Spaces:
Sleeping
Sleeping
File size: 4,457 Bytes
f085c10 34ef142 ddf266a 34ef142 f085c10 91bc905 ddf266a f085c10 ddf266a f085c10 ddf266a f085c10 ddf266a f085c10 ddf266a f085c10 ddf266a f085c10 ddf266a f085c10 ddf266a f085c10 ddf266a f085c10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 |
import os
import io
import requests
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.llms import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
# Global variables
knowledge_base = None
qa_chain = None
def load_pdf(pdf_file):
"""
Load and extract text from a PDF.
"""
pdf_reader = PdfReader(pdf_file)
text = "".join(page.extract_text() for page in pdf_reader.pages)
return text
def split_text(text):
"""
Split the extracted text into chunks.
"""
text_splitter = CharacterTextSplitter(
separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len
)
return text_splitter.split_text(text)
def create_knowledge_base(chunks):
"""
Create a FAISS knowledge base from text chunks.
"""
embeddings = HuggingFaceEmbeddings()
return FAISS.from_texts(chunks, embeddings)
def load_model(model_path):
"""
Load the HuggingFace model and tokenizer, and create a text-generation pipeline.
"""
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path)
return pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=150, temperature=0.1)
def setup_qa_chain():
"""
Set up the question-answering chain.
"""
global qa_chain
pipe = load_model(MODEL_PATH)
llm = HuggingFacePipeline(pipeline=pipe)
qa_chain = load_qa_chain(llm, chain_type="stuff")
# Streamlit UI
def main_page():
st.title("Welcome to GemmaPaperQA")
st.subheader("Upload Your Paper")
paper = st.file_uploader("Upload Here!", type="pdf", label_visibility="hidden")
if paper:
st.write(f"Upload complete! File name is {paper.name}")
st.write("Please click the button below.")
if st.button("Click Here :)"):
try:
# PDF ํ์ผ ์ฒ๋ฆฌ
contents = paper.read()
pdf_file = io.BytesIO(contents)
text = load_pdf(pdf_file)
chunks = split_text(text)
global knowledge_base
knowledge_base = create_knowledge_base(chunks)
st.success("PDF successfully processed! You can now ask questions.")
st.session_state.paper_name = paper.name[:-4]
st.session_state.page = "chat"
setup_qa_chain()
except Exception as e:
st.error(f"Failed to process the PDF: {str(e)}")
def chat_page():
st.title(f"Ask anything about {st.session_state.paper_name}")
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
if prompt := st.chat_input("Chat here!"):
st.session_state.messages.append({"role": "user", "content": prompt})
with st.chat_message("user"):
st.markdown(prompt)
response = get_response_from_model(prompt)
with st.chat_message("assistant"):
st.markdown(response)
st.session_state.messages.append({"role": "assistant", "content": response})
if st.button("Go back to main page"):
st.session_state.page = "main"
def get_response_from_model(prompt):
try:
global knowledge_base, qa_chain
if not knowledge_base:
return "No PDF has been uploaded yet."
if not qa_chain:
return "QA chain is not initialized."
docs = knowledge_base.similarity_search(prompt)
response = qa_chain.run(input_documents=docs, question=prompt)
if "Helpful Answer:" in response:
response = response.split("Helpful Answer:")[1].strip()
return response
except Exception as e:
return f"Error: {str(e)}"
# Streamlit - ์ด๊ธฐ ํ์ด์ง ์ค์
if "page" not in st.session_state:
st.session_state.page = "main"
# paper_name ์ด๊ธฐํ
if "paper_name" not in st.session_state:
st.session_state.paper_name = ""
# ํ์ด์ง ๋ ๋๋ง
if st.session_state.page == "main":
main_page()
elif st.session_state.page == "chat":
chat_page()
|