 |
+
G40 R17 0.87162
|
32 |
+
C4 R17 0.87014
|
33 |
+
A13 R17 0.86685
|
34 |
+
A12 R17 0.86145
|
35 |
+
U18 R17 0.85383
|
36 |
+
U19 R17 0.84186
|
37 |
+
A46 R17 0.84029
|
38 |
+
C45 R17 0.83834
|
39 |
+
G15 R17 0.83245
|
40 |
+
G43 R17 0.83169
|
41 |
+
C17 R17 0.82836
|
42 |
+
C25 R17 0.82813
|
43 |
+
U24 R17 0.81132
|
44 |
+
U82 R17 0.80720
|
45 |
+
U21 R17 0.79809
|
46 |
+
G72 R17 0.79460
|
47 |
+
U35 R299 0.79412
|
48 |
+
C20 R17 0.79060
|
49 |
+
U81 R17 0.79039
|
50 |
+
U35 H5 0.78897
|
51 |
+
G71 R17 0.78883
|
52 |
+
A37 R299 0.78653
|
53 |
+
G73 R17 0.78649
|
54 |
+
U35 K31 0.78543
|
55 |
+
A37 H5 0.78424
|
56 |
+
A8 R299 0.78149
|
57 |
+
A37 K31 0.77866
|
58 |
+
G83 R17 0.77861
|
59 |
+
U35 R295 0.77697
|
60 |
+
A8 K31 0.77684
|
61 |
+
U64 R17 0.77534
|
62 |
+
G74 R17 0.77356
|
63 |
+
U35 H6 0.77221
|
64 |
+
U7 R299 0.77158
|
65 |
+
U80 R17 0.77144
|
66 |
+
U69 R17 0.77060
|
67 |
+
A8 H5 0.76959
|
68 |
+
G70 R17 0.76760
|
69 |
+
A37 R295 0.76733
|
70 |
+
A37 H6 0.76665
|
71 |
+
C75 R17 0.76648
|
72 |
+
A66 R17 0.76631
|
73 |
+
U7 K31 0.76610
|
74 |
+
U121 R17 0.76137
|
75 |
+
G84 R17 0.76003
|
76 |
+
A8 R295 0.75984
|
77 |
+
U35 R274 0.75935
|
78 |
+
U7 H5 0.75871
|
79 |
+
C90 R17 0.75856
|
80 |
+
C76 R17 0.75854
|
81 |
+
U35 R424 0.75682
|
82 |
+
U35 R422 0.75666
|
83 |
+
C284 R17 0.75530
|
84 |
+
C34 R299 0.75520
|
85 |
+
C22 R17 0.75505
|
86 |
+
A37 R274 0.75487
|
87 |
+
C91 R17 0.75449
|
88 |
+
C34 H5 0.75313
|
89 |
+
U35 H10 0.75301
|
90 |
+
U9 R299 0.75242
|
91 |
+
U68 R17 0.75214
|
92 |
+
G23 R17 0.75203
|
93 |
+
C77 R17 0.75059
|
94 |
+
A37 R424 0.75047
|
95 |
+
G47 R17 0.75025
|
96 |
+
U35 H7 0.75020
|
97 |
+
U7 R295 0.74986
|
98 |
+
A8 H6 0.74975
|
99 |
+
U39 H5 0.74969
|
100 |
+
A37 H10 0.74899
|
101 |
+
U9 K31 0.74829
|
102 |
+
C34 K31 0.74809
|
103 |
+
A37 R422 0.74766
|
104 |
+
U35 H9 0.74712
|
105 |
+
G89 R17 0.74704
|
106 |
+
G36 R299 0.74701
|
107 |
+
U122 R17 0.74670
|
108 |
+
U6 R299 0.74564
|
109 |
+
A37 H7 0.74483
|
110 |
+
U35 R268 0.74468
|
111 |
+
A27 R299 0.74466
|
112 |
+
U39 R299 0.74453
|
113 |
+
G65 R17 0.74445
|
114 |
+
A27 H5 0.74397
|
115 |
+
U276 R17 0.74369
|
116 |
+
A37 H9 0.74357
|
117 |
+
C33 R299 0.74245
|
118 |
+
G36 H5 0.74204
|
119 |
+
C33 H5 0.74197
|
120 |
+
A259 R17 0.74120
|
121 |
+
U6 K31 0.74112
|
122 |
+
U35 H8 0.74110
|
123 |
+
U39 K31 0.74108
|
124 |
+
G92 R17 0.74087
|
125 |
+
U9 H5 0.74076
|
126 |
+
G120 R17 0.74047
|
127 |
+
A8 R424 0.74030
|
128 |
+
A266 R17 0.74023
|
129 |
+
G78 R17 0.73972
|
130 |
+
G36 K31 0.73956
|
131 |
+
C85 R17 0.73934
|
132 |
+
U7 H6 0.73909
|
133 |
+
A37 R268 0.73878
|
134 |
+
A8 R274 0.73852
|
135 |
+
C34 R295 0.73834
|
136 |
+
A48 R17 0.73822
|
137 |
+
G79 R17 0.73819
|
138 |
+
A8 R422 0.73817
|
139 |
+
A27 K31 0.73719
|
140 |
+
A37 H8 0.73675
|
141 |
+
A267 R17 0.73649
|
142 |
+
C34 H6 0.73613
|
143 |
+
U35 R413 0.73563
|
144 |
+
U35 R157 0.73516
|
145 |
+
G1 K31 0.73493
|
146 |
+
A8 H10 0.73452
|
147 |
+
C33 K31 0.73437
|
148 |
+
U35 R273 0.73416
|
149 |
+
U9 R295 0.73407
|
150 |
+
U35 R174 0.73368
|
151 |
+
C38 H5 0.73352
|
152 |
+
U6 H5 0.73301
|
153 |
+
U35 R718 0.73299
|
154 |
+
U39 H6 0.73272
|
155 |
+
U257 R17 0.73268
|
156 |
+
G1 R299 0.73203
|
157 |
+
U278 R17 0.73174
|
158 |
+
C63 R17 0.73152
|
159 |
+
U35 R181 0.73144
|
160 |
+
U7 R424 0.73140
|
161 |
+
A37 R413 0.73104
|
162 |
+
C38 R299 0.73102
|
163 |
+
G1 H5 0.73062
|
164 |
+
G119 R17 0.73057
|
165 |
+
U35 R166 0.73039
|
166 |
+
U53 R17 0.73035
|
167 |
+
A248 R17 0.73015
|
168 |
+
G36 R295 0.72986
|
169 |
+
G88 R17 0.72984
|
170 |
+
A265 R17 0.72977
|
171 |
+
U7 R274 0.72945
|
172 |
+
A37 R273 0.72934
|
173 |
+
U39 R295 0.72919
|
174 |
+
G93 R17 0.72905
|
175 |
+
U6 R295 0.72784
|
176 |
+
U7 R422 0.72771
|
177 |
+
A27 R295 0.72754
|
178 |
+
A37 R157 0.72727
|
179 |
+
A37 R174 0.72716
|
180 |
+
U165 R17 0.72699
|
181 |
+
U7 H10 0.72676
|
182 |
+
C38 K31 0.72650
|
183 |
+
A27 H6 0.72631
|
184 |
+
A8 H9 0.72628
|
185 |
+
G36 H6 0.72625
|
186 |
+
A8 H7 0.72621
|
187 |
+
G127 R17 0.72597
|
188 |
+
A37 R181 0.72553
|
189 |
+
A26 R299 0.72531
|
190 |
+
U35 R435 0.72526
|
191 |
+
A37 R718 0.72524
|
192 |
+
C33 R295 0.72510
|
193 |
+
C33 H6 0.72443
|
194 |
+
G67 R17 0.72392
|
195 |
+
U56 R17 0.72388
|
196 |
+
A37 R166 0.72374
|
197 |
+
U52 R17 0.72372
|
198 |
+
U9 H6 0.72342
|
199 |
+
C258 R17 0.72304
|
200 |
+
A26 H5 0.72242
|
201 |
+
A8 R413 0.72192
|
202 |
+
G128 R17 0.72185
|
203 |
+
G283 R17 0.72176
|
204 |
+
C34 R274 0.72168
|
205 |
+
A256 R17 0.72132
|
206 |
+
A30 R299 0.72115
|
207 |
+
A8 R268 0.72099
|
208 |
+
G86 R17 0.72079
|
209 |
+
C32 R299 0.72024
|
210 |
+
G94 R17 0.72003
|
211 |
+
C32 H5 0.71998
|
212 |
+
C34 H10 0.71962
|
213 |
+
A30 H5 0.71913
|
214 |
+
U57 R17 0.71885
|
215 |
+
C34 R424 0.71867
|
216 |
+
U7 H9 0.71865
|
217 |
+
U39 R274 0.71854
|
218 |
+
G87 R17 0.71831
|
219 |
+
C126 R17 0.71809
|
220 |
+
A8 H8 0.71788
|
221 |
+
A279 R17 0.71784
|
222 |
+
U10 R299 0.71742
|
223 |
+
C118 R17 0.71739
|
224 |
+
G277 R17 0.71732
|
225 |
+
A26 K31 0.71674
|
226 |
+
C34 R422 0.71666
|
227 |
+
U7 H7 0.71660
|
228 |
+
U39 H10 0.71650
|
229 |
+
C38 H6 0.71631
|
230 |
+
G275 R17 0.71624
|
231 |
+
U6 H6 0.71602
|
232 |
+
C274 R17 0.71602
|
233 |
+
A37 R435 0.71587
|
234 |
+
A8 R157 0.71582
|
235 |
+
G1 R295 0.71576
|
236 |
+
A270 R17 0.71541
|
237 |
+
A8 R174 0.71528
|
238 |
+
U35 R450 0.71475
|
239 |
+
G1 H6 0.71464
|
240 |
+
C34 H7 0.71439
|
241 |
+
U9 R422 0.71433
|
242 |
+
U166 R17 0.71415
|
243 |
+
U9 R424 0.71394
|
244 |
+
G36 R274 0.71380
|
245 |
+
U10 K31 0.71368
|
246 |
+
U35 R284 0.71344
|
247 |
+
A8 R718 0.71313
|
248 |
+
C38 R295 0.71305
|
249 |
+
C34 H9 0.71296
|
250 |
+
A8 R273 0.71281
|
251 |
+
G2 K31 0.71278
|
252 |
+
U7 R268 0.71255
|
253 |
+
A30 K31 0.71245
|
254 |
+
G95 R17 0.71245
|
255 |
+
U7 R413 0.71243
|
256 |
+
C273 R17 0.71210
|
257 |
+
C32 K31 0.71152
|
258 |
+
U39 H7 0.71128
|
259 |
+
U39 R424 0.71127
|
260 |
+
C123 R17 0.71125
|
261 |
+
A8 R181 0.71124
|
262 |
+
G36 R424 0.71123
|
263 |
+
U39 H9 0.71091
|
264 |
+
G36 R422 0.71068
|
265 |
+
U9 R274 0.71061
|
266 |
+
C33 H10 0.71047
|
267 |
+
A8 R166 0.71034
|
268 |
+
C33 R274 0.71021
|
269 |
+
A37 R450 0.71017
|
270 |
+
G2 R299 0.70961
|
271 |
+
U6 R424 0.70957
|
272 |
+
A30 R295 0.70955
|
273 |
+
U7 H8 0.70951
|
274 |
+
A27 R274 0.70919
|
275 |
+
A255 R17 0.70913
|
276 |
+
A27 H10 0.70895
|
277 |
+
A27 R424 0.70860
|
278 |
+
C34 R268 0.70840
|
279 |
+
G2 H5 0.70803
|
280 |
+
G36 H10 0.70787
|
281 |
+
U35 R272 0.70781
|
282 |
+
A154 R17 0.70779
|
283 |
+
C62 R17 0.70761
|
284 |
+
C55 R17 0.70729
|
285 |
+
C33 R424 0.70694
|
286 |
+
U10 H5 0.70665
|
287 |
+
U6 R422 0.70664
|
288 |
+
A26 R295 0.70652
|
289 |
+
U7 R157 0.70640
|
290 |
+
G54 R17 0.70638
|
291 |
+
A8 R435 0.70636
|
292 |
+
U7 R174 0.70636
|
293 |
+
A98 R17 0.70630
|
294 |
+
U6 R274 0.70621
|
295 |
+
U39 R422 0.70617
|
296 |
+
C125 R17 0.70606
|
297 |
+
C34 H8 0.70602
|
298 |
+
C28 H5 0.70588
|
299 |
+
A30 H6 0.70581
|
300 |
+
G36 H7 0.70579
|
301 |
+
C28 R299 0.70566
|
302 |
+
U35 R264 0.70560
|
303 |
+
A37 R284 0.70521
|
304 |
+
U35 R290 0.70492
|
305 |
+
U9 H10 0.70487
|
306 |
+
C117 R17 0.70451
|
307 |
+
A26 H6 0.70419
|
308 |
+
A27 H7 0.70414
|
309 |
+
U7 R273 0.70408
|
310 |
+
U156 R17 0.70408
|
311 |
+
C260 R17 0.70401
|
312 |
+
U6 H10 0.70393
|
313 |
+
C32 R295 0.70392
|
314 |
+
U39 R268 0.70387
|
315 |
+
U157 R17 0.70382
|
316 |
+
U35 R177 0.70363
|
317 |
+
U39 H8 0.70363
|
318 |
+
C33 H9 0.70360
|
319 |
+
U59 R17 0.70351
|
320 |
+
A27 R422 0.70344
|
321 |
+
C32 H6 0.70343
|
322 |
+
A99 R17 0.70337
|
323 |
+
U261 R17 0.70331
|
324 |
+
G96 R17 0.70329
|
325 |
+
U7 R718 0.70318
|
326 |
+
G129 R17 0.70318
|
327 |
+
G36 H9 0.70296
|
328 |
+
C33 H7 0.70292
|
329 |
+
G272 R17 0.70285
|
330 |
+
C38 R274 0.70272
|
331 |
+
A27 H9 0.70270
|
332 |
+
A110 R17 0.70270
|
333 |
+
U35 R265 0.70257
|
334 |
+
C33 R422 0.70249
|
335 |
+
U10 R295 0.70240
|
336 |
+
U7 R166 0.70156
|
337 |
+
U9 H7 0.70150
|
338 |
+
U7 R181 0.70127
|
339 |
+
G124 R17 0.70124
|
340 |
+
A37 R272 0.70119
|
341 |
+
G1 H10 0.70118
|
342 |
+
C38 H10 0.70072
|
343 |
+
C28 K31 0.70046
|
344 |
+
U280 R17 0.70043
|
345 |
+
G247 R17 0.69989
|
346 |
+
G268 R17 0.69960
|
347 |
+
C31 R299 0.69928
|
348 |
+
C34 R413 0.69913
|
349 |
+
U101 R17 0.69905
|
350 |
+
G36 R268 0.69892
|
351 |
+
U9 H9 0.69863
|
352 |
+
A37 R264 0.69861
|
353 |
+
C34 R174 0.69840
|
354 |
+
C31 H5 0.69836
|
355 |
+
A8 R450 0.69811
|
356 |
+
U35 R533 0.69801
|
357 |
+
C34 R157 0.69801
|
358 |
+
G1 R274 0.69794
|
359 |
+
U6 H9 0.69771
|
360 |
+
C33 R268 0.69748
|
361 |
+
G1 R424 0.69745
|
362 |
+
G36 H8 0.69745
|
363 |
+
A37 R290 0.69737
|
364 |
+
U39 R413 0.69721
|
365 |
+
U7 R435 0.69717
|
366 |
+
U203 R17 0.69700
|
367 |
+
G2 R295 0.69683
|
368 |
+
U35 R599 0.69674
|
369 |
+
C38 R424 0.69672
|
370 |
+
A16 R299 0.69634
|
371 |
+
C34 R273 0.69631
|
372 |
+
A37 R265 0.69628
|
373 |
+
C116 R17 0.69622
|
374 |
+
A41 H5 0.69614
|
375 |
+
U6 H7 0.69608
|
376 |
+
A27 H8 0.69574
|
377 |
+
A253 R17 0.69571
|
378 |
+
C34 R181 0.69564
|
379 |
+
A27 R268 0.69559
|
380 |
+
U163 R17 0.69558
|
381 |
+
C33 H8 0.69556
|
382 |
+
U9 R413 0.69533
|
383 |
+
C38 H7 0.69524
|
384 |
+
G1 H9 0.69524
|
385 |
+
C38 H9 0.69513
|
386 |
+
G271 R17 0.69472
|
387 |
+
C29 R299 0.69470
|
388 |
+
C97 R17 0.69462
|
389 |
+
A37 R177 0.69460
|
390 |
+
G164 R17 0.69453
|
391 |
+
G1 H7 0.69448
|
392 |
+
A16 K31 0.69425
|
393 |
+
C29 H5 0.69401
|
394 |
+
U35 R576 0.69376
|
395 |
+
G2 H6 0.69373
|
396 |
+
C34 R718 0.69339
|
397 |
+
U9 R268 0.69330
|
398 |
+
A11 R299 0.69328
|
399 |
+
G249 R17 0.69323
|
400 |
+
G282 R17 0.69297
|
401 |
+
U44 R299 0.69288
|
402 |
+
C34 R166 0.69284
|
403 |
+
A37 R533 0.69265
|
404 |
+
C28 R295 0.69257
|
405 |
+
U9 H8 0.69256
|
406 |
+
G1 R422 0.69252
|
407 |
+
A41 K31 0.69252
|
408 |
+
C38 R422 0.69207
|
409 |
+
A41 R299 0.69201
|
410 |
+
U10 H6 0.69183
|
411 |
+
U39 R174 0.69180
|
412 |
+
U44 H5 0.69169
|
413 |
+
U39 R273 0.69149
|
414 |
+
C28 H6 0.69129
|
415 |
+
A30 R424 0.69123
|
416 |
+
G36 R413 0.69115
|
417 |
+
A27 R413 0.69098
|
418 |
+
C31 K31 0.69096
|
419 |
+
A16 H5 0.69090
|
420 |
+
C58 R17 0.69089
|
421 |
+
G269 R17 0.69089
|
422 |
+
A202 R17 0.69080
|
423 |
+
G210 R17 0.69071
|
424 |
+
U9 R157 0.69063
|
425 |
+
U39 R181 0.69056
|
426 |
+
G3 K31 0.69052
|
427 |
+
U39 R157 0.69052
|
428 |
+
A37 R599 0.69052
|
429 |
+
C32 H10 0.69043
|
430 |
+
G36 R273 0.69041
|
431 |
+
A30 R274 0.69039
|
432 |
+
C51 R17 0.69028
|
433 |
+
A37 R576 0.69024
|
434 |
+
C5 R299 0.69021
|
435 |
+
G36 R157 0.69014
|
436 |
+
U6 R268 0.69006
|
437 |
+
U6 R413 0.69005
|
438 |
+
A8 R284 0.68991
|
439 |
+
A27 R174 0.68987
|
440 |
+
A26 R424 0.68980
|
441 |
+
U6 H8 0.68978
|
442 |
+
A11 K31 0.68977
|
443 |
+
U7 R450 0.68949
|
444 |
+
C5 K31 0.68938
|
445 |
+
C32 R274 0.68936
|
446 |
+
U44 K31 0.68920
|
447 |
+
A30 R422 0.68918
|
448 |
+
U167 R17 0.68915
|
449 |
+
A26 R274 0.68915
|
450 |
+
A26 H10 0.68915
|
451 |
+
C29 K31 0.68896
|
452 |
+
G36 R718 0.68890
|
453 |
+
G115 R17 0.68861
|
454 |
+
U9 R718 0.68859
|
455 |
+
U9 R174 0.68858
|
456 |
+
C211 R17 0.68839
|
457 |
+
G36 R174 0.68823
|
458 |
+
C33 R174 0.68819
|
459 |
+
A30 H10 0.68810
|
460 |
+
G3 R299 0.68804
|
461 |
+
C33 R413 0.68792
|
462 |
+
C38 H8 0.68789
|
463 |
+
A30 H7 0.68781
|
464 |
+
G1 H8 0.68766
|
465 |
+
C38 R268 0.68764
|
466 |
+
A27 R157 0.68756
|
467 |
+
A27 R181 0.68730
|
468 |
+
U14 R299 0.68723
|
469 |
+
C32 R424 0.68715
|
470 |
+
C34 R435 0.68684
|
471 |
+
G36 R181 0.68663
|
472 |
+
U9 R273 0.68643
|
473 |
+
A8 R290 0.68614
|
474 |
+
G61 R17 0.68601
|
475 |
+
G36 R166 0.68600
|
476 |
+
U6 R157 0.68559
|
477 |
+
C31 R295 0.68552
|
478 |
+
C4 K31 0.68542
|
479 |
+
U14 K31 0.68540
|
480 |
+
A30 H9 0.68539
|
481 |
+
U9 R181 0.68539
|
482 |
+
C33 R157 0.68533
|
483 |
+
U9 R166 0.68525
|
484 |
+
C246 R17 0.68509
|
485 |
+
U14 H5 0.68505
|
486 |
+
C100 R17 0.68500
|
487 |
+
A8 R272 0.68497
|
488 |
+
A41 R295 0.68487
|
489 |
+
C32 H9 0.68474
|
490 |
+
G209 R17 0.68466
|
491 |
+
U10 R422 0.68462
|
492 |
+
U39 R166 0.68459
|
493 |
+
A11 H5 0.68454
|
494 |
+
C33 R181 0.68449
|
495 |
+
U6 R174 0.68435
|
496 |
+
A16 R295 0.68432
|
497 |
+
C33 R273 0.68407
|
498 |
+
G3 H5 0.68397
|
499 |
+
C4 R299 0.68391
|
500 |
+
C31 H6 0.68389
|
501 |
+
A8 R177 0.68387
|
502 |
+
G264 R17 0.68386
|
503 |
+
C29 R295 0.68381
|
504 |
+
G49 R17 0.68377
|
505 |
+
G114 R17 0.68368
|
506 |
+
A42 H5 0.68356
|
507 |
+
A41 H6 0.68353
|
508 |
+
U6 R718 0.68344
|
509 |
+
C155 R17 0.68343
|
510 |
+
A27 R273 0.68340
|
511 |
+
C32 H7 0.68340
|
512 |
+
U10 R424 0.68327
|
513 |
+
A26 R422 0.68317
|
514 |
+
A131 R17 0.68312
|
515 |
+
A13 R299 0.68294
|
516 |
+
U39 R718 0.68293
|
517 |
+
A26 H9 0.68273
|
518 |
+
G1 R413 0.68258
|
519 |
+
U9 R435 0.68258
|
520 |
+
A26 H7 0.68249
|
521 |
+
C109 R17 0.68244
|
522 |
+
G111 R17 0.68244
|
523 |
+
U18 R299 0.68243
|
524 |
+
G40 H5 0.68211
|
525 |
+
A42 R299 0.68204
|
526 |
+
U6 R273 0.68203
|
527 |
+
A27 R166 0.68196
|
528 |
+
A42 K31 0.68186
|
529 |
+
C32 R422 0.68184
|
530 |
+
G1 R268 0.68184
|
531 |
+
C113 R17 0.68161
|
532 |
+
C281 R17 0.68156
|
533 |
+
C130 R17 0.68150
|
534 |
+
C29 H6 0.68121
|
535 |
+
A151 R17 0.68109
|
536 |
+
U6 R166 0.68093
|
537 |
+
C33 R166 0.68088
|
538 |
+
G36 R435 0.68084
|
539 |
+
A12 R299 0.68083
|
540 |
+
C5 H5 0.68079
|
541 |
+
C38 R413 0.68073
|
542 |
+
U7 R284 0.68070
|
543 |
+
A30 H8 0.68064
|
544 |
+
A8 R599 0.68041
|
545 |
+
A13 K31 0.68027
|
546 |
+
C254 R17 0.68000
|
547 |
+
G250 R17 0.67975
|
548 |
+
A11 R295 0.67963
|
549 |
+
A13 H5 0.67963
|
550 |
+
C33 R718 0.67962
|
551 |
+
G112 R17 0.67936
|
552 |
+
G2 H10 0.67927
|
553 |
+
A147 R17 0.67891
|
554 |
+
C34 R450 0.67874
|
555 |
+
G60 R17 0.67872
|
556 |
+
C158 R17 0.67852
|
557 |
+
U44 R295 0.67847
|
558 |
+
U6 R181 0.67847
|
559 |
+
G3 R295 0.67834
|
560 |
+
A27 R718 0.67816
|
561 |
+
A8 R264 0.67801
|
562 |
+
U10 R274 0.67791
|
563 |
+
C5 R295 0.67782
|
564 |
+
G50 R17 0.67772
|
565 |
+
C212 R17 0.67760
|
566 |
+
A12 K31 0.67741
|
567 |
+
C38 R273 0.67737
|
568 |
+
C4 H5 0.67735
|
569 |
+
G1 R157 0.67714
|
570 |
+
G2 R424 0.67700
|
571 |
+
C32 H8 0.67696
|
572 |
+
U6 R435 0.67696
|
573 |
+
G2 R274 0.67693
|
574 |
+
A30 R268 0.67690
|
575 |
+
G40 R299 0.67683
|
576 |
+
C32 R268 0.67674
|
577 |
+
G40 K31 0.67667
|
578 |
+
A16 H6 0.67658
|
579 |
+
U7 R290 0.67644
|
580 |
+
C38 R174 0.67631
|
581 |
+
U7 R272 0.67612
|
582 |
+
A8 R576 0.67598
|
583 |
+
G153 R17 0.67578
|
584 |
+
A26 R268 0.67576
|
585 |
+
A27 R435 0.67568
|
586 |
+
A241 R17 0.67566
|
587 |
+
A8 R533 0.67551
|
588 |
+
U35 H26 0.67546
|
589 |
+
C38 R157 0.67523
|
590 |
+
U39 R435 0.67522
|
591 |
+
C38 R181 0.67516
|
592 |
+
U44 H6 0.67511
|
593 |
+
A26 H8 0.67503
|
594 |
+
U18 K31 0.67495
|
595 |
+
C262 R17 0.67485
|
596 |
+
A42 R295 0.67477
|
597 |
+
G1 R174 0.67476
|
598 |
+
C263 R17 0.67471
|
599 |
+
A12 H5 0.67470
|
600 |
+
G2 H7 0.67467
|
601 |
+
U7 R177 0.67463
|
602 |
+
C4 R295 0.67445
|
603 |
+
C34 R284 0.67445
|
604 |
+
U39 R450 0.67443
|
605 |
+
A8 R265 0.67413
|
606 |
+
G2 H9 0.67411
|
607 |
+
G2 R422 0.67399
|
608 |
+
A150 R17 0.67399
|
609 |
+
G1 R181 0.67342
|
610 |
+
G204 R17 0.67340
|
611 |
+
C251 R17 0.67340
|
612 |
+
U18 H5 0.67339
|
613 |
+
U14 R295 0.67328
|
614 |
+
C208 R17 0.67320
|
615 |
+
C33 R435 0.67320
|
616 |
+
U35 R144 0.67314
|
617 |
+
C28 R274 0.67247
|
618 |
+
C28 R424 0.67245
|
619 |
+
C28 H10 0.67242
|
620 |
+
U10 H7 0.67222
|
621 |
+
G1 R273 0.67215
|
622 |
+
U35 R408 0.67201
|
623 |
+
U7 R599 0.67188
|
624 |
+
U10 H10 0.67184
|
625 |
+
G3 H6 0.67159
|
626 |
+
G36 R450 0.67154
|
627 |
+
C28 H7 0.67151
|
628 |
+
A30 R413 0.67145
|
629 |
+
U9 R450 0.67142
|
630 |
+
A42 H6 0.67117
|
631 |
+
A26 R413 0.67110
|
632 |
+
A30 R174 0.67108
|
633 |
+
C38 R166 0.67077
|
634 |
+
A26 R174 0.67071
|
635 |
+
A11 H6 0.67061
|
636 |
+
A172 R17 0.67031
|
637 |
+
G36 R284 0.67024
|
638 |
+
C28 R422 0.67012
|
639 |
+
U19 R299 0.67007
|
640 |
+
A30 R157 0.67004
|
641 |
+
C34 R272 0.66993
|
642 |
+
C159 R17 0.66975
|
643 |
+
C31 H10 0.66944
|
644 |
+
C38 R718 0.66940
|
645 |
+
C31 R274 0.66912
|
646 |
+
U14 H6 0.66911
|
647 |
+
A37 H26 0.66909
|
648 |
+
G1 R166 0.66893
|
649 |
+
A239 R17 0.66881
|
650 |
+
C32 R174 0.66873
|
651 |
+
C31 R424 0.66870
|
652 |
+
A13 R295 0.66843
|
653 |
+
C34 R264 0.66840
|
654 |
+
G40 H6 0.66825
|
655 |
+
G1 R718 0.66813
|
656 |
+
C32 R413 0.66808
|
657 |
+
C28 H9 0.66805
|
658 |
+
G252 R17 0.66799
|
659 |
+
U7 R264 0.66794
|
660 |
+
U6 R450 0.66794
|
661 |
+
U10 H9 0.66791
|
662 |
+
G102 R17 0.66783
|
663 |
+
A41 R274 0.66766
|
664 |
+
G2 H8 0.66764
|
665 |
+
C108 R17 0.66753
|
666 |
+
U9 R284 0.66742
|
667 |
+
C33 R450 0.66738
|
668 |
+
C5 H6 0.66737
|
669 |
+
A26 R157 0.66737
|
670 |
+
A26 R181 0.66724
|
671 |
+
U35 R260 0.66722
|
672 |
+
C34 R177 0.66718
|
673 |
+
U7 R576 0.66711
|
674 |
+
G152 R17 0.66688
|
675 |
+
A12 R295 0.66683
|
676 |
+
A30 R718 0.66682
|
677 |
+
A37 R144 0.66674
|
678 |
+
A30 R181 0.66670
|
679 |
+
G40 R295 0.66669
|
680 |
+
A30 R273 0.66622
|
681 |
+
C34 R290 0.66614
|
682 |
+
A201 R17 0.66610
|
683 |
+
U18 R295 0.66599
|
684 |
+
A41 H10 0.66599
|
685 |
+
C205 R17 0.66598
|
686 |
+
A30 R166 0.66594
|
687 |
+
U39 R284 0.66575
|
688 |
+
A27 R450 0.66575
|
689 |
+
C31 H7 0.66568
|
690 |
+
A41 H7 0.66565
|
691 |
+
U7 R533 0.66562
|
692 |
+
C31 H9 0.66559
|
693 |
+
C4 H6 0.66539
|
694 |
+
C34 R265 0.66529
|
695 |
+
G36 R272 0.66527
|
696 |
+
U146 R17 0.66521
|
697 |
+
C32 R157 0.66502
|
698 |
+
U7 R265 0.66495
|
699 |
+
G213 R17 0.66471
|
700 |
+
C31 R422 0.66471
|
701 |
+
A16 R424 0.66458
|
702 |
+
U9 R290 0.66427
|
703 |
+
C32 R181 0.66427
|
704 |
+
A26 R273 0.66408
|
705 |
+
U10 R413 0.66408
|
706 |
+
U44 R274 0.66407
|
707 |
+
C29 R424 0.66405
|
708 |
+
A13 H6 0.66398
|
709 |
+
A37 R408 0.66393
|
710 |
+
U136 R17 0.66392
|
711 |
+
C32 R273 0.66378
|
712 |
+
A26 R166 0.66378
|
713 |
+
U10 H8 0.66363
|
714 |
+
G36 R290 0.66362
|
715 |
+
A41 R424 0.66359
|
716 |
+
U39 R264 0.66337
|
717 |
+
A16 R422 0.66336
|
718 |
+
C29 H7 0.66321
|
719 |
+
C29 R274 0.66318
|
720 |
+
C28 H8 0.66312
|
721 |
+
U44 H10 0.66311
|
722 |
+
C29 R422 0.66298
|
723 |
+
A41 H9 0.66277
|
724 |
+
G36 R264 0.66277
|
725 |
+
C34 R533 0.66259
|
726 |
+
A11 R424 0.66254
|
727 |
+
G2 R413 0.66253
|
728 |
+
A11 R422 0.66248
|
729 |
+
U39 R272 0.66246
|
730 |
+
C245 R17 0.66218
|
731 |
+
C29 H10 0.66217
|
732 |
+
C17 R299 0.66211
|
733 |
+
U6 R284 0.66208
|
734 |
+
C38 R435 0.66200
|
735 |
+
U19 H5 0.66194
|
736 |
+
G1 R435 0.66178
|
737 |
+
A41 R422 0.66169
|
738 |
+
C32 R166 0.66146
|
739 |
+
G2 R268 0.66144
|
740 |
+
A107 R17 0.66142
|
741 |
+
U10 R268 0.66129
|
742 |
+
C34 R599 0.66113
|
743 |
+
U39 R265 0.66110
|
744 |
+
U19 K31 0.66089
|
745 |
+
U9 R272 0.66067
|
746 |
+
U10 R157 0.66053
|
747 |
+
G36 R265 0.66031
|
748 |
+
C33 R284 0.66028
|
749 |
+
U9 R177 0.66024
|
750 |
+
A8 H26 0.66023
|
751 |
+
A37 R260 0.66022
|
752 |
+
A12 H6 0.66019
|
753 |
+
A30 R435 0.66009
|
754 |
+
C38 R450 0.65997
|
755 |
+
G36 R177 0.65988
|
756 |
+
U10 R718 0.65977
|
757 |
+
G207 R17 0.65968
|
758 |
+
C32 R718 0.65964
|
759 |
+
C206 R17 0.65939
|
760 |
+
C148 R17 0.65939
|
761 |
+
C31 H8 0.65939
|
762 |
+
C29 H9 0.65931
|
763 |
+
C28 R268 0.65927
|
764 |
+
G1 R450 0.65916
|
765 |
+
A26 R718 0.65907
|
766 |
+
G15 R299 0.65903
|
767 |
+
C17 K31 0.65898
|
768 |
+
C5 R424 0.65887
|
769 |
+
C34 R576 0.65852
|
770 |
+
U39 R290 0.65848
|
771 |
+
U39 R533 0.65839
|
772 |
+
G15 K31 0.65838
|
773 |
+
A46 R299 0.65825
|
774 |
+
A41 H8 0.65818
|
775 |
+
A27 R264 0.65806
|
776 |
+
U18 H6 0.65796
|
777 |
+
C5 R422 0.65788
|
778 |
+
U10 R174 0.65772
|
779 |
+
G2 R157 0.65769
|
780 |
+
U44 R424 0.65765
|
781 |
+
G3 R424 0.65760
|
782 |
+
A16 H7 0.65755
|
783 |
+
A16 H10 0.65754
|
784 |
+
A27 R284 0.65749
|
785 |
+
C174 R17 0.65749
|
786 |
+
U35 R409 0.65746
|
787 |
+
U44 H9 0.65707
|
788 |
+
G160 R17 0.65706
|
789 |
+
A27 R177 0.65697
|
790 |
+
C175 R17 0.65696
|
791 |
+
A27 R290 0.65689
|
792 |
+
G3 R422 0.65686
|
793 |
+
U6 R290 0.65676
|
794 |
+
A26 R435 0.65669
|
795 |
+
C45 R299 0.65668
|
796 |
+
G162 R17 0.65665
|
797 |
+
U9 R599 0.65652
|
798 |
+
A42 R274 0.65652
|
799 |
+
C33 R272 0.65644
|
800 |
+
U39 R177 0.65639
|
801 |
+
U14 R424 0.65636
|
802 |
+
C31 R268 0.65632
|
803 |
+
U39 R576 0.65632
|
804 |
+
C45 H5 0.65622
|
805 |
+
A27 R272 0.65619
|
806 |
+
G3 H10 0.65619
|
807 |
+
G214 R17 0.65616
|
808 |
+
U10 R166 0.65613
|
809 |
+
G15 H5 0.65608
|
810 |
+
U9 R264 0.65608
|
811 |
+
A11 R274 0.65595
|
812 |
+
A16 R274 0.65588
|
813 |
+
A46 H5 0.65585
|
814 |
+
G3 R274 0.65566
|
815 |
+
U44 H7 0.65552
|
816 |
+
C240 R17 0.65546
|
817 |
+
U6 R272 0.65538
|
818 |
+
C33 R264 0.65535
|
819 |
+
C29 H8 0.65533
|
820 |
+
A8 R408 0.65530
|
821 |
+
C28 R413 0.65528
|
822 |
+
C17 H5 0.65528
|
823 |
+
U10 R273 0.65519
|
824 |
+
A41 R268 0.65517
|
825 |
+
C25 R299 0.65515
|
826 |
+
U35 R257 0.65510
|
827 |
+
G2 R174 0.65507
|
828 |
+
C149 R17 0.65506
|
829 |
+
U35 R671 0.65501
|
830 |
+
G36 R533 0.65498
|
831 |
+
A42 H10 0.65485
|
832 |
+
C5 R274 0.65471
|
833 |
+
U10 R181 0.65456
|
834 |
+
C33 R177 0.65449
|
835 |
+
G36 R599 0.65442
|
836 |
+
A27 R265 0.65438
|
837 |
+
C4 R422 0.65432
|
838 |
+
C4 R424 0.65426
|
839 |
+
G3 H7 0.65421
|
840 |
+
U6 R177 0.65419
|
841 |
+
A42 H7 0.65410
|
842 |
+
U39 R599 0.65404
|
843 |
+
C5 H10 0.65399
|
844 |
+
C45 K31 0.65391
|
845 |
+
C28 R174 0.65389
|
846 |
+
A46 K31 0.65387
|
847 |
+
U35 R405 0.65386
|
848 |
+
A16 H9 0.65380
|
849 |
+
C28 R157 0.65370
|
850 |
+
A217 R17 0.65351
|
851 |
+
U10 R435 0.65346
|
852 |
+
A42 R424 0.65343
|
853 |
+
C32 R435 0.65326
|
854 |
+
U14 H10 0.65315
|
855 |
+
A13 R424 0.65313
|
856 |
+
U44 R422 0.65311
|
857 |
+
G173 R17 0.65295
|
858 |
+
G2 R181 0.65277
|
859 |
+
C33 R265 0.65272
|
860 |
+
C176 R17 0.65265
|
861 |
+
U9 R265 0.65256
|
862 |
+
G40 R274 0.65249
|
863 |
+
U6 R599 0.65240
|
864 |
+
A11 H7 0.65238
|
865 |
+
G3 H9 0.65230
|
866 |
+
G36 R576 0.65211
|
867 |
+
C38 R284 0.65193
|
868 |
+
A42 H9 0.65187
|
869 |
+
U19 R295 0.65175
|
870 |
+
G40 H10 0.65173
|
871 |
+
G2 R273 0.65171
|
872 |
+
U7 H26 0.65167
|
873 |
+
C28 R181 0.65162
|
874 |
+
U35 R258 0.65156
|
875 |
+
A42 R422 0.65156
|
876 |
+
A11 H10 0.65154
|
877 |
+
U44 R268 0.65151
|
878 |
+
G161 R17 0.65149
|
879 |
+
A12 R424 0.65138
|
880 |
+
C33 R290 0.65125
|
881 |
+
U14 R422 0.65119
|
882 |
+
C33 R533 0.65083
|
883 |
+
A41 R413 0.65081
|
884 |
+
A27 R599 0.65072
|
885 |
+
A27 R533 0.65067
|
886 |
+
U9 R533 0.65060
|
887 |
+
G43 R299 0.65053
|
888 |
+
C4 R274 0.65052
|
889 |
+
A37 R671 0.65044
|
890 |
+
C4 H10 0.65034
|
891 |
+
C25 H5 0.65029
|
892 |
+
C5 H7 0.65024
|
893 |
+
A8 R144 0.65020
|
894 |
+
A27 R576 0.65012
|
895 |
+
C33 R599 0.65007
|
896 |
+
C215 R17 0.65000
|
897 |
+
C29 R268 0.65000
|
898 |
+
G43 H5 0.64999
|
899 |
+
G2 R718 0.64996
|
900 |
+
C5 H9 0.64987
|
901 |
+
A37 R409 0.64987
|
902 |
+
C31 R174 0.64975
|
903 |
+
U14 R274 0.64973
|
904 |
+
G1 R284 0.64959
|
905 |
+
U9 R576 0.64950
|
906 |
+
C38 R272 0.64949
|
907 |
+
G40 H7 0.64948
|
908 |
+
U14 H7 0.64942
|
909 |
+
C31 R413 0.64942
|
910 |
+
G132 R17 0.64941
|
911 |
+
A16 H8 0.64938
|
912 |
+
C168 R17 0.64936
|
913 |
+
U44 H8 0.64931
|
914 |
+
G43 K31 0.64920
|
915 |
+
G2 R166 0.64906
|
916 |
+
A37 R405 0.64895
|
917 |
+
A30 R450 0.64893
|
918 |
+
U18 R424 0.64892
|
919 |
+
C17 R295 0.64892
|
920 |
+
C4 H7 0.64882
|
921 |
+
G103 R17 0.64877
|
922 |
+
A11 H9 0.64876
|
923 |
+
C28 R273 0.64859
|
924 |
+
A218 R17 0.64858
|
925 |
+
A12 R422 0.64858
|
926 |
+
U14 H9 0.64854
|
927 |
+
A13 H10 0.64838
|
928 |
+
C38 R264 0.64828
|
929 |
+
A220 R17 0.64820
|
930 |
+
G135 R17 0.64810
|
931 |
+
A13 R422 0.64809
|
932 |
+
U35 R312 0.64803
|
933 |
+
U6 R264 0.64798
|
934 |
+
C25 K31 0.64791
|
935 |
+
G134 R17 0.64790
|
936 |
+
C137 R17 0.64778
|
937 |
+
A41 R157 0.64758
|
938 |
+
G40 H9 0.64754
|
939 |
+
C32 R450 0.64751
|
940 |
+
A30 R284 0.64749
|
941 |
+
C33 R576 0.64731
|
942 |
+
A42 H8 0.64723
|
943 |
+
G3 H8 0.64722
|
944 |
+
C31 R157 0.64721
|
945 |
+
C28 R166 0.64721
|
946 |
+
A26 R450 0.64713
|
947 |
+
U18 R422 0.64710
|
948 |
+
G133 R17 0.64706
|
949 |
+
C4 H9 0.64697
|
950 |
+
G1 R290 0.64695
|
951 |
+
G15 R295 0.64691
|
952 |
+
G40 R424 0.64685
|
953 |
+
A13 R274 0.64667
|
954 |
+
A37 R257 0.64648
|
955 |
+
U44 R413 0.64647
|
956 |
+
U6 R265 0.64646
|
957 |
+
A16 R268 0.64613
|
958 |
+
C38 R265 0.64600
|
959 |
+
C29 R413 0.64588
|
960 |
+
U6 R576 0.64563
|
961 |
+
U7 R408 0.64554
|
962 |
+
C38 R290 0.64553
|
963 |
+
A16 R413 0.64546
|
964 |
+
U19 H6 0.64539
|
965 |
+
G242 R17 0.64531
|
966 |
+
C31 R181 0.64518
|
967 |
+
C29 R157 0.64517
|
968 |
+
U35 R122 0.64506
|
969 |
+
C28 R718 0.64506
|
970 |
+
A13 H7 0.64495
|
971 |
+
C31 R273 0.64495
|
972 |
+
C29 R174 0.64478
|
973 |
+
A8 R260 0.64476
|
974 |
+
A11 H8 0.64469
|
975 |
+
A12 R274 0.64462
|
976 |
+
A41 R174 0.64454
|
977 |
+
A42 R268 0.64451
|
978 |
+
A13 H9 0.64444
|
979 |
+
G1 R272 0.64435
|
980 |
+
U6 R533 0.64431
|
981 |
+
G244 R17 0.64429
|
982 |
+
U35 K555 0.64417
|
983 |
+
C5 H8 0.64410
|
984 |
+
A16 R157 0.64403
|
985 |
+
C138 R17 0.64398
|
986 |
+
A46 R295 0.64386
|
987 |
+
C31 R166 0.64376
|
988 |
+
G40 R422 0.64359
|
989 |
+
G2 R435 0.64338
|
990 |
+
A41 R273 0.64334
|
991 |
+
C38 R533 0.64333
|
992 |
+
A12 H10 0.64318
|
993 |
+
A11 R413 0.64316
|
994 |
+
C38 R177 0.64302
|
995 |
+
C31 R718 0.64275
|
996 |
+
C243 R17 0.64273
|
997 |
+
C28 R435 0.64270
|
998 |
+
A30 R264 0.64235
|
999 |
+
G1 R264 0.64234
|
1000 |
+
U14 H8 0.64227
|
1001 |
+
A16 R174 0.64222
|
1002 |
+
C4 H8 0.64221
|
1003 |
+
U24 R299 0.64218
|
1004 |
+
A41 R181 0.64217
|
1005 |
+
G1 R576 0.64217
|
1006 |
+
A37 R258 0.64214
|
1007 |
+
A8 R671 0.64211
|
1008 |
+
G40 H8 0.64207
|
1009 |
+
A12 H7 0.64204
|
1010 |
+
G3 R413 0.64204
|
1011 |
+
C29 R181 0.64174
|
1012 |
+
A30 R265 0.64171
|
1013 |
+
A37 R312 0.64164
|
1014 |
+
G15 H6 0.64163
|
1015 |
+
U18 R274 0.64158
|
1016 |
+
C38 R576 0.64152
|
1017 |
+
C17 H6 0.64149
|
1018 |
+
C34 H26 0.64146
|
1019 |
+
C216 R17 0.64135
|
1020 |
+
U18 H10 0.64126
|
1021 |
+
G1 R177 0.64123
|
1022 |
+
C45 R295 0.64115
|
1023 |
+
G1 R599 0.64105
|
1024 |
+
U44 R157 0.64093
|
1025 |
+
U7 R144 0.64088
|
1026 |
+
G177 R17 0.64087
|
example/outputs/predict_scores.csv
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pdbid contact_score
|
2 |
+
8DMB_W.8DMB_P 0.29469
|
3 |
+
pdbid contact_score
|
4 |
+
8DMB_W.8DMB_P 0.29469
|
5 |
+
pdbid contact_score
|
6 |
+
8DMB_W.8DMB_P 712.49723
|
7 |
+
pdbid contact_score
|
8 |
+
8DMB_W.8DMB_P 712.49723
|
9 |
+
pdbid contact_score
|
10 |
+
8DMB_W.8DMB_P 712.49723
|
11 |
+
pdbid contact_score
|
12 |
+
8DMB_W.8DMB_P 712.49723
|
13 |
+
pdbid contact_score
|
14 |
+
8DMB_W.8DMB_P 6.98915
|
15 |
+
pdbid contact_score
|
16 |
+
8DMB_W.8DMB_P 6.98915
|
17 |
+
pdbid contact_score
|
18 |
+
8DMB_W.8DMB_P 6.98915
|
19 |
+
pdbid contact_score
|
20 |
+
8DMB_W.8DMB_P 712.49723
|
predict.py
ADDED
@@ -0,0 +1,318 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
# Created by: [email protected]
|
4 |
+
# des : evaluate RPcontact
|
5 |
+
import glob
|
6 |
+
import pickle
|
7 |
+
import random
|
8 |
+
import re
|
9 |
+
from argparse import ArgumentParser
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from Bio import SeqIO
|
14 |
+
from sklearn.preprocessing import OneHotEncoder
|
15 |
+
import numpy as np
|
16 |
+
import os
|
17 |
+
import pandas as pd
|
18 |
+
class bcolors:
|
19 |
+
RED = "\033[1;31m"
|
20 |
+
BLUE = "\033[1;34m"
|
21 |
+
CYAN = "\033[1;36m"
|
22 |
+
GREEN = "\033[0;32m"
|
23 |
+
RESET = "\033[0;0m"
|
24 |
+
BOLD = "\033[;1m"
|
25 |
+
REVERSE = "\033[;7m"
|
26 |
+
|
27 |
+
|
28 |
+
def check_path(dirout,file=False):
|
29 |
+
if file:dirout = dirout.rsplit('/',1)[0]
|
30 |
+
try:
|
31 |
+
if not os.path.exists(dirout):
|
32 |
+
print('make dir '+dirout)
|
33 |
+
os.makedirs(dirout)
|
34 |
+
except:
|
35 |
+
print(f'{dirout} have been made by other process')
|
36 |
+
|
37 |
+
def load_label_pred(fin_label,fin_pred):
|
38 |
+
with open(fin_label, 'rb') as f:
|
39 |
+
df_label = pickle.load(f)
|
40 |
+
df_label = df_label.squeeze()
|
41 |
+
df_pred = pd.read_table(fin_pred, comment='#', index_col=[0])
|
42 |
+
if type(df_label) == pd.DataFrame:
|
43 |
+
df_pred.index = df_label.index
|
44 |
+
df_pred.columns = df_label.columns
|
45 |
+
# 删除包含空值的行
|
46 |
+
df_label = df_label.dropna(how='all')
|
47 |
+
|
48 |
+
# 删除包含空值的列
|
49 |
+
df_label = df_label.dropna(axis=1, how='all')
|
50 |
+
df_pred = df_pred.loc[df_label.index, df_label.columns]
|
51 |
+
keep=0
|
52 |
+
if df_pred.columns[0].count('.')==2:
|
53 |
+
keep=-1
|
54 |
+
df_pred.columns = [e.split('.')[keep] + str(i+1) for i, e in enumerate(df_pred.columns)]
|
55 |
+
df_pred.index = [e.split('.')[keep] + str(i+1) for i, e in enumerate(df_pred.index)]
|
56 |
+
return df_label,df_pred
|
57 |
+
def doSavePredict(_id,seq,predict,fout,des):
|
58 |
+
# seq = {'protein': 'KKGVGSTKNGRDSEAKRLGAKRADGQFVTGGSILYRQRGTKIYPGENVGRGGDDTLFAKIDGTVKFERFGRDRKKVSVYPV',
|
59 |
+
# 'rna': 'GGGGCCUUAGCUCAGGGGAGAGCGCCUGCUUUGCACGCAGGAGGCAGCGGUUCGAUCCCGCUAGGCUCCACCA'}
|
60 |
+
check_path(fout)
|
61 |
+
df = pd.DataFrame(predict)
|
62 |
+
if not seq:df.to_csv(fout+ f'{_id}.txt',sep='\t',mode='w',float_format='%.5f')
|
63 |
+
else:
|
64 |
+
df.columns = list(seq['protein'])
|
65 |
+
df.index = list(seq['rna'])
|
66 |
+
with open(fout+ f'{_id}.txt','w') as f:
|
67 |
+
f.write(f'#{des}\n')
|
68 |
+
f.write(f"# row =rna:{seq['rna']}\n")
|
69 |
+
f.write(f"# col=protein:{seq['protein']}\n")
|
70 |
+
# df.to_csv(fout+ f'{_id}.txt',sep='\t',mode='a',float_format='%.3f',index=None,header=None)
|
71 |
+
df.to_csv(fout+ f'{_id}.txt',sep='\t',mode='a',float_format='%.5f')
|
72 |
+
|
73 |
+
df.columns = [f'{elem}{index+1}' for index,elem in enumerate(seq['protein'])]
|
74 |
+
df.index = [f'{elem}{index+1}' for index,elem in enumerate(seq['rna'])]
|
75 |
+
df = get_top_l_triplets(df, sum(df.shape))
|
76 |
+
df.to_csv(fout+ f'{_id}_topL.txt',sep='\t',mode='w',float_format='%.5f',index=False)
|
77 |
+
|
78 |
+
|
79 |
+
|
80 |
+
def get_top_l_triplets(df_pred, L):
|
81 |
+
"""
|
82 |
+
从Pandas DataFrame矩阵中提取值最大的前L个三元组。
|
83 |
+
|
84 |
+
参数:
|
85 |
+
- matrix_df: Pandas DataFrame,表示接触矩阵。
|
86 |
+
- L: int,要提取的三元组的数量。
|
87 |
+
|
88 |
+
返回:
|
89 |
+
- top_l_triplets: 列表,包含前L个三元组,每个三元组格式为(row_index, col_index, value)。
|
90 |
+
"""
|
91 |
+
df = df_pred.stack().reset_index()
|
92 |
+
df.columns = ['rna', 'protein', 'pred']
|
93 |
+
df = df.sort_values(by='pred', ascending=False).head(L)
|
94 |
+
return df
|
95 |
+
|
96 |
+
def doSavePredict_single(_id,seq,predict_rsa,fout,des,pred_asa=None):
|
97 |
+
check_path(fout)
|
98 |
+
BASES = 'AUCG'
|
99 |
+
asa_std = [400, 350, 350, 400]
|
100 |
+
dict_rnam1_ASA = dict(zip(BASES, asa_std))
|
101 |
+
sequence = re.sub(r"[T]", "U", ''.join(seq))
|
102 |
+
sequence = re.sub(r"[^AGCU]", BASES[random.randint(0, 3)], sequence) # 其他字符随机变换以取得对目标的预测
|
103 |
+
ASA_scale = np.array([dict_rnam1_ASA[i] for i in sequence])
|
104 |
+
|
105 |
+
if pred_asa is None:
|
106 |
+
pred_asa = np.multiply(predict_rsa, ASA_scale).T
|
107 |
+
else:
|
108 |
+
predict_rsa = pred_asa/ASA_scale
|
109 |
+
col1 = np.array([i + 1 for i, I in enumerate(seq)])[None, :]
|
110 |
+
col2 = np.array([I for i, I in enumerate(seq)])[None, :]
|
111 |
+
col3 = pred_asa
|
112 |
+
col4 = predict_rsa
|
113 |
+
if len(col3[col3 == 0]):
|
114 |
+
exit(f'error in predict\t {_id},{seq}')
|
115 |
+
temp = np.vstack((np.char.mod('%d', col1), col2, np.char.mod('%.2f', col3), np.char.mod('%.3f', col4))).T
|
116 |
+
if fout:np.savetxt(fout + f'{_id}.txt', (temp), delimiter='\t\t', fmt="%s",
|
117 |
+
header=f'#{des}',
|
118 |
+
comments='')
|
119 |
+
|
120 |
+
return pred_asa,predict_rsa
|
121 |
+
|
122 |
+
def one_hot_encode(sequences,alpha='ACGU'):
|
123 |
+
print(sequences)
|
124 |
+
sequences_arry = np.array(list(sequences)).reshape(-1, 1)
|
125 |
+
lable = np.array(list(alpha)).reshape(-1, 1)
|
126 |
+
enc = OneHotEncoder(handle_unknown='ignore')
|
127 |
+
enc.fit(lable)
|
128 |
+
seq_encode = enc.transform(sequences_arry).toarray()
|
129 |
+
# print(seq_encode.shape)
|
130 |
+
return (seq_encode)
|
131 |
+
|
132 |
+
def get_bin_pred(df_pred,threshold):
|
133 |
+
bin_pred = df_pred.values >= threshold
|
134 |
+
bin_pred = bin_pred.astype(int)
|
135 |
+
return bin_pred
|
136 |
+
|
137 |
+
def seed_everything(seed=2022):
|
138 |
+
print('seed_everything to ',seed)
|
139 |
+
random.seed(seed)
|
140 |
+
os.environ['PYTHONHASHSEED'] = str(seed)
|
141 |
+
np.random.seed(seed)
|
142 |
+
torch.manual_seed(seed) # 程序每次运行结果一致,但是程序中多次生成随机数每次不一致 # https://blog.csdn.net/qq_42951560/article/details/112174334
|
143 |
+
torch.cuda.manual_seed(seed)
|
144 |
+
torch.backends.cudnn.deterministic = True
|
145 |
+
torch.backends.cudnn.benchmark = False # minbatch的长度一直在变化,这个优化比较浪费时间
|
146 |
+
|
147 |
+
|
148 |
+
def contact_partner_constrained(prob_matrix, colmax=12, rowmax=24):
|
149 |
+
"""Apply contact partner constraints to probability matrix"""
|
150 |
+
row_max_indices = np.argsort(-prob_matrix, axis=1)[:, :rowmax]
|
151 |
+
row_max_mask = np.zeros_like(prob_matrix)
|
152 |
+
row_max_mask[np.arange(prob_matrix.shape[0])[:, np.newaxis], row_max_indices] = 1
|
153 |
+
|
154 |
+
col_max_indices = np.argsort(-prob_matrix, axis=0)[:colmax, :]
|
155 |
+
col_max_mask = np.zeros_like(prob_matrix)
|
156 |
+
col_max_mask[col_max_indices, np.arange(prob_matrix.shape[1])] = 1
|
157 |
+
|
158 |
+
mask = np.logical_and(row_max_mask, col_max_mask).astype(np.float32)
|
159 |
+
prob_matrix = np.where(mask == 1, prob_matrix, 0)
|
160 |
+
return prob_matrix
|
161 |
+
def getParam():
|
162 |
+
parser = ArgumentParser()
|
163 |
+
# data
|
164 |
+
parser.add_argument('--rootdir', default='',
|
165 |
+
type=str)
|
166 |
+
parser.add_argument('--fasta', default='./example/inputs/8DMB_W.8DMB_P.fasta',
|
167 |
+
type=str)
|
168 |
+
parser.add_argument('--out', default='./example/outputs/',
|
169 |
+
type=str)
|
170 |
+
parser.add_argument('--ffeat', default='./example/inputs/{pdbid}.pickle',
|
171 |
+
type=str)
|
172 |
+
parser.add_argument('--fmodel', default='./weight/model_roc_0_38=0.845.pt',
|
173 |
+
type=str)
|
174 |
+
parser.add_argument('--device', default='cpu',
|
175 |
+
type=str)
|
176 |
+
parser.add_argument('--draw',action='store_true',default=True)
|
177 |
+
parser.add_argument('--constrained',action='store_true',default=True)
|
178 |
+
args = parser.parse_args()
|
179 |
+
return args
|
180 |
+
if __name__ == '__main__':
|
181 |
+
args = getParam()
|
182 |
+
rootdir = args.rootdir
|
183 |
+
fasta = args.fasta
|
184 |
+
ffeat = args.ffeat
|
185 |
+
fmodel = args.fmodel
|
186 |
+
device = args.device
|
187 |
+
out = args.out
|
188 |
+
draw = args.draw
|
189 |
+
check_path(out)
|
190 |
+
|
191 |
+
# pdbid = fasta.rsplit('/',1)[0].split('.')[0]
|
192 |
+
seed_everything(seed=2022)
|
193 |
+
|
194 |
+
models = [(model_path,torch.load(model_path, map_location=torch.device(device))) for model_path in glob.glob(fmodel)]
|
195 |
+
# models = [(model_path,torch.load(model_path, map_location=torch.device(device))) for model_path in glob.glob(fmodel)]
|
196 |
+
print('loading existed model', fmodel)
|
197 |
+
with torch.no_grad():
|
198 |
+
for pdbid,seq in [(record.id,record.seq) for record in SeqIO.parse(fasta,'fasta')]:
|
199 |
+
rnaid,proid= pdbid.split('.')
|
200 |
+
rnaseq,proseq= seq.split('.')
|
201 |
+
|
202 |
+
with open(ffeat.format_map({'pdbid':rnaid}),'rb') as f:
|
203 |
+
rna_emb = pickle.load(f)
|
204 |
+
with open(ffeat.format_map({'pdbid':proid}),'rb') as f:
|
205 |
+
pro_emb = pickle.load(f)
|
206 |
+
|
207 |
+
rna_oh = one_hot_encode(rnaseq, alpha='ACGU')
|
208 |
+
pro_oh = one_hot_encode(proseq, alpha='GAVLIFWYDNEKQMSTCPHR')
|
209 |
+
|
210 |
+
# mask = np.ones((emb.shape[0],1)) # mask missing nt when evaluate the model
|
211 |
+
x_train = np.concatenate([rna_oh,rna_emb],axis=1)
|
212 |
+
x_train = np.expand_dims(x_train,0)
|
213 |
+
x_train = torch.from_numpy(x_train).transpose(-1,-2)
|
214 |
+
x_train = x_train.to(device, dtype=torch.float)
|
215 |
+
x_rna = x_train
|
216 |
+
|
217 |
+
x_train = np.concatenate([pro_oh, pro_emb], axis=1)
|
218 |
+
x_train = np.expand_dims(x_train, 0)
|
219 |
+
x_train = torch.from_numpy(x_train).transpose(-1, -2)
|
220 |
+
x_train = x_train.to(device, dtype=torch.float)
|
221 |
+
x_pro = x_train
|
222 |
+
|
223 |
+
print('input data shape for rna and protein:',x_rna.shape,x_pro.shape)
|
224 |
+
|
225 |
+
x_rna = x_rna.to(device, dtype=torch.float32)
|
226 |
+
x_pro = x_pro.to(device, dtype=torch.float32)
|
227 |
+
|
228 |
+
|
229 |
+
###########
|
230 |
+
|
231 |
+
predict_scores = []
|
232 |
+
|
233 |
+
#######
|
234 |
+
for i,(model_path,model) in enumerate(models):
|
235 |
+
model.eval()
|
236 |
+
outputs = model(x_pro, x_rna) # [1, 299, 74, 1]
|
237 |
+
# print('outputs,',outputs.device)
|
238 |
+
outputs = torch.squeeze(outputs, -1)
|
239 |
+
outputs = outputs.permute(0, 2, 1)
|
240 |
+
|
241 |
+
df_pred = outputs[0].cpu().detach().numpy()
|
242 |
+
|
243 |
+
# Apply constraints and normalization
|
244 |
+
if args.constrained:contact_matrix = contact_partner_constrained(df_pred)
|
245 |
+
contact_matrix = (contact_matrix - contact_matrix.min()) / (
|
246 |
+
contact_matrix.max() - contact_matrix.min() + 1e-8)
|
247 |
+
|
248 |
+
# seq = data._seq[pdbid] if pdbid in data._seq else None
|
249 |
+
des = f'predict by {__file__}\n#{model_path}'
|
250 |
+
doSavePredict(pdbid, {'rna':rnaseq,'protein':proseq}, df_pred,
|
251 |
+
out,
|
252 |
+
des
|
253 |
+
)
|
254 |
+
|
255 |
+
tmp = df_pred.flatten()
|
256 |
+
tmp.sort()
|
257 |
+
score = sum(tmp[::-1][:sum(df_pred.shape)])
|
258 |
+
predict_scores.append((pdbid, score))
|
259 |
+
print('pdbid',pdbid,score) # 这个score是否和label中contact的个数有correlation?
|
260 |
+
|
261 |
+
if draw:
|
262 |
+
plt.figure(figsize=(20, 15))
|
263 |
+
top = sum(df_pred.shape)
|
264 |
+
df_pred = pd.DataFrame(df_pred)
|
265 |
+
threshold = df_pred.stack().nlargest(top).iloc[-1]
|
266 |
+
bin_pred = get_bin_pred(df_pred,threshold=threshold)
|
267 |
+
|
268 |
+
import seaborn as sns
|
269 |
+
sns.heatmap(df_pred,mask=bin_pred,cbar_kws={"shrink": 0.5},cmap='coolwarm',vmin=0,vmax=1)
|
270 |
+
plt.title(f'Predicted contact map of {pdbid}\nPredidcted by RPcontact, top L=r+p')
|
271 |
+
plt.xlabel(proid)
|
272 |
+
plt.ylabel(rnaid)
|
273 |
+
handles, labels = plt.gca().get_legend_handles_labels()
|
274 |
+
|
275 |
+
plt.legend(handles, labels, bbox_to_anchor=(1.05, 1), loc='upper left', ncol=1, borderaxespad=1,
|
276 |
+
frameon=False)
|
277 |
+
# 设置坐标轴的相同缩放
|
278 |
+
ax = plt.gca()
|
279 |
+
ax.set_aspect('equal')
|
280 |
+
plt.tight_layout()
|
281 |
+
plt.savefig(f'{out}/{pdbid}_{i}_prob.png',dpi=300)
|
282 |
+
plt.show()
|
283 |
+
|
284 |
+
plt.clf()
|
285 |
+
ax = plt.gca()
|
286 |
+
tp = \
|
287 |
+
ax.plot(*np.where(bin_pred.T==1), ".", c='r',markersize=1, label='Predicted contact')[
|
288 |
+
0]
|
289 |
+
tp.set_markerfacecolor('w')
|
290 |
+
tp.set_markeredgecolor('r')
|
291 |
+
h,w = bin_pred.shape
|
292 |
+
plt.xlim([0,w])
|
293 |
+
plt.ylim([0,h])
|
294 |
+
plt.title(f'Predicted contact map of {pdbid}\nPredidcted by RPcontact, top L=r+p')
|
295 |
+
plt.xlabel(proid)
|
296 |
+
plt.ylabel(rnaid)
|
297 |
+
handles, labels = plt.gca().get_legend_handles_labels()
|
298 |
+
|
299 |
+
plt.legend(handles, labels, bbox_to_anchor=(1.05, 1), loc='upper left', ncol=1, borderaxespad=1,
|
300 |
+
frameon=False)
|
301 |
+
|
302 |
+
# 设置坐标轴的相同缩放
|
303 |
+
ax.set_aspect('equal')
|
304 |
+
plt.tight_layout()
|
305 |
+
plt.savefig(f'{out}/{pdbid}_{i}_binary.png',dpi=300)
|
306 |
+
plt.show()
|
307 |
+
|
308 |
+
|
309 |
+
print(f'predict {pdbid} with {len(seq)} nts')
|
310 |
+
|
311 |
+
df = pd.DataFrame(predict_scores, columns=['pdbid', 'contact_score'])
|
312 |
+
df.to_csv(args.out + '/predict_scores.csv',index=False, sep='\t', mode='a', float_format='%.5f')
|
313 |
+
|
314 |
+
|
315 |
+
|
316 |
+
|
317 |
+
|
318 |
+
|
predict_batch.py
ADDED
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
# Created by: [email protected]
|
4 |
+
# des : evaluate RPcontact
|
5 |
+
import glob
|
6 |
+
import pickle
|
7 |
+
import random
|
8 |
+
import re
|
9 |
+
from argparse import ArgumentParser
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
|
12 |
+
import torch
|
13 |
+
from Bio import SeqIO
|
14 |
+
from sklearn.preprocessing import OneHotEncoder
|
15 |
+
import numpy as np
|
16 |
+
import os
|
17 |
+
import pandas as pd
|
18 |
+
class bcolors:
|
19 |
+
RED = "\033[1;31m"
|
20 |
+
BLUE = "\033[1;34m"
|
21 |
+
CYAN = "\033[1;36m"
|
22 |
+
GREEN = "\033[0;32m"
|
23 |
+
RESET = "\033[0;0m"
|
24 |
+
BOLD = "\033[;1m"
|
25 |
+
REVERSE = "\033[;7m"
|
26 |
+
|
27 |
+
|
28 |
+
def check_path(dirout,file=False):
|
29 |
+
if file:dirout = dirout.rsplit('/',1)[0]
|
30 |
+
try:
|
31 |
+
if not os.path.exists(dirout):
|
32 |
+
print('make dir '+dirout)
|
33 |
+
os.makedirs(dirout)
|
34 |
+
except:
|
35 |
+
print(f'{dirout} have been made by other process')
|
36 |
+
|
37 |
+
def load_label_pred(fin_label,fin_pred):
|
38 |
+
with open(fin_label, 'rb') as f:
|
39 |
+
df_label = pickle.load(f)
|
40 |
+
df_label = df_label.squeeze()
|
41 |
+
df_pred = pd.read_table(fin_pred, comment='#', index_col=[0])
|
42 |
+
if type(df_label) == pd.DataFrame:
|
43 |
+
df_pred.index = df_label.index
|
44 |
+
df_pred.columns = df_label.columns
|
45 |
+
# 删除包含空值的行
|
46 |
+
df_label = df_label.dropna(how='all')
|
47 |
+
|
48 |
+
# 删除包含空值的列
|
49 |
+
df_label = df_label.dropna(axis=1, how='all')
|
50 |
+
df_pred = df_pred.loc[df_label.index, df_label.columns]
|
51 |
+
keep=0
|
52 |
+
if df_pred.columns[0].count('.')==2:
|
53 |
+
keep=-1
|
54 |
+
df_pred.columns = [e.split('.')[keep] + str(i+1) for i, e in enumerate(df_pred.columns)]
|
55 |
+
df_pred.index = [e.split('.')[keep] + str(i+1) for i, e in enumerate(df_pred.index)]
|
56 |
+
return df_label,df_pred
|
57 |
+
def doSavePredict(_id,seq,predict,fout,des):
|
58 |
+
# seq = {'protein': 'KKGVGSTKNGRDSEAKRLGAKRADGQFVTGGSILYRQRGTKIYPGENVGRGGDDTLFAKIDGTVKFERFGRDRKKVSVYPV',
|
59 |
+
# 'rna': 'GGGGCCUUAGCUCAGGGGAGAGCGCCUGCUUUGCACGCAGGAGGCAGCGGUUCGAUCCCGCUAGGCUCCACCA'}
|
60 |
+
check_path(fout)
|
61 |
+
df = pd.DataFrame(predict)
|
62 |
+
if not seq:df.to_csv(fout+ f'{_id}.txt',sep='\t',mode='w',float_format='%.5f')
|
63 |
+
else:
|
64 |
+
df.columns = [f'{elem}{index+1}' for index,elem in enumerate(seq['protein'])]
|
65 |
+
df.index = [f'{elem}{index+1}' for index,elem in enumerate(seq['rna'])]
|
66 |
+
with open(fout+ f'{_id}.txt','w') as f:
|
67 |
+
f.write(f'#{des}\n')
|
68 |
+
f.write(f"# row =rna:{seq['rna']}\n")
|
69 |
+
f.write(f"# col=protein:{seq['protein']}\n")
|
70 |
+
# df.to_csv(fout+ f'{_id}.txt',sep='\t',mode='a',float_format='%.3f',index=None,header=None)
|
71 |
+
df.to_csv(fout+ f'{_id}.txt',sep='\t',mode='a',float_format='%.5f')
|
72 |
+
|
73 |
+
df = get_top_l_triplets(df, sum(df.shape))
|
74 |
+
df.to_csv(fout+ f'{_id}_topL.txt',sep='\t',mode='w',float_format='%.5f',index=False)
|
75 |
+
|
76 |
+
|
77 |
+
|
78 |
+
def get_top_l_triplets(df_pred, L):
|
79 |
+
"""
|
80 |
+
从Pandas DataFrame矩阵中提取值最大的前L个三元组。
|
81 |
+
|
82 |
+
参数:
|
83 |
+
- matrix_df: Pandas DataFrame,表示接触矩阵。
|
84 |
+
- L: int,要提取的三元组的数量。
|
85 |
+
|
86 |
+
返回:
|
87 |
+
- top_l_triplets: 列表,包含前L个三元组,每个三元组格式为(row_index, col_index, value)。
|
88 |
+
"""
|
89 |
+
df = df_pred.stack().reset_index()
|
90 |
+
df.columns = ['rna', 'protein', 'pred']
|
91 |
+
df = df.sort_values(by='pred', ascending=False).head(L)
|
92 |
+
return df
|
93 |
+
|
94 |
+
def doSavePredict_single(_id,seq,predict_rsa,fout,des,pred_asa=None):
|
95 |
+
check_path(fout)
|
96 |
+
BASES = 'AUCG'
|
97 |
+
asa_std = [400, 350, 350, 400]
|
98 |
+
dict_rnam1_ASA = dict(zip(BASES, asa_std))
|
99 |
+
sequence = re.sub(r"[T]", "U", ''.join(seq))
|
100 |
+
sequence = re.sub(r"[^AGCU]", BASES[random.randint(0, 3)], sequence) # 其他字符随机变换以取得对目标的预测
|
101 |
+
ASA_scale = np.array([dict_rnam1_ASA[i] for i in sequence])
|
102 |
+
|
103 |
+
if pred_asa is None:
|
104 |
+
pred_asa = np.multiply(predict_rsa, ASA_scale).T
|
105 |
+
else:
|
106 |
+
predict_rsa = pred_asa/ASA_scale
|
107 |
+
col1 = np.array([i + 1 for i, I in enumerate(seq)])[None, :]
|
108 |
+
col2 = np.array([I for i, I in enumerate(seq)])[None, :]
|
109 |
+
col3 = pred_asa
|
110 |
+
col4 = predict_rsa
|
111 |
+
if len(col3[col3 == 0]):
|
112 |
+
exit(f'error in predict\t {_id},{seq}')
|
113 |
+
temp = np.vstack((np.char.mod('%d', col1), col2, np.char.mod('%.2f', col3), np.char.mod('%.3f', col4))).T
|
114 |
+
if fout:np.savetxt(fout + f'{_id}.txt', (temp), delimiter='\t\t', fmt="%s",
|
115 |
+
header=f'#{des}',
|
116 |
+
comments='')
|
117 |
+
|
118 |
+
return pred_asa,predict_rsa
|
119 |
+
|
120 |
+
def one_hot_encode(sequences,alpha='ACGU'):
|
121 |
+
# print(sequences)
|
122 |
+
sequences_arry = np.array(list(sequences)).reshape(-1, 1)
|
123 |
+
lable = np.array(list(alpha)).reshape(-1, 1)
|
124 |
+
enc = OneHotEncoder(handle_unknown='ignore')
|
125 |
+
enc.fit(lable)
|
126 |
+
seq_encode = enc.transform(sequences_arry).toarray()
|
127 |
+
# print(seq_encode.shape)
|
128 |
+
return (seq_encode)
|
129 |
+
|
130 |
+
def get_bin_pred(df_pred,threshold):
|
131 |
+
bin_pred = df_pred.values >= threshold
|
132 |
+
bin_pred = bin_pred.astype(int)
|
133 |
+
return bin_pred
|
134 |
+
|
135 |
+
def seed_everything(seed=2022):
|
136 |
+
print('seed_everything to ',seed)
|
137 |
+
random.seed(seed)
|
138 |
+
os.environ['PYTHONHASHSEED'] = str(seed)
|
139 |
+
np.random.seed(seed)
|
140 |
+
torch.manual_seed(seed) # 程序每次运行结果一致,但是程序中多次生成随机数每次不一致 # https://blog.csdn.net/qq_42951560/article/details/112174334
|
141 |
+
torch.cuda.manual_seed(seed)
|
142 |
+
torch.backends.cudnn.deterministic = True
|
143 |
+
torch.backends.cudnn.benchmark = False # minbatch的长度一直在变化,这个优化比较浪费时间
|
144 |
+
def getParam():
|
145 |
+
parser = ArgumentParser()
|
146 |
+
# data
|
147 |
+
parser.add_argument('--rootdir', default='',
|
148 |
+
type=str)
|
149 |
+
parser.add_argument('--rna_fasta', default='./example/inputs_batch/rna.fasta',
|
150 |
+
type=str)
|
151 |
+
|
152 |
+
parser.add_argument('--pro_fasta', default='./example/inputs_batch/protein.fasta',
|
153 |
+
type=str)
|
154 |
+
|
155 |
+
parser.add_argument('--csv', default='./example/inputs_batch/pairs.csv',
|
156 |
+
type=str)
|
157 |
+
parser.add_argument('--col', default='_id',
|
158 |
+
type=str)
|
159 |
+
parser.add_argument('--out', default='./example/outputs_batch/',
|
160 |
+
type=str)
|
161 |
+
parser.add_argument('--ffeat', default='./example/inputs_batch/embedding/{element}/{pdbid}.pickle',
|
162 |
+
type=str)
|
163 |
+
parser.add_argument('--fmodel', default='./weight/model_roc_0_38=0.845.pt',
|
164 |
+
type=str)
|
165 |
+
parser.add_argument('--device', default='cpu',
|
166 |
+
type=str)
|
167 |
+
parser.add_argument('--draw', action='store_true')
|
168 |
+
args = parser.parse_args()
|
169 |
+
return args
|
170 |
+
if __name__ == '__main__':
|
171 |
+
args = getParam()
|
172 |
+
rootdir = args.rootdir
|
173 |
+
csv = args.csv
|
174 |
+
col = args.col
|
175 |
+
rna_fasta = args.rna_fasta
|
176 |
+
pro_fasta = args.pro_fasta
|
177 |
+
ffeat = args.ffeat
|
178 |
+
fmodel = args.fmodel
|
179 |
+
device = args.device
|
180 |
+
out = args.out
|
181 |
+
draw = args.draw
|
182 |
+
check_path(out)
|
183 |
+
|
184 |
+
# pdbid = fasta.rsplit('/',1)[0].split('.')[0]
|
185 |
+
seed_everything(seed=2022)
|
186 |
+
|
187 |
+
models = [(model_path,torch.load(model_path, map_location=torch.device(device))) for model_path in glob.glob(fmodel)]
|
188 |
+
# models = [(model_path,torch.load(model_path, map_location=torch.device(device))) for model_path in glob.glob(fmodel)]
|
189 |
+
print('loading existed model', fmodel)
|
190 |
+
with torch.no_grad():
|
191 |
+
rna_dict = {}
|
192 |
+
for pdbid, seq in [(record.id, record.seq) for record in SeqIO.parse(rna_fasta, 'fasta')]:
|
193 |
+
rna_dict[pdbid]=str(seq)
|
194 |
+
pro_dict = {}
|
195 |
+
for pdbid, seq in [(record.id, record.seq) for record in SeqIO.parse(pro_fasta, 'fasta')]:
|
196 |
+
pro_dict[pdbid]=str(seq)
|
197 |
+
|
198 |
+
df = pd.read_csv(csv)
|
199 |
+
predict_scores = []
|
200 |
+
for pdbid in df[col]:
|
201 |
+
# pdbcode,r,p = pdbid.split('_')
|
202 |
+
# rnaid = f'{pdbcode}_{r}'
|
203 |
+
# proid = f'{pdbcode}_{p}'
|
204 |
+
|
205 |
+
rnaid,proid = pdbid.split('.')
|
206 |
+
|
207 |
+
rnaseq,proseq= rna_dict[rnaid],pro_dict[proid]
|
208 |
+
|
209 |
+
with open(ffeat.format_map({'pdbid':rnaid,'element':'rna'}),'rb') as f:
|
210 |
+
rna_emb = pickle.load(f)
|
211 |
+
with open(ffeat.format_map({'pdbid':proid,'element':'protein'}),'rb') as f:
|
212 |
+
pro_emb = pickle.load(f)
|
213 |
+
|
214 |
+
rna_oh = one_hot_encode(rnaseq.replace('T','U'), alpha='ACGU')
|
215 |
+
pro_oh = one_hot_encode(proseq, alpha='GAVLIFWYDNEKQMSTCPHR')
|
216 |
+
|
217 |
+
# mask = np.ones((emb.shape[0],1)) # mask missing nt when evaluate the model
|
218 |
+
x_train = np.concatenate([rna_oh,rna_emb],axis=1)
|
219 |
+
x_train = np.expand_dims(x_train,0)
|
220 |
+
x_train = torch.from_numpy(x_train).transpose(-1,-2)
|
221 |
+
x_train = x_train.to(device, dtype=torch.float)
|
222 |
+
x_rna = x_train
|
223 |
+
|
224 |
+
x_train = np.concatenate([pro_oh, pro_emb], axis=1)
|
225 |
+
x_train = np.expand_dims(x_train, 0)
|
226 |
+
x_train = torch.from_numpy(x_train).transpose(-1, -2)
|
227 |
+
x_train = x_train.to(device, dtype=torch.float)
|
228 |
+
x_pro = x_train
|
229 |
+
|
230 |
+
# print('input data shape for rna and protein:',x_rna.shape,x_pro.shape)
|
231 |
+
|
232 |
+
x_rna = x_rna.to(device, dtype=torch.float32)
|
233 |
+
x_pro = x_pro.to(device, dtype=torch.float32)
|
234 |
+
|
235 |
+
for i,(model_path,model) in enumerate(models):
|
236 |
+
model.eval()
|
237 |
+
outputs = model(x_pro, x_rna) # [1, 299, 74, 1]
|
238 |
+
# print('outputs,',outputs.device)
|
239 |
+
outputs = torch.squeeze(outputs, -1)
|
240 |
+
outputs = outputs.permute(0, 2, 1)
|
241 |
+
|
242 |
+
df_pred = outputs[0].cpu().detach().numpy()
|
243 |
+
des = f'predict by {__file__}\n#{model_path}'
|
244 |
+
doSavePredict(pdbid, {'rna':rnaseq,'protein':proseq}, df_pred,
|
245 |
+
out,
|
246 |
+
des
|
247 |
+
)
|
248 |
+
|
249 |
+
tmp = df_pred.flatten()
|
250 |
+
tmp.sort()
|
251 |
+
score = sum(tmp[::-1][:sum(df_pred.shape)])
|
252 |
+
predict_scores.append((pdbid, score))
|
253 |
+
print(pdbid,score)
|
254 |
+
|
255 |
+
if draw:
|
256 |
+
plt.figure(figsize=(20, 15))
|
257 |
+
top = sum(df_pred.shape)
|
258 |
+
df_pred = pd.DataFrame(df_pred)
|
259 |
+
threshold = df_pred.stack().nlargest(top).iloc[-1]
|
260 |
+
bin_pred = get_bin_pred(df_pred,threshold=threshold)
|
261 |
+
|
262 |
+
import seaborn as sns
|
263 |
+
sns.heatmap(df_pred,mask=bin_pred)
|
264 |
+
plt.title(f'Predicted contact map of {pdbid}\nPredidcted by RPcontact, top L=r+p')
|
265 |
+
plt.xlabel(proid)
|
266 |
+
plt.ylabel(rnaid)
|
267 |
+
handles, labels = plt.gca().get_legend_handles_labels()
|
268 |
+
|
269 |
+
plt.legend(handles, labels, bbox_to_anchor=(1.05, 1), loc='upper left', ncol=1, borderaxespad=1,
|
270 |
+
frameon=False)
|
271 |
+
# 设置坐标轴的相同缩放
|
272 |
+
ax = plt.gca()
|
273 |
+
ax.set_aspect('equal')
|
274 |
+
plt.tight_layout()
|
275 |
+
plt.savefig(f'{out}/{pdbid}_{i}_prob.png',dpi=300)
|
276 |
+
plt.show()
|
277 |
+
|
278 |
+
plt.clf()
|
279 |
+
ax = plt.gca()
|
280 |
+
tp = \
|
281 |
+
ax.plot(*np.where(bin_pred.T==1), ".", c='r',markersize=1, label='Predicted contact')[
|
282 |
+
0]
|
283 |
+
tp.set_markerfacecolor('w')
|
284 |
+
tp.set_markeredgecolor('r')
|
285 |
+
h,w = bin_pred.shape
|
286 |
+
plt.xlim([0,w])
|
287 |
+
plt.ylim([0,h])
|
288 |
+
plt.title(f'Predicted contact map of {pdbid}\nPredidcted by RPcontact, top L=r+p')
|
289 |
+
plt.xlabel(proid)
|
290 |
+
plt.ylabel(rnaid)
|
291 |
+
handles, labels = plt.gca().get_legend_handles_labels()
|
292 |
+
|
293 |
+
plt.legend(handles, labels, bbox_to_anchor=(1.05, 1), loc='upper left', ncol=1, borderaxespad=1,
|
294 |
+
frameon=False)
|
295 |
+
|
296 |
+
# 设置坐标轴的相同缩放
|
297 |
+
ax.set_aspect('equal')
|
298 |
+
plt.tight_layout()
|
299 |
+
plt.savefig(f'{out}/{pdbid}_{i}_binary.png',dpi=300)
|
300 |
+
plt.show()
|
301 |
+
|
302 |
+
|
303 |
+
print(f'predict {pdbid} with {len(seq)} nts')
|
304 |
+
|
305 |
+
df = pd.DataFrame(predict_scores, columns=['pdbid', 'contact_score'])
|
306 |
+
df.to_csv(args.out + '/predict_scores.tsv',index=False, sep='\t', mode='w', float_format='%.5f')
|
307 |
+
|
308 |
+
|
309 |
+
|
310 |
+
|
311 |
+
|
312 |
+
|
readme.md
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<p align="center">
|
2 |
+
<img src="https://raw.githubusercontent.com/JulseJiang/RPcontact/main/example/logo.png" alt="RPcontact Logo" width="120"/>
|
3 |
+
</p>
|
4 |
+
|
5 |
+
# RPcontact: RNA-Protein Contact Prediction
|
6 |
+
|
7 |
+
**Improved prediction of RNA-protein contacts using RNA and protein language models**
|
8 |
+
|
9 |
+
[Paper](https://www.biorxiv.org/content/10.1101/2025.06.02.657171v1.full)
|
10 |
+
[Code](https://github.com/rpcontact)
|
11 |
+
[Demo](https://julse-rpcontact.hf.space/)
|
12 |
+
|
13 |
+
|
14 |
+
---
|
15 |
+
|
16 |
+
## Overview
|
17 |
+
|
18 |
+
RPcontact is a novel computational tool for accurately predicting RNA-protein contacts, addressing a fundamental challenge in understanding molecular biology processes such as transcription, splicing, and translation. Traditional methods are limited by the scarcity of RNA-protein complex structures and the constraints of experimental techniques. While recent deep learning approaches like AlphaFold 3 and RoseTTAFoldNA have made progress, they still rely heavily on homologous templates.
|
19 |
+
|
20 |
+
RPcontact overcomes these limitations by leveraging large language models specifically designed for RNA ([ERNIE-RNA](https://github.com/Bruce-ywj/ERNIE-RNA)) and proteins ([ESM-2](https://github.com/facebookresearch/esm)). Trained exclusively on ribosomal RNA-protein complexes, RPcontact delivers robust and generalized performance, accurately predicting contacts in both dimeric and multimeric non-rRNA-protein complexes. Benchmark results show that RPcontact significantly outperforms binary contacts inferred from models like AlphaFold 3 and RoseTTAFoldNA, making it a valuable tool for structure and function prediction in RNA-protein research.
|
21 |
+
|
22 |
+
---
|
23 |
+
|
24 |
+
## Quick Start
|
25 |
+
|
26 |
+
### Requirements
|
27 |
+
|
28 |
+
| Dependency | Recommended Version |
|
29 |
+
|-------------|--------------------|
|
30 |
+
| Python | ≥ 3.8 |
|
31 |
+
| PyTorch | 1.13.1 |
|
32 |
+
| fair-esm | 1.0.2 |
|
33 |
+
|
34 |
+
Install dependencies (example):
|
35 |
+
```bash
|
36 |
+
pip install numpy pandas matplotlib biopython scikit-learn
|
37 |
+
pip install torch==1.13.1
|
38 |
+
pip install fair-esm==1.0.2
|
39 |
+
```
|
40 |
+
|
41 |
+
---
|
42 |
+
|
43 |
+
### Script Overview
|
44 |
+
|
45 |
+
| Script | Function | Example Command |
|
46 |
+
|-------------------|-------------------------------------|---------------------------------|
|
47 |
+
| predict.py | Single RNA-protein pair contact prediction | `python predict.py` |
|
48 |
+
| predict_batch.py | Batch RNA-protein pairs contact prediction | `python predict_batch.py` |
|
49 |
+
| evaluate.py | Evaluation and visualization | `python evaluate.py` |
|
50 |
+
| app.py | Launch web-based demo interface (need install gradio) | `python app.py` |
|
51 |
+
|
52 |
+
---
|
53 |
+
|
54 |
+
### Data Preparation
|
55 |
+
|
56 |
+
- RNA/protein sequences: FASTA format
|
57 |
+
- Embedding features: pickle format
|
58 |
+
- For batch prediction: provide a CSV file for pairing info
|
59 |
+
|
60 |
+
---
|
61 |
+
|
62 |
+
### Typical Usage
|
63 |
+
|
64 |
+
**Single pair prediction:**
|
65 |
+
```bash
|
66 |
+
python predict.py --fasta your_sequence.fasta --out output_dir/
|
67 |
+
```
|
68 |
+
|
69 |
+
**Batch prediction:**
|
70 |
+
```bash
|
71 |
+
python predict_batch.py --rna_fasta rna.fasta --pro_fasta protein.fasta --csv pairs.csv --out output_dir/
|
72 |
+
```
|
73 |
+
|
74 |
+
**Evaluation:**
|
75 |
+
```bash
|
76 |
+
python evaluate.py --fasta your_sequence.fasta --out eval_dir/ --flabel true_labels.pickle
|
77 |
+
```
|
78 |
+
|
79 |
+
---
|
80 |
+
|
81 |
+
### Common Parameters
|
82 |
+
|
83 |
+
| Parameter | Description |
|
84 |
+
|---------------|--------------------------------------------------------|
|
85 |
+
| --fasta | Input FASTA file (for single prediction) |
|
86 |
+
| --rna_fasta | RNA FASTA file (for batch prediction) |
|
87 |
+
| --pro_fasta | Protein FASTA file (for batch prediction) |
|
88 |
+
| --csv | RNA-protein pairing info CSV (for batch prediction) |
|
89 |
+
| --ffeat | Precomputed embedding feature file (pickle format) |
|
90 |
+
| --fmodel | Pretrained model file path |
|
91 |
+
| --out | Output directory |
|
92 |
+
| --flabel | True label file (for evaluation) |
|
93 |
+
| --device | Specify device (e.g., cpu or cuda:0) |
|
94 |
+
| --draw | Whether to visualize results |
|
95 |
+
|
96 |
+
---
|
97 |
+
|
98 |
+
## Output Interpretation
|
99 |
+
|
100 |
+
- The prediction output is a contact probability matrix for each RNA-protein pair. Higher scores indicate a higher probability of interaction.
|
101 |
+
- The evaluation script provides accuracy and other metrics, as well as visualization.
|
102 |
+
|
103 |
+
---
|
104 |
+
|
105 |
+
## Contact & Citation
|
106 |
+
|
107 |
+
Questions or suggestions? Contact:
|
108 |
+
|
109 |
+
- Jiuhong Jiang
|
110 |
+
- Email: [email protected]
|
111 |
+
|
112 |
+
If you find this project helpful, please cite our manuscript.
|
113 |
+
- Jiang, J., Zhang, X., Zhan, J., Miao, Z., & Zhou, Y. (2025). RPcontact: Improved prediction of RNA-protein contacts using RNA and protein language models. bioRxiv, 2025-06.
|
114 |
+
---
|
115 |
+
|
116 |
+
<p align="center"><em>Make RNA-protein contact prediction easier and more accurate!</em></p>
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Bio==1.8.0
|
2 |
+
biopython==1.81
|
3 |
+
gradio==5.35.0
|
4 |
+
matplotlib==3.5.1
|
5 |
+
numpy==1.24.4
|
6 |
+
pandas==1.5.3
|
7 |
+
plotly==5.24.1
|
8 |
+
scikit_learn==1.2.1
|
9 |
+
seaborn==0.13.2
|
10 |
+
torch==2.4.1
|
third_part_tool/ernie_rna/readme.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
https://github.com/Bruce-ywj/ERNIE-RNA
|
third_part_tool/esm2/readme.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
install following https://github.com/facebookresearch/esm/
|
2 |
+
|
3 |
+
using this pretrained model: esm2_t48_15B_UR50D
|
4 |
+
|
weight/readme.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
model_roc_0_38=0.845.pt for OH+RP_Emb with data augmentation
|
2 |
+
model_roc_0_56=0.779.pt for OH with data augmentation
|
3 |
+
|
4 |
+
The model weight can download after the paper accepted by journal
|