File size: 7,531 Bytes
e3e8dae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import gradio as gr
import numpy as np
import random
import pandas as pd
import matplotlib.pyplot as plt
from io import BytesIO
import base64

# 模拟数据 - 实际使用时需要替换为真实数据
species_data = {
    "human": {"codon_table": {}, "trna": {}, "codon_usage": {}},
    "mouse": {"codon_table": {}, "trna": {}, "codon_usage": {}},
    "virus": {"codon_table": {}, "trna": {}, "codon_usage": {}},
    "Escherichia coli": {"codon_table": {}, "trna": {}, "codon_usage": {}},
    "酿酒酵母": {"codon_table": {}, "trna": {}, "codon_usage": {}},
    "Pichia": {"codon_table": {}, "trna": {}, "codon_usage": {}},
}

# 模拟函数 - 实际需要生物信息学算法实现
def find_longest_cds(seq):
    # 简化的ORF查找 - 实际应使用生物信息学库
    start = seq.find("ATG")
    stops = [seq.find("TAA", start), seq.find("TAG", start), seq.find("TGA", start)]
    stops = [s for s in stops if s > start]
    end = min(stops) + 3 if stops else len(seq)
    return start, end

def calculate_cds_variants(protein_seq):
    # 简化的计算 - 实际应根据密码子表计算
    aa_count = len(protein_seq)
    return 2 ** aa_count  # 示例值

def optimize_cds(protein_seq, species, method):
    # 生成20个优化序列示例
    results = []
    for i in range(20):
        # 实际应根据优化方法生成序列
        seq = ''.join(random.choices("ACGT", k=len(protein_seq)*3))
        gc = random.uniform(0.3, 0.7)
        trna = random.uniform(0.5, 1.0)
        usage = random.uniform(0.6, 0.95)
        mfe = random.uniform(-30, -10)
        score = gc*0.25 + trna*0.25 + usage*0.25 + (-mfe/40)*0.25
        
        results.append({
            "Sequence": seq,
            "GC%": f"{gc*100:.1f}%",
            "tRNA": f"{trna:.3f}",
            "Usage": f"{usage:.3f}",
            "MFE": f"{mfe:.1f}",
            "Score": f"{score:.3f}"
        })
    return pd.DataFrame(results)

def design_mrna(utr5_candidates, utr3_candidates, cds_seq):
    # 生成20个设计结果示例
    designs = []
    for i in range(20):
        utr5 = random.choice(utr5_candidates)
        utr3 = random.choice(utr3_candidates)
        full_seq = utr5 + cds_seq + utr3
        mfe = random.uniform(-50, -20)
        designs.append({
            "Design": f"Design_{i+1}",
            "5'UTR": utr5[:10] + "..." if len(utr5) > 13 else utr5,
            "3'UTR": utr3[:10] + "..." if len(utr3) > 13 else utr3,
            "MFE": f"{mfe:.1f}",
            "Sequence": full_seq
        })
    return pd.DataFrame(designs)

# 标注可视化函数
def visualize_annotation(seq):
    start, end = find_longest_cds(seq)
    html = f"""
    <div style="font-family: monospace; font-size: 14px; line-height: 1.8;">
        <div style="background-color: #ffcccc; display: inline-block; padding: 2px;">
            5'UTR: {seq[:start] if start > 0 else 'N/A'}
        </div>
        <div style="background-color: #ccffcc; display: inline-block; padding: 2px;">
            CDS: {seq[start:end] if start >=0 else 'N/A'}
        </div>
        <div style="background-color: #ccccff; display: inline-block; padding: 2px;">
            3'UTR: {seq[end:] if end < len(seq) else 'N/A'}
        </div>
    </div>
    <p>Annotation Legend:</p>
    <div style="display: flex; gap: 10px;">
        <div style="background-color: #ffcccc; padding: 5px;">5'UTR</div>
        <div style="background-color: #ccffcc; padding: 5px;">CDS</div>
        <div style="background-color: #ccccff; padding: 5px;">3'UTR</div>
    </div>
    """
    return html

# 创建Gradio界面
with gr.Blocks(title="Vaccine Designer", theme=gr.themes.Soft()) as app:
    gr.Markdown("# 🧬 Vaccine Design Platform - Academic Collaboration")
    
    with gr.Tab("mRNA Annotation"):
        gr.Markdown("## mRNA Sequence Annotation")
        mrna_input = gr.Textbox(label="mRNA Sequence", placeholder="Enter mRNA sequence here...")
        annotate_btn = gr.Button("Annotate Regions")
        annotation_output = gr.HTML(label="Sequence Annotation")
        annotate_btn.click(visualize_annotation, inputs=mrna_input, outputs=annotation_output)
    
    with gr.Tab("CDS Variants"):
        gr.Markdown("## Calculate Potential CDS Variants")
        protein_input = gr.Textbox(label="Protein Sequence", placeholder="Enter protein sequence here...")
        calc_btn = gr.Button("Calculate Variants")
        variants_output = gr.Number(label="Potential CDS Variants")
        calc_btn.click(calculate_cds_variants, inputs=protein_input, outputs=variants_output)
    
    with gr.Tab("CDS Optimization"):
        gr.Markdown("## Optimize CDS Sequence")
        with gr.Row():
            protein_seq = gr.Textbox(label="Protein Sequence")
            species = gr.Dropdown(list(species_data.keys()), label="Species", value="human")
        
        method = gr.Radio(["Max GC Content", "tRNA Abundance", "Codon Usage", "MFE Optimization"], 
                          label="Optimization Method", value="Max GC Content")
        
        optimize_btn = gr.Button("Generate Optimized Sequences")
        results_table = gr.Dataframe(label="Top 20 Optimized Sequences", headers=["Sequence", "GC%", "tRNA", "Usage", "MFE", "Score"])
        optimize_btn.click(optimize_cds, inputs=[protein_seq, species, method], outputs=results_table)
        
        # 评分可视化
        plot = gr.Plot(label="Optimization Scores")
        def update_plot(df):
            if df is None or len(df) == 0:
                return None
            fig, ax = plt.subplots()
            scores = [float(x) for x in df["Score"]]
            ax.bar(range(len(scores)), scores, color='skyblue')
            ax.set_xlabel("Sequence Rank")
            ax.set_ylabel("Composite Score")
            ax.set_title("Optimization Scores of Top Sequences")
            return fig
        results_table.change(update_plot, inputs=results_table, outputs=plot)
    
    with gr.Tab("Full mRNA Design"):
        gr.Markdown("## Design Full mRNA Sequence")
        with gr.Row():
            utr5_upload = gr.File(label="Upload 5'UTR Candidates (txt)")
            utr3_upload = gr.File(label="Upload 3'UTR Candidates (txt)")
        cds_input = gr.Textbox(label="CDS Sequence")
        design_btn = gr.Button("Design mRNA Sequences")
        design_results = gr.Dataframe(label="Top 20 Designs", headers=["Design", "5'UTR", "3'UTR", "MFE", "Sequence"])
        design_btn.click(design_mrna, inputs=[utr5_upload, utr3_upload, cds_input], outputs=design_results)
    
    with gr.Tab("Resources & Links"):
        gr.Markdown("## Helpful Resources")
        gr.Markdown("""
        - [mRNA Designer Platform](https://www.biosino.org/mRNAdesigner/main)
        - [Nucleic Acid Database](https://ngdc.cncb.ac.cn/ncov/)
        - [NCBI GenBank](https://www.ncbi.nlm.nih.gov/genbank/)
        - [ViralZone](https://viralzone.expasy.org/)
        - [Codon Usage Database](https://www.kazusa.or.jp/codon/)
        """)
        
        gr.Markdown("## Download All Results")
        download_btn = gr.Button("Download Results Package")
        download_btn.click(lambda: "results.zip", outputs=gr.File(label="Download Results"))
    
    gr.Markdown("---")
    gr.HTML("""
    <div style="text-align: center; padding: 20px; background-color: #f0f0f0; border-radius: 10px;">
        <p>Academic Collaboration Platform for Vaccine Design | Contact: [email protected]</p>
    </div>
    """)

# 运行应用
if __name__ == "__main__":
    app.launch(server_name="0.0.0.0", server_port=7860)