Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,171 +1,171 @@
|
|
| 1 |
-
from typing import Tuple, Optional
|
| 2 |
-
|
| 3 |
-
import gradio as gr
|
| 4 |
-
import spaces
|
| 5 |
-
import supervision as sv
|
| 6 |
-
import torch
|
| 7 |
-
from PIL import Image
|
| 8 |
-
from gradio_image_prompter import ImagePrompter
|
| 9 |
-
|
| 10 |
-
from utils.annotate import annotate_with_boxes
|
| 11 |
-
from utils.models import load_models, run_inference, CHECKPOINTS, \
|
| 12 |
-
pre_process_region_task_input, post_process_region_output
|
| 13 |
-
from utils.tasks import TASK_NAMES, TASKS, OBJECT_DETECTION_TASK_NAME, \
|
| 14 |
-
CAPTION_TASK_NAME, DETAILED_CAPTION_TASK_NAME, \
|
| 15 |
-
MORE_DETAILED_CAPTION_TASK_NAME, OCR_WITH_REGION_TASK_NAME, OCR_TASK_NAME, \
|
| 16 |
-
IMAGE_INPUT_TASK_NAMES, IMAGE_PROMPTER_INPUT_TASK_NAMES, IMAGE_OUTPUT_TASK_NAMES, \
|
| 17 |
-
TEXTBOX_OUTPUT_TASK_NAMES, IMAGE_TO_IMAGE_TASK_NAMES, IMAGE_TO_TEXT_TASK_NAMES, \
|
| 18 |
-
IMAGE_PROMPT_TO_IMAGE_TASK_NAMES, REGION_PROPOSAL_TASK_NAME, \
|
| 19 |
-
DENSE_REGION_CAPTION_TASK_NAME
|
| 20 |
-
|
| 21 |
-
MARKDOWN = """
|
| 22 |
-
# Florence-2 🔥
|
| 23 |
-
|
| 24 |
-
Florence-2 is a lightweight vision-language model open-sourced by Microsoft under the
|
| 25 |
-
MIT license. The model demonstrates strong zero-shot and fine-tuning capabilities
|
| 26 |
-
across tasks such as captioning, object detection, grounding, and segmentation.
|
| 27 |
-
The model takes images and task prompts as input, generating the desired results in
|
| 28 |
-
text format. It uses a DaViT vision encoder to convert images into visual token
|
| 29 |
-
embeddings. These are then concatenated with BERT-generated text embeddings and
|
| 30 |
-
processed by a transformer-based multi-modal encoder-decoder to generate the response.
|
| 31 |
-
"""
|
| 32 |
-
EXAMPLES = [
|
| 33 |
-
["microsoft/Florence-2-large-ft", OBJECT_DETECTION_TASK_NAME, "https://
|
| 34 |
-
["microsoft/Florence-2-large-ft", REGION_PROPOSAL_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-vqa.jpg?download=true", None],
|
| 35 |
-
["microsoft/Florence-2-large-ft", DENSE_REGION_CAPTION_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-vqa.jpg?download=true", None],
|
| 36 |
-
["microsoft/Florence-2-large-ft", CAPTION_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-vqa.jpg?download=true", None],
|
| 37 |
-
["microsoft/Florence-2-large-ft", DETAILED_CAPTION_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-vqa.jpg?download=true", None],
|
| 38 |
-
["microsoft/Florence-2-large-ft", MORE_DETAILED_CAPTION_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-vqa.jpg?download=true", None],
|
| 39 |
-
["microsoft/Florence-2-large-ft", OCR_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/temple-bar-dublin-world-famous-irish-pub.jpg?download=true", None],
|
| 40 |
-
["microsoft/Florence-2-large-ft", OCR_WITH_REGION_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/temple-bar-dublin-world-famous-irish-pub.jpg?download=true", None],
|
| 41 |
-
["microsoft/Florence-2-large-ft", OCR_WITH_REGION_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/temple-bar-dublin-world-famous-irish-pub.jpg?download=true", None],
|
| 42 |
-
]
|
| 43 |
-
|
| 44 |
-
# DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 45 |
-
DEVICE = "cuda"
|
| 46 |
-
MODELS, PROCESSORS = load_models(DEVICE)
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
@spaces.GPU
|
| 50 |
-
def process(
|
| 51 |
-
checkpoint_dropdown,
|
| 52 |
-
task_dropdown,
|
| 53 |
-
image_input,
|
| 54 |
-
image_prompter_input
|
| 55 |
-
) -> Tuple[Optional[Image.Image], Optional[str]]:
|
| 56 |
-
model = MODELS[checkpoint_dropdown]
|
| 57 |
-
processor = PROCESSORS[checkpoint_dropdown]
|
| 58 |
-
task = TASKS[task_dropdown]
|
| 59 |
-
|
| 60 |
-
if task_dropdown in IMAGE_TO_IMAGE_TASK_NAMES:
|
| 61 |
-
_, response = run_inference(
|
| 62 |
-
model, processor, DEVICE, image_input, task)
|
| 63 |
-
detections = sv.Detections.from_lmm(
|
| 64 |
-
lmm=sv.LMM.FLORENCE_2, result=response, resolution_wh=image_input.size)
|
| 65 |
-
return annotate_with_boxes(image_input, detections), None
|
| 66 |
-
|
| 67 |
-
elif task_dropdown in IMAGE_TO_TEXT_TASK_NAMES:
|
| 68 |
-
_, response = run_inference(
|
| 69 |
-
model, processor, DEVICE, image_input, task)
|
| 70 |
-
return None, response[task]
|
| 71 |
-
|
| 72 |
-
elif task_dropdown in IMAGE_PROMPT_TO_IMAGE_TASK_NAMES:
|
| 73 |
-
detections_list = []
|
| 74 |
-
|
| 75 |
-
print(image_prompter_input)
|
| 76 |
-
|
| 77 |
-
image_input = image_prompter_input["image"]
|
| 78 |
-
for prompt in image_prompter_input["points"]:
|
| 79 |
-
text = pre_process_region_task_input(
|
| 80 |
-
prompt=prompt,
|
| 81 |
-
resolution_wh=image_input.size
|
| 82 |
-
)
|
| 83 |
-
_, response = run_inference(
|
| 84 |
-
model, processor, DEVICE, image_input, task, text)
|
| 85 |
-
detections = sv.Detections.from_lmm(
|
| 86 |
-
lmm=sv.LMM.FLORENCE_2, result=response, resolution_wh=image_input.size)
|
| 87 |
-
detections_list.append(detections)
|
| 88 |
-
detections = sv.Detections.merge(detections_list=detections_list)
|
| 89 |
-
detections = post_process_region_output(
|
| 90 |
-
detections=detections, resolution_wh=image_input.size)
|
| 91 |
-
|
| 92 |
-
return annotate_with_boxes(image_input, detections), None
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
with gr.Blocks() as demo:
|
| 96 |
-
gr.Markdown(MARKDOWN)
|
| 97 |
-
with gr.Row():
|
| 98 |
-
checkpoint_dropdown_component = gr.Dropdown(
|
| 99 |
-
choices=CHECKPOINTS,
|
| 100 |
-
value=CHECKPOINTS[0],
|
| 101 |
-
label="Model", info="Select a Florence 2 model to use.",
|
| 102 |
-
interactive=True
|
| 103 |
-
)
|
| 104 |
-
task_dropdown_component = gr.Dropdown(
|
| 105 |
-
choices=TASK_NAMES,
|
| 106 |
-
value=TASK_NAMES[0],
|
| 107 |
-
label="Task", info="Select a task to perform with the model.",
|
| 108 |
-
interactive=True
|
| 109 |
-
)
|
| 110 |
-
|
| 111 |
-
with gr.Row():
|
| 112 |
-
with gr.Column():
|
| 113 |
-
image_input_component = gr.Image(
|
| 114 |
-
type='pil', label='Upload image')
|
| 115 |
-
image_prompter_input_component = ImagePrompter(
|
| 116 |
-
type='pil', label='Image prompt', visible=False)
|
| 117 |
-
submit_button_component = gr.Button(value='Submit', variant='primary')
|
| 118 |
-
|
| 119 |
-
with gr.Column():
|
| 120 |
-
image_output_component = gr.Image(type='pil', label='Image Output')
|
| 121 |
-
text_output_component = gr.Textbox(label='Caption Output', visible=False)
|
| 122 |
-
with gr.Row():
|
| 123 |
-
gr.Examples(
|
| 124 |
-
fn=process,
|
| 125 |
-
examples=EXAMPLES,
|
| 126 |
-
inputs=[
|
| 127 |
-
checkpoint_dropdown_component,
|
| 128 |
-
task_dropdown_component,
|
| 129 |
-
image_input_component,
|
| 130 |
-
image_prompter_input_component
|
| 131 |
-
],
|
| 132 |
-
outputs=[
|
| 133 |
-
image_output_component,
|
| 134 |
-
text_output_component
|
| 135 |
-
],
|
| 136 |
-
run_on_click=True
|
| 137 |
-
)
|
| 138 |
-
|
| 139 |
-
def on_dropdown_change(text):
|
| 140 |
-
return [
|
| 141 |
-
gr.Image(visible=text in IMAGE_INPUT_TASK_NAMES),
|
| 142 |
-
ImagePrompter(visible=text in IMAGE_PROMPTER_INPUT_TASK_NAMES),
|
| 143 |
-
gr.Image(visible=text in IMAGE_OUTPUT_TASK_NAMES),
|
| 144 |
-
gr.Textbox(visible=text in TEXTBOX_OUTPUT_TASK_NAMES)
|
| 145 |
-
]
|
| 146 |
-
|
| 147 |
-
task_dropdown_component.change(
|
| 148 |
-
on_dropdown_change,
|
| 149 |
-
inputs=[task_dropdown_component],
|
| 150 |
-
outputs=[
|
| 151 |
-
image_input_component,
|
| 152 |
-
image_prompter_input_component,
|
| 153 |
-
image_output_component,
|
| 154 |
-
text_output_component
|
| 155 |
-
]
|
| 156 |
-
)
|
| 157 |
-
submit_button_component.click(
|
| 158 |
-
fn=process,
|
| 159 |
-
inputs=[
|
| 160 |
-
checkpoint_dropdown_component,
|
| 161 |
-
task_dropdown_component,
|
| 162 |
-
image_input_component,
|
| 163 |
-
image_prompter_input_component
|
| 164 |
-
],
|
| 165 |
-
outputs=[
|
| 166 |
-
image_output_component,
|
| 167 |
-
text_output_component
|
| 168 |
-
]
|
| 169 |
-
)
|
| 170 |
-
|
| 171 |
demo.launch(debug=False, show_error=True, max_threads=1)
|
|
|
|
| 1 |
+
from typing import Tuple, Optional
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import spaces
|
| 5 |
+
import supervision as sv
|
| 6 |
+
import torch
|
| 7 |
+
from PIL import Image
|
| 8 |
+
from gradio_image_prompter import ImagePrompter
|
| 9 |
+
|
| 10 |
+
from utils.annotate import annotate_with_boxes
|
| 11 |
+
from utils.models import load_models, run_inference, CHECKPOINTS, \
|
| 12 |
+
pre_process_region_task_input, post_process_region_output
|
| 13 |
+
from utils.tasks import TASK_NAMES, TASKS, OBJECT_DETECTION_TASK_NAME, \
|
| 14 |
+
CAPTION_TASK_NAME, DETAILED_CAPTION_TASK_NAME, \
|
| 15 |
+
MORE_DETAILED_CAPTION_TASK_NAME, OCR_WITH_REGION_TASK_NAME, OCR_TASK_NAME, \
|
| 16 |
+
IMAGE_INPUT_TASK_NAMES, IMAGE_PROMPTER_INPUT_TASK_NAMES, IMAGE_OUTPUT_TASK_NAMES, \
|
| 17 |
+
TEXTBOX_OUTPUT_TASK_NAMES, IMAGE_TO_IMAGE_TASK_NAMES, IMAGE_TO_TEXT_TASK_NAMES, \
|
| 18 |
+
IMAGE_PROMPT_TO_IMAGE_TASK_NAMES, REGION_PROPOSAL_TASK_NAME, \
|
| 19 |
+
DENSE_REGION_CAPTION_TASK_NAME
|
| 20 |
+
|
| 21 |
+
MARKDOWN = """
|
| 22 |
+
# Florence-2 🔥
|
| 23 |
+
|
| 24 |
+
Florence-2 is a lightweight vision-language model open-sourced by Microsoft under the
|
| 25 |
+
MIT license. The model demonstrates strong zero-shot and fine-tuning capabilities
|
| 26 |
+
across tasks such as captioning, object detection, grounding, and segmentation.
|
| 27 |
+
The model takes images and task prompts as input, generating the desired results in
|
| 28 |
+
text format. It uses a DaViT vision encoder to convert images into visual token
|
| 29 |
+
embeddings. These are then concatenated with BERT-generated text embeddings and
|
| 30 |
+
processed by a transformer-based multi-modal encoder-decoder to generate the response.
|
| 31 |
+
"""
|
| 32 |
+
EXAMPLES = [
|
| 33 |
+
["microsoft/Florence-2-large-ft", OBJECT_DETECTION_TASK_NAME, "https://media.roboflow.com/notebooks/examples/dog-2.jpeg", None],
|
| 34 |
+
["microsoft/Florence-2-large-ft", REGION_PROPOSAL_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-vqa.jpg?download=true", None],
|
| 35 |
+
["microsoft/Florence-2-large-ft", DENSE_REGION_CAPTION_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-vqa.jpg?download=true", None],
|
| 36 |
+
["microsoft/Florence-2-large-ft", CAPTION_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-vqa.jpg?download=true", None],
|
| 37 |
+
["microsoft/Florence-2-large-ft", DETAILED_CAPTION_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-vqa.jpg?download=true", None],
|
| 38 |
+
["microsoft/Florence-2-large-ft", MORE_DETAILED_CAPTION_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/idefics-vqa.jpg?download=true", None],
|
| 39 |
+
["microsoft/Florence-2-large-ft", OCR_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/temple-bar-dublin-world-famous-irish-pub.jpg?download=true", None],
|
| 40 |
+
["microsoft/Florence-2-large-ft", OCR_WITH_REGION_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/temple-bar-dublin-world-famous-irish-pub.jpg?download=true", None],
|
| 41 |
+
["microsoft/Florence-2-large-ft", OCR_WITH_REGION_TASK_NAME, "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/temple-bar-dublin-world-famous-irish-pub.jpg?download=true", None],
|
| 42 |
+
]
|
| 43 |
+
|
| 44 |
+
# DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 45 |
+
DEVICE = "cuda"
|
| 46 |
+
MODELS, PROCESSORS = load_models(DEVICE)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
@spaces.GPU
|
| 50 |
+
def process(
|
| 51 |
+
checkpoint_dropdown,
|
| 52 |
+
task_dropdown,
|
| 53 |
+
image_input,
|
| 54 |
+
image_prompter_input
|
| 55 |
+
) -> Tuple[Optional[Image.Image], Optional[str]]:
|
| 56 |
+
model = MODELS[checkpoint_dropdown]
|
| 57 |
+
processor = PROCESSORS[checkpoint_dropdown]
|
| 58 |
+
task = TASKS[task_dropdown]
|
| 59 |
+
|
| 60 |
+
if task_dropdown in IMAGE_TO_IMAGE_TASK_NAMES:
|
| 61 |
+
_, response = run_inference(
|
| 62 |
+
model, processor, DEVICE, image_input, task)
|
| 63 |
+
detections = sv.Detections.from_lmm(
|
| 64 |
+
lmm=sv.LMM.FLORENCE_2, result=response, resolution_wh=image_input.size)
|
| 65 |
+
return annotate_with_boxes(image_input, detections), None
|
| 66 |
+
|
| 67 |
+
elif task_dropdown in IMAGE_TO_TEXT_TASK_NAMES:
|
| 68 |
+
_, response = run_inference(
|
| 69 |
+
model, processor, DEVICE, image_input, task)
|
| 70 |
+
return None, response[task]
|
| 71 |
+
|
| 72 |
+
elif task_dropdown in IMAGE_PROMPT_TO_IMAGE_TASK_NAMES:
|
| 73 |
+
detections_list = []
|
| 74 |
+
|
| 75 |
+
print(image_prompter_input)
|
| 76 |
+
|
| 77 |
+
image_input = image_prompter_input["image"]
|
| 78 |
+
for prompt in image_prompter_input["points"]:
|
| 79 |
+
text = pre_process_region_task_input(
|
| 80 |
+
prompt=prompt,
|
| 81 |
+
resolution_wh=image_input.size
|
| 82 |
+
)
|
| 83 |
+
_, response = run_inference(
|
| 84 |
+
model, processor, DEVICE, image_input, task, text)
|
| 85 |
+
detections = sv.Detections.from_lmm(
|
| 86 |
+
lmm=sv.LMM.FLORENCE_2, result=response, resolution_wh=image_input.size)
|
| 87 |
+
detections_list.append(detections)
|
| 88 |
+
detections = sv.Detections.merge(detections_list=detections_list)
|
| 89 |
+
detections = post_process_region_output(
|
| 90 |
+
detections=detections, resolution_wh=image_input.size)
|
| 91 |
+
|
| 92 |
+
return annotate_with_boxes(image_input, detections), None
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
with gr.Blocks() as demo:
|
| 96 |
+
gr.Markdown(MARKDOWN)
|
| 97 |
+
with gr.Row():
|
| 98 |
+
checkpoint_dropdown_component = gr.Dropdown(
|
| 99 |
+
choices=CHECKPOINTS,
|
| 100 |
+
value=CHECKPOINTS[0],
|
| 101 |
+
label="Model", info="Select a Florence 2 model to use.",
|
| 102 |
+
interactive=True
|
| 103 |
+
)
|
| 104 |
+
task_dropdown_component = gr.Dropdown(
|
| 105 |
+
choices=TASK_NAMES,
|
| 106 |
+
value=TASK_NAMES[0],
|
| 107 |
+
label="Task", info="Select a task to perform with the model.",
|
| 108 |
+
interactive=True
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
with gr.Row():
|
| 112 |
+
with gr.Column():
|
| 113 |
+
image_input_component = gr.Image(
|
| 114 |
+
type='pil', label='Upload image')
|
| 115 |
+
image_prompter_input_component = ImagePrompter(
|
| 116 |
+
type='pil', label='Image prompt', visible=False)
|
| 117 |
+
submit_button_component = gr.Button(value='Submit', variant='primary')
|
| 118 |
+
|
| 119 |
+
with gr.Column():
|
| 120 |
+
image_output_component = gr.Image(type='pil', label='Image Output')
|
| 121 |
+
text_output_component = gr.Textbox(label='Caption Output', visible=False)
|
| 122 |
+
with gr.Row():
|
| 123 |
+
gr.Examples(
|
| 124 |
+
fn=process,
|
| 125 |
+
examples=EXAMPLES,
|
| 126 |
+
inputs=[
|
| 127 |
+
checkpoint_dropdown_component,
|
| 128 |
+
task_dropdown_component,
|
| 129 |
+
image_input_component,
|
| 130 |
+
image_prompter_input_component
|
| 131 |
+
],
|
| 132 |
+
outputs=[
|
| 133 |
+
image_output_component,
|
| 134 |
+
text_output_component
|
| 135 |
+
],
|
| 136 |
+
run_on_click=True
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
def on_dropdown_change(text):
|
| 140 |
+
return [
|
| 141 |
+
gr.Image(visible=text in IMAGE_INPUT_TASK_NAMES),
|
| 142 |
+
ImagePrompter(visible=text in IMAGE_PROMPTER_INPUT_TASK_NAMES),
|
| 143 |
+
gr.Image(visible=text in IMAGE_OUTPUT_TASK_NAMES),
|
| 144 |
+
gr.Textbox(visible=text in TEXTBOX_OUTPUT_TASK_NAMES)
|
| 145 |
+
]
|
| 146 |
+
|
| 147 |
+
task_dropdown_component.change(
|
| 148 |
+
on_dropdown_change,
|
| 149 |
+
inputs=[task_dropdown_component],
|
| 150 |
+
outputs=[
|
| 151 |
+
image_input_component,
|
| 152 |
+
image_prompter_input_component,
|
| 153 |
+
image_output_component,
|
| 154 |
+
text_output_component
|
| 155 |
+
]
|
| 156 |
+
)
|
| 157 |
+
submit_button_component.click(
|
| 158 |
+
fn=process,
|
| 159 |
+
inputs=[
|
| 160 |
+
checkpoint_dropdown_component,
|
| 161 |
+
task_dropdown_component,
|
| 162 |
+
image_input_component,
|
| 163 |
+
image_prompter_input_component
|
| 164 |
+
],
|
| 165 |
+
outputs=[
|
| 166 |
+
image_output_component,
|
| 167 |
+
text_output_component
|
| 168 |
+
]
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
demo.launch(debug=False, show_error=True, max_threads=1)
|