Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,108 +4,156 @@ import io
|
|
4 |
import wave
|
5 |
import re
|
6 |
import streamlit as st
|
7 |
-
from transformers import pipeline
|
8 |
-
from datasets import load_dataset
|
9 |
from PIL import Image
|
10 |
import numpy as np
|
11 |
-
import torch
|
12 |
|
13 |
-
#
|
14 |
-
# 1) LOAD PIPELINES
|
15 |
-
# ─────────────────────────────────────────────────────────────
|
16 |
@st.cache_resource(show_spinner=False)
|
17 |
def load_captioner():
|
18 |
-
return pipeline(
|
|
|
|
|
|
|
|
|
19 |
|
20 |
@st.cache_resource(show_spinner=False)
|
21 |
-
def
|
22 |
-
return pipeline(
|
|
|
|
|
|
|
|
|
23 |
|
24 |
@st.cache_resource(show_spinner=False)
|
25 |
def load_tts_pipe():
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
speaker_embedding = torch.tensor(speaker_dataset[7306]["xvector"]).unsqueeze(0)
|
31 |
-
return processor, model, vocoder, speaker_embedding
|
32 |
-
|
33 |
-
# ─────────────────────────────────────────────────────────────
|
34 |
-
# 2) PIPELINE FUNCTIONS
|
35 |
-
# ─────────────────────────────────────────────────────────────
|
36 |
-
def get_caption(image, captioner):
|
37 |
-
return captioner(image)[0]['generated_text']
|
38 |
-
|
39 |
-
def generate_story(caption, generator):
|
40 |
-
prompt = f"Write a short, magical story for children aged 3 to 10 based on this scene: {caption}. Keep it under 100 words."
|
41 |
-
outputs = generator(
|
42 |
-
prompt,
|
43 |
-
max_new_tokens=120,
|
44 |
-
temperature=0.8,
|
45 |
-
top_p=0.95,
|
46 |
-
do_sample=True
|
47 |
)
|
48 |
-
story = outputs[0]["generated_text"]
|
49 |
-
return clean_story_output(story, prompt)
|
50 |
|
51 |
-
|
52 |
-
story = story[len(prompt):].strip() if story.startswith(prompt) else story
|
53 |
-
if "." in story:
|
54 |
-
story = story[: story.rfind(".") + 1]
|
55 |
-
return sentence_case(story)
|
56 |
|
57 |
-
def sentence_case(text):
|
58 |
parts = re.split(r'([.!?])', text)
|
59 |
out = []
|
60 |
for i in range(0, len(parts) - 1, 2):
|
61 |
sentence = parts[i].strip().capitalize()
|
62 |
-
|
|
|
63 |
if len(parts) % 2:
|
64 |
last = parts[-1].strip().capitalize()
|
65 |
if last:
|
66 |
out.append(last)
|
67 |
return " ".join(out)
|
68 |
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
buffer = io.BytesIO()
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
|
|
79 |
buffer.seek(0)
|
80 |
return buffer.read()
|
81 |
|
82 |
-
#
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
st.
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
st.
|
109 |
-
|
110 |
-
|
111 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import wave
|
5 |
import re
|
6 |
import streamlit as st
|
7 |
+
from transformers import pipeline
|
|
|
8 |
from PIL import Image
|
9 |
import numpy as np
|
|
|
10 |
|
11 |
+
# 1) CACHE & LOAD MODELS
|
|
|
|
|
12 |
@st.cache_resource(show_spinner=False)
|
13 |
def load_captioner():
|
14 |
+
return pipeline(
|
15 |
+
"image-to-text",
|
16 |
+
model="Salesforce/blip-image-captioning-base",
|
17 |
+
device="cpu"
|
18 |
+
)
|
19 |
|
20 |
@st.cache_resource(show_spinner=False)
|
21 |
+
def load_story_pipe():
|
22 |
+
return pipeline(
|
23 |
+
"text2text-generation",
|
24 |
+
model="google/flan-t5-base",
|
25 |
+
device="cpu"
|
26 |
+
)
|
27 |
|
28 |
@st.cache_resource(show_spinner=False)
|
29 |
def load_tts_pipe():
|
30 |
+
return pipeline(
|
31 |
+
"text-to-speech",
|
32 |
+
model="facebook/mms-tts-eng",
|
33 |
+
device="cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
)
|
|
|
|
|
35 |
|
36 |
+
# 2) HELPER FUNCTIONS
|
|
|
|
|
|
|
|
|
37 |
|
38 |
+
def sentence_case(text: str) -> str:
|
39 |
parts = re.split(r'([.!?])', text)
|
40 |
out = []
|
41 |
for i in range(0, len(parts) - 1, 2):
|
42 |
sentence = parts[i].strip().capitalize()
|
43 |
+
delimiter = parts[i + 1]
|
44 |
+
out.append(f"{sentence}{delimiter}")
|
45 |
if len(parts) % 2:
|
46 |
last = parts[-1].strip().capitalize()
|
47 |
if last:
|
48 |
out.append(last)
|
49 |
return " ".join(out)
|
50 |
|
51 |
+
|
52 |
+
def caption_image(img: Image.Image, captioner) -> str:
|
53 |
+
results = captioner(img)
|
54 |
+
if not results:
|
55 |
+
return ""
|
56 |
+
return results[0].get("generated_text", "")
|
57 |
+
|
58 |
+
|
59 |
+
def story_from_caption(caption: str, pipe) -> str:
|
60 |
+
prompt = f"Write a vivid, imaginative ~100-word story about this scene: {caption}"
|
61 |
+
results = pipe(
|
62 |
+
prompt,
|
63 |
+
max_length=100,
|
64 |
+
min_length=80,
|
65 |
+
do_sample=True,
|
66 |
+
top_k=100,
|
67 |
+
top_p=0.9,
|
68 |
+
temperature=0.7,
|
69 |
+
repetition_penalty=1.1,
|
70 |
+
no_repeat_ngram_size=4,
|
71 |
+
early_stopping=False
|
72 |
+
)
|
73 |
+
raw = results[0]["generated_text"].strip()
|
74 |
+
if raw.lower().startswith(prompt.lower()):
|
75 |
+
raw = raw[len(prompt):].strip()
|
76 |
+
if "." in raw:
|
77 |
+
raw = raw[: raw.rfind(".") + 1]
|
78 |
+
return sentence_case(raw)
|
79 |
+
|
80 |
+
|
81 |
+
def tts_bytes(text: str, tts_pipe) -> bytes:
|
82 |
+
output = tts_pipe(text)
|
83 |
+
result = output[0] if isinstance(output, list) else output
|
84 |
+
audio_array = result["audio"]
|
85 |
+
rate = result["sampling_rate"]
|
86 |
+
data = audio_array.T if audio_array.ndim == 2 else audio_array
|
87 |
+
pcm = (data * 32767).astype(np.int16)
|
88 |
+
|
89 |
buffer = io.BytesIO()
|
90 |
+
wf = wave.open(buffer, "wb")
|
91 |
+
wf.setnchannels(1 if data.ndim == 1 else data.shape[1])
|
92 |
+
wf.setsampwidth(2)
|
93 |
+
wf.setframerate(rate)
|
94 |
+
wf.writeframes(pcm.tobytes())
|
95 |
+
wf.close()
|
96 |
buffer.seek(0)
|
97 |
return buffer.read()
|
98 |
|
99 |
+
# 3) STREAMLIT UI ENHANCEMENTS
|
100 |
+
|
101 |
+
st.set_page_config(
|
102 |
+
page_title="Media Magic Storyteller",
|
103 |
+
page_icon="🎨",
|
104 |
+
layout="wide"
|
105 |
+
)
|
106 |
+
|
107 |
+
# Sidebar
|
108 |
+
with st.sidebar:
|
109 |
+
st.header("🎨 Media Magic")
|
110 |
+
st.markdown(
|
111 |
+
"Upload an image and click 'Generate' to craft a magical story."
|
112 |
+
)
|
113 |
+
st.markdown("---")
|
114 |
+
st.markdown("1️⃣ Upload your image\n2️⃣ Click 'Generate'\n3️⃣ Read & Listen!")
|
115 |
+
st.markdown("---")
|
116 |
+
st.markdown("Built with 💖 using Hugging Face & Streamlit.")
|
117 |
+
|
118 |
+
# Main
|
119 |
+
st.title("✨ Media Magic Storyteller")
|
120 |
+
|
121 |
+
col1, col2 = st.columns([1, 2])
|
122 |
+
with col1:
|
123 |
+
uploaded = st.file_uploader("Upload Image", type=["jpg", "jpeg", "png"])
|
124 |
+
if uploaded:
|
125 |
+
st.image(uploaded, caption="Your Image", use_container_width=True)
|
126 |
+
with col2:
|
127 |
+
st.write("### Your Story")
|
128 |
+
placeholder = st.empty()
|
129 |
+
|
130 |
+
if uploaded and st.button("🚀 Generate Story & Audio"):
|
131 |
+
progress = st.progress(0)
|
132 |
+
|
133 |
+
# Captioning
|
134 |
+
progress.progress(10)
|
135 |
+
captioner = load_captioner()
|
136 |
+
caption = sentence_case(caption_image(Image.open(uploaded), captioner))
|
137 |
+
st.subheader("🖼️ Caption")
|
138 |
+
st.info(caption)
|
139 |
+
|
140 |
+
# Story
|
141 |
+
progress.progress(40)
|
142 |
+
story_pipe = load_story_pipe()
|
143 |
+
story = story_from_caption(caption, story_pipe)
|
144 |
+
st.subheader("📖 Story")
|
145 |
+
st.write(story)
|
146 |
+
|
147 |
+
# Audio
|
148 |
+
progress.progress(70)
|
149 |
+
tts_pipe = load_tts_pipe()
|
150 |
+
audio = tts_bytes(story, tts_pipe)
|
151 |
+
st.subheader("🔊 Audio")
|
152 |
+
st.audio(audio, format="audio/wav")
|
153 |
+
|
154 |
+
progress.progress(100)
|
155 |
+
st.balloons()
|
156 |
+
|
157 |
+
# Footer
|
158 |
+
st.markdown("---")
|
159 |
+
st.markdown("© 2025 Media Magic | https://huggingface.co")
|