justinj92 commited on
Commit
47ceafa
·
verified ·
1 Parent(s): 160f6d0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -5
app.py CHANGED
@@ -78,7 +78,6 @@ documents = loader.load()
78
  text_splitter = RecursiveCharacterTextSplitter(chunk_size = CFG.split_chunk_size, chunk_overlap = CFG.split_overlap)
79
  texts = text_splitter.split_documents(documents)
80
 
81
- @spaces.GPU(duration=120)
82
  if not os.path.exists(CFG.Embeddings_path + '/index.faiss'):
83
  embeddings = HuggingFaceInstructEmbeddings(model_name = CFG.embeddings_model_repo, model_kwargs={"device":"cuda"})
84
  vectordb = FAISS.from_documents(documents=texts, embedding=embeddings)
@@ -87,7 +86,7 @@ if not os.path.exists(CFG.Embeddings_path + '/index.faiss'):
87
  embeddings = HuggingFaceInstructEmbeddings(model_name = CFG.embeddings_model_repo, model_kwargs={"device":"cuda"})
88
  vectordb = FAISS.load_local(CFG.Output_folder + '/faiss_index_ml_papers', embeddings, allow_dangerous_deserialization=True)
89
 
90
-
91
  def build_model(model_repo = CFG.model_name):
92
  tokenizer = AutoTokenizer.from_pretrained(model_repo)
93
  model = AutoModelForCausalLM.from_pretrained(model_repo, attn_implementation="flash_attention_2")
@@ -168,7 +167,7 @@ qa_chain = RetrievalQA.from_chain_type(
168
  verbose = False
169
  )
170
 
171
- @spaces.GPU(duration=120)
172
  def wrap_text_preserve_newlines(text, width=1500):
173
  # Split the input text into lines based on newline characters
174
  lines = text.split('\n')
@@ -181,7 +180,7 @@ def wrap_text_preserve_newlines(text, width=1500):
181
 
182
  return wrapped_text
183
 
184
- @spaces.GPU(duration=120)
185
  def process_llm_response(llm_response):
186
  ans = wrap_text_preserve_newlines(llm_response['result'])
187
 
@@ -204,7 +203,7 @@ def process_llm_response(llm_response):
204
 
205
  return ans.strip()
206
 
207
- @spaces.GPU(duration=120)
208
  def llm_ans(query):
209
 
210
  llm_response = qa_chain.invoke(query)
 
78
  text_splitter = RecursiveCharacterTextSplitter(chunk_size = CFG.split_chunk_size, chunk_overlap = CFG.split_overlap)
79
  texts = text_splitter.split_documents(documents)
80
 
 
81
  if not os.path.exists(CFG.Embeddings_path + '/index.faiss'):
82
  embeddings = HuggingFaceInstructEmbeddings(model_name = CFG.embeddings_model_repo, model_kwargs={"device":"cuda"})
83
  vectordb = FAISS.from_documents(documents=texts, embedding=embeddings)
 
86
  embeddings = HuggingFaceInstructEmbeddings(model_name = CFG.embeddings_model_repo, model_kwargs={"device":"cuda"})
87
  vectordb = FAISS.load_local(CFG.Output_folder + '/faiss_index_ml_papers', embeddings, allow_dangerous_deserialization=True)
88
 
89
+ @spaces.GPU
90
  def build_model(model_repo = CFG.model_name):
91
  tokenizer = AutoTokenizer.from_pretrained(model_repo)
92
  model = AutoModelForCausalLM.from_pretrained(model_repo, attn_implementation="flash_attention_2")
 
167
  verbose = False
168
  )
169
 
170
+ @spaces.GPU
171
  def wrap_text_preserve_newlines(text, width=1500):
172
  # Split the input text into lines based on newline characters
173
  lines = text.split('\n')
 
180
 
181
  return wrapped_text
182
 
183
+ @spaces.GPU
184
  def process_llm_response(llm_response):
185
  ans = wrap_text_preserve_newlines(llm_response['result'])
186
 
 
203
 
204
  return ans.strip()
205
 
206
+ @spaces.GPU
207
  def llm_ans(query):
208
 
209
  llm_response = qa_chain.invoke(query)