File size: 4,457 Bytes
f085c10
 
34ef142
ddf266a
34ef142
f085c10
 
 
 
 
 
91bc905
ddf266a
f085c10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddf266a
 
 
 
f085c10
ddf266a
 
 
f085c10
 
 
 
 
 
 
 
 
 
 
 
 
ddf266a
 
 
 
 
 
 
 
 
 
 
 
 
 
f085c10
 
ddf266a
f085c10
 
 
 
 
 
 
ddf266a
 
f085c10
 
 
 
 
ddf266a
f085c10
 
 
 
 
 
 
 
 
ddf266a
f085c10
ddf266a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f085c10
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import os
import io
import requests
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.chains.question_answering import load_qa_chain
from langchain.llms import HuggingFacePipeline
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline

# Global variables
knowledge_base = None
qa_chain = None

def load_pdf(pdf_file):
    """
    Load and extract text from a PDF.
    """
    pdf_reader = PdfReader(pdf_file)
    text = "".join(page.extract_text() for page in pdf_reader.pages)
    return text

def split_text(text):
    """
    Split the extracted text into chunks.
    """
    text_splitter = CharacterTextSplitter(
        separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len
    )
    return text_splitter.split_text(text)

def create_knowledge_base(chunks):
    """
    Create a FAISS knowledge base from text chunks.
    """
    embeddings = HuggingFaceEmbeddings()
    return FAISS.from_texts(chunks, embeddings)

def load_model(model_path):
    """
    Load the HuggingFace model and tokenizer, and create a text-generation pipeline.
    """
    tokenizer = AutoTokenizer.from_pretrained(model_path)
    model = AutoModelForCausalLM.from_pretrained(model_path)
    return pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=150, temperature=0.1)

def setup_qa_chain():
    """
    Set up the question-answering chain.
    """
    global qa_chain
    pipe = load_model(MODEL_PATH)
    llm = HuggingFacePipeline(pipeline=pipe)
    qa_chain = load_qa_chain(llm, chain_type="stuff")

# Streamlit UI
def main_page():
    st.title("Welcome to GemmaPaperQA")
    st.subheader("Upload Your Paper")

    paper = st.file_uploader("Upload Here!", type="pdf", label_visibility="hidden")
    if paper:
        st.write(f"Upload complete! File name is {paper.name}")
        st.write("Please click the button below.")

        if st.button("Click Here :)"):
            try:
                # PDF ํŒŒ์ผ ์ฒ˜๋ฆฌ
                contents = paper.read()
                pdf_file = io.BytesIO(contents)
                text = load_pdf(pdf_file)
                chunks = split_text(text)
                global knowledge_base
                knowledge_base = create_knowledge_base(chunks)

                st.success("PDF successfully processed! You can now ask questions.")
                st.session_state.paper_name = paper.name[:-4]
                st.session_state.page = "chat"
                setup_qa_chain()
            except Exception as e:
                st.error(f"Failed to process the PDF: {str(e)}")

def chat_page():
    st.title(f"Ask anything about {st.session_state.paper_name}")

    if "messages" not in st.session_state:
        st.session_state.messages = []

    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])

    if prompt := st.chat_input("Chat here!"):
        st.session_state.messages.append({"role": "user", "content": prompt})

        with st.chat_message("user"):
            st.markdown(prompt)

        response = get_response_from_model(prompt)

        with st.chat_message("assistant"):
            st.markdown(response)

        st.session_state.messages.append({"role": "assistant", "content": response})

    if st.button("Go back to main page"):
        st.session_state.page = "main"

def get_response_from_model(prompt):
    try:
        global knowledge_base, qa_chain
        if not knowledge_base:
            return "No PDF has been uploaded yet."
        if not qa_chain:
            return "QA chain is not initialized."

        docs = knowledge_base.similarity_search(prompt)
        response = qa_chain.run(input_documents=docs, question=prompt)

        if "Helpful Answer:" in response:
            response = response.split("Helpful Answer:")[1].strip()

        return response
    except Exception as e:
        return f"Error: {str(e)}"

# Streamlit - ์ดˆ๊ธฐ ํŽ˜์ด์ง€ ์„ค์ •
if "page" not in st.session_state:
    st.session_state.page = "main"

# paper_name ์ดˆ๊ธฐํ™”
if "paper_name" not in st.session_state:
    st.session_state.paper_name = ""

# ํŽ˜์ด์ง€ ๋ Œ๋”๋ง
if st.session_state.page == "main":
    main_page()
elif st.session_state.page == "chat":
    chat_page()