Spaces:
Sleeping
Sleeping
import os | |
import torch | |
import torch.nn.functional as F | |
from ssl_ecapa_model import SSL_ECAPA_TDNN | |
from huggingface_hub import hf_hub_download | |
def load_model(ckpt_path): | |
model = SSL_ECAPA_TDNN(feat_dim=1024, emb_dim=256, feat_type='wavlm_large') | |
load_parameters(model, ckpt_path) | |
return model | |
def load_parameters(model, ckpt_path): | |
model_state = model.state_dict() | |
if not os.path.isfile(ckpt_path): | |
print("Downloading model from Hugging Face Hub...") | |
new_ckpt_path = hf_hub_download(repo_id="junseok520/voxsim-models", filename=ckpt_path, local_dir="./") | |
ckpt_path = new_ckpt_path | |
loaded_state = torch.load(ckpt_path, map_location='cpu', weights_only=True) | |
for name, param in loaded_state.items(): | |
if name.startswith('__S__.'): | |
if name[6:] in model_state: | |
model_state[name[6:]].copy_(param) | |
else: | |
print("{} is not in the model.".format(name[6:])) | |
class Score: | |
"""Predicting score for each audio clip.""" | |
def __init__( | |
self, | |
ckpt_path: str = "wavlm_ecapa.pt", | |
device: str = "gpu"): | |
""" | |
Args: | |
ckpt_path: path to pretrained checkpoint of voxsim evaluator. | |
input_sample_rate: sampling rate of input audio tensor. The input audio tensor | |
is automatically downsampled to 16kHz. | |
""" | |
print(f"Using device: {device}") | |
self.device = device | |
self.model = load_model(ckpt_path).to(self.device) | |
self.model.eval() | |
def score(self, inp_wavs: torch.tensor, inp_wav: torch.tensor, ref_wavs: torch.tensor, ref_wav: torch.tensor) -> torch.tensor: | |
""" | |
Args: | |
wavs: audio waveform to be evaluated. When len(wavs) == 1 or 2, | |
the model processes the input as a single audio clip. The model | |
performs batch processing when len(wavs) == 3. | |
""" | |
# if len(wavs.shape) == 1: | |
# out_wavs = wavs.unsqueeze(0).unsqueeze(0) | |
# elif len(wavs.shape) == 2: | |
# out_wavs = wavs.unsqueeze(0) | |
# elif len(wavs.shape) == 3: | |
# out_wavs = wavs | |
# else: | |
# raise ValueError('Dimension of input tensor needs to be <= 3.') | |
if len(inp_wavs.shape) == 2: | |
bs = 1 | |
elif len(inp_wavs.shape) == 3: | |
bs = inp_wavs.shape[0] | |
else: | |
raise ValueError('Dimension of input tensor needs to be <= 3.') | |
inp_wavs = inp_wavs.reshape(-1, inp_wavs.shape[-1]).to(self.device) | |
inp_wav = inp_wav.reshape(-1, inp_wav.shape[-1]).to(self.device) | |
ref_wavs = ref_wavs.reshape(-1, ref_wavs.shape[-1]).to(self.device) | |
ref_wav = ref_wav.reshape(-1, ref_wav.shape[-1]).to(self.device) | |
# assert inp_wavs.shape[1] == 10 | |
# assert ref_wavs.shape[1] == 10 | |
# assert inp_wav.shape[1] == 1 | |
# assert ref_wav.shape[1] == 1 | |
# import pdb; pdb.set_trace() | |
with torch.no_grad(): | |
input_emb_1 = F.normalize(self.model.forward(inp_wavs), p=2, dim=1).detach() | |
input_emb_2 = F.normalize(self.model.forward(inp_wav), p=2, dim=1).detach() | |
ref_emb_1 = F.normalize(self.model.forward(ref_wavs), p=2, dim=1).detach() | |
ref_emb_2 = F.normalize(self.model.forward(ref_wav), p=2, dim=1).detach() | |
emb_size = input_emb_1.shape[-1] | |
input_emb_1 = input_emb_1.reshape(bs, -1, emb_size) | |
input_emb_2 = input_emb_2.reshape(bs, -1, emb_size) | |
ref_emb_1 = ref_emb_1.reshape(bs, -1, emb_size) | |
ref_emb_2 = ref_emb_2.reshape(bs, -1, emb_size) | |
score_1 = torch.mean(torch.bmm(input_emb_1, ref_emb_1.transpose(1,2)), dim=(1,2)) | |
score_2 = torch.mean(torch.bmm(input_emb_2, ref_emb_2.transpose(1,2)), dim=(1,2)) | |
score = (score_1 + score_2) / 2 | |
score = score.detach().cpu().numpy() | |
return score | |