Assignment1 / src /streamlit_app.py
justREE's picture
Update src/streamlit_app.py
77c4802 verified
raw
history blame
8.32 kB
# app.py
import io # for creating in-memory binary streams
import wave # for writing WAV audio files
import re # for regular expression utilities
import streamlit as st # Streamlit UI library
from transformers import pipeline # Hugging Face inference pipelines
from PIL import Image # Python Imaging Library for image loading
import numpy as np # numerical operations, especially array handling
# 1) CACHE & LOAD MODELS
@st.cache_resource(show_spinner=False)
def load_captioner():
# Loads BLIP image-to-text model; cached so it loads only once.
# Returns: a function captioner(image: PIL.Image) -> List[Dict],
return pipeline(
"image-to-text",
model="Salesforce/blip-image-captioning-base",
device="cpu" # Can change to "cuda" if GPU is available
)
@st.cache_resource(show_spinner=False)
def load_story_pipe():
# Loads FLAN-T5 text-to-text model for story generation; cached once.
# Returns: a function story_pipe(prompt: str, **kwargs) -> List[Dict].
return pipeline(
"text2text-generation",
model="google/flan-t5-base",
device="cpu" # Can change to "cuda" if GPU is available
)
@st.cache_resource(show_spinner=False)
def load_tts_pipe():
# Loads Meta MMS-TTS text-to-speech model; cached once.
# Returns: a function tts_pipe(text: str) -> List[Dict] with "audio" and "sampling_rate".
return pipeline(
"text-to-speech",
model="facebook/mms-tts-eng",
device="cpu" # Can change to "cuda" if GPU is available
)
# 2) HELPER FUNCTIONS
def sentence_case(text: str) -> str:
# Splits text into sentences on .!? delimiters,
# capitalizes the first character of each sentence,
# then rejoins into a single string.
parts = re.split(r'([.!?])', text) # ["hello", ".", " world", "!"]
out = []
for i in range(0, len(parts) - 1, 2):
sentence = parts[i].strip().capitalize() # capitalize first letter
delimiter = parts[i + 1] # punctuation
# Ensure a space before the sentence if it wasn't the very first part
if out and not sentence.startswith(' ') and out[-1][-1] not in '.!?':
out.append(f" {sentence}{delimiter}")
else:
out.append(f"{sentence}{delimiter}")
# If trailing text without punctuation exists, capitalize and append it.
if len(parts) % 2:
last = parts[-1].strip().capitalize()
if last:
# Ensure a space before if needed
if out and not last.startswith(' ') and out[-1][-1] not in '.!?':
out.append(f" {last}")
else:
out.append(last)
# Clean up potential multiple spaces resulting from split/join
return " ".join(" ".join(out).split())
def caption_image(img: Image.Image, captioner) -> str:
# Given a PIL image and a captioner pipeline, returns a single-line caption.
results = captioner(img) # run model
if not results:
return ""
# extract "generated_text" field from first result
return results[0].get("generated_text", "")
def story_from_caption(caption: str, pipe) -> str:
# Given a caption string and a text2text pipeline, returns a ~100-word story.
prompt = f"Write a vivid, imaginative ~100-word story about this scene: {caption}"
results = pipe(
prompt,
max_length=120, # increased max length slightly
min_length=80, # minimum generated tokens
do_sample=True, # enable sampling
top_k=100, # sample from top_k tokens
top_p=0.9, # nucleus sampling threshold
temperature=0.7, # sampling temperature
repetition_penalty=1.1, # discourage repetition
no_repeat_ngram_size=4, # block repeated n-grams
early_stopping=False
)
raw = results[0]["generated_text"].strip() # full generated text
# strip out the prompt if it echoes back - make comparison case-insensitive
if raw.lower().startswith(prompt.lower()):
raw = raw[len(prompt):].strip()
# trim to last complete sentence ending in . ! or ?
match = re.search(r'[.!?]', raw[::-1]) # Search for the first punctuation from the end
if match:
raw = raw[:len(raw) - match.start()] # Trim at that position
elif len(raw) > 80: # If no punctuation found but story is long, trim to a reasonable length
raw = raw[:80] + "..."
return sentence_case(raw)
def tts_bytes(text: str, tts_pipe) -> bytes:
# Given a text string and a tts pipeline, returns WAV-format bytes.
# Clean up text for TTS - remove leading/trailing quotes, etc.
cleaned_text = re.sub(r'^["\']|["\']$', '', text).strip()
# Basic punctuation cleaning (optional, depending on TTS model)
cleaned_text = re.sub(r'\.{2,}', '.', cleaned_text) # Replace multiple periods with one
cleaned_text = cleaned_text.replace('…', '...') # Replace ellipsis char with dots
# Add a period if the text doesn't end with punctuation (helps TTS model finalize)
if cleaned_text and cleaned_text[-1] not in '.!?':
cleaned_text += '.'
output = tts_pipe(cleaned_text)
# pipeline may return list or single dict
result = output[0] if isinstance(output, list) else output
audio_array = result["audio"] # numpy array: (channels, samples) or (samples,)
rate = result["sampling_rate"] # sampling rate integer
# ensure audio_array is 2D (samples, channels) for consistent handling
if audio_array.ndim == 1:
data = audio_array[:, np.newaxis] # add channel dimension
else:
data = audio_array.T # transpose from (channels, samples) to (samples, channels)
# convert float32 [-1..1] to int16 PCM [-32768..32767]
pcm = (data * 32767).astype(np.int16)
buffer = io.BytesIO()
wf = wave.open(buffer, "wb")
wf.setnchannels(data.shape[1]) # number of channels
wf.setsampwidth(2) # 16 bits = 2 bytes
wf.setframerate(rate) # samples per second
wf.writeframes(pcm.tobytes()) # write PCM data
wf.close()
buffer.seek(0)
return buffer.read() # return raw WAV bytes
# 3) STREAMLIT USER INTERFACE
st.set_page_config(page_title="Imagine & Narrate", page_icon="✨", layout="centered")
st.title("✨ Imagine & Narrate")
st.write("Upload any image below to see AI imagine and narrate a story about it!")
# -- Upload image widget --
uploaded = st.file_uploader(
"Choose an image file",
type=["jpg", "jpeg", "png"]
)
if not uploaded:
st.info("➡️ Upload an image above to start the magic!")
st.stop()
# Load the uploaded file into a PIL Image
try:
img = Image.open(uploaded)
except Exception as e:
st.error(f"Error loading image: {e}")
st.stop()
# -- Step 1: Display the image --
st.subheader("📸 Your Visual Input")
st.image(img, use_container_width=True)
st.divider()
# -- Step 2: Generate and display caption --
st.subheader("🧠 Generating Insights")
with st.spinner("Scanning image for key elements…"):
captioner = load_captioner()
raw_caption = caption_image(img, captioner)
if not raw_caption:
st.warning("Could not generate a caption for the image.")
st.stop()
caption = sentence_case(raw_caption)
st.markdown(f"**Identified Scene:** {caption}")
st.divider()
# -- Step 3: Generate and display story --
st.subheader("📖 Crafting a Narrative")
with st.spinner("Writing a compelling story…"):
story_pipe = load_story_pipe()
story = story_from_caption(caption, story_pipe)
if not story or story.strip() == '...': # Check for empty or minimal story
st.warning("Could not generate a meaningful story from the caption.")
st.stop()
st.write(story)
st.divider()
# -- Step 4: Synthesize and play audio --
st.subheader("👂 Hear the Story")
with st.spinner("Synthesizing audio narration…"):
tts_pipe = load_tts_pipe()
try:
audio_bytes = tts_bytes(story, tts_pipe)
st.audio(audio_bytes, format="audio/wav")
except Exception as e:
st.error(f"Error generating audio: {e}")
# Celebration animation
st.balloons()