Spaces:
Sleeping
Sleeping
File size: 13,128 Bytes
f280f9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 |
#!/usr/bin/env python3
"""
Madverse Music API
AI Music Detection Service
"""
from fastapi import FastAPI, HTTPException, BackgroundTasks, Header, Depends
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
from pydantic import BaseModel, HttpUrl
import torch
import librosa
import tempfile
import os
import requests
from pathlib import Path
import time
from typing import Optional, Annotated, List
import uvicorn
import asyncio
# Initialize FastAPI app
app = FastAPI(
title="Madverse Music API",
description="AI-powered music detection API to identify AI-generated vs human-created music",
version="1.0.0",
docs_url="/",
redoc_url="/docs"
)
# API Key Configuration
API_KEY = os.getenv("MADVERSE_API_KEY", "madverse-music-api-key-2024") # Default key for demo
# Global model variable
model = None
async def verify_api_key(x_api_key: Annotated[str | None, Header()] = None):
"""Verify API key from header"""
if x_api_key is None:
raise HTTPException(
status_code=401,
detail="Missing API key. Please provide a valid X-API-Key header."
)
if x_api_key != API_KEY:
raise HTTPException(
status_code=401,
detail="Invalid API key. Please provide a valid X-API-Key header."
)
return x_api_key
class MusicAnalysisRequest(BaseModel):
urls: List[HttpUrl]
def check_api_key_first(request: MusicAnalysisRequest, x_api_key: Annotated[str | None, Header()] = None):
"""Check API key before processing request"""
if x_api_key is None:
raise HTTPException(
status_code=401,
detail="Missing API key. Please provide a valid X-API-Key header."
)
if x_api_key != API_KEY:
raise HTTPException(
status_code=401,
detail="Invalid API key. Please provide a valid X-API-Key header."
)
return request
class FileAnalysisResult(BaseModel):
url: str
success: bool
classification: Optional[str] = None # "Real" or "Fake"
confidence: Optional[float] = None # 0.0 to 1.0
probability: Optional[float] = None # Raw sigmoid probability
raw_score: Optional[float] = None # Raw model output
duration: Optional[float] = None # Audio duration in seconds
message: str
processing_time: Optional[float] = None
error: Optional[str] = None
class MusicAnalysisResponse(BaseModel):
success: bool
total_files: int
successful_analyses: int
failed_analyses: int
results: List[FileAnalysisResult]
total_processing_time: float
message: str
class ErrorResponse(BaseModel):
success: bool
error: str
message: str
@app.on_event("startup")
async def load_model():
"""Load the AI model on startup"""
global model
try:
from sonics import HFAudioClassifier
print("π Loading Madverse Music AI model...")
model = HFAudioClassifier.from_pretrained("awsaf49/sonics-spectttra-alpha-120s")
model.eval()
print("β
Model loaded successfully!")
except Exception as e:
print(f"β Failed to load model: {e}")
raise
def cleanup_file(file_path: str):
"""Background task to cleanup temporary files"""
try:
if os.path.exists(file_path):
os.unlink(file_path)
except:
pass
def download_audio(url: str, max_size_mb: int = 100) -> str:
"""Download audio file from URL with size validation"""
try:
# Check if URL is accessible
response = requests.head(str(url), timeout=10)
# Check content size
content_length = response.headers.get('Content-Length')
if content_length and int(content_length) > max_size_mb * 1024 * 1024:
raise HTTPException(
status_code=413,
detail=f"File too large. Maximum size: {max_size_mb}MB"
)
# Download file
response = requests.get(str(url), timeout=30, stream=True)
response.raise_for_status()
# Create temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix='.tmp') as tmp_file:
downloaded_size = 0
for chunk in response.iter_content(chunk_size=8192):
downloaded_size += len(chunk)
if downloaded_size > max_size_mb * 1024 * 1024:
os.unlink(tmp_file.name)
raise HTTPException(
status_code=413,
detail=f"File too large. Maximum size: {max_size_mb}MB"
)
tmp_file.write(chunk)
return tmp_file.name
except requests.exceptions.RequestException as e:
raise HTTPException(
status_code=400,
detail=f"Failed to download audio: {str(e)}"
)
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Error downloading file: {str(e)}"
)
def classify_audio(file_path: str) -> dict:
"""Classify audio file using the AI model"""
try:
# Load audio (model uses 16kHz sample rate)
audio, sr = librosa.load(file_path, sr=16000)
# Convert to tensor and add batch dimension
audio_tensor = torch.FloatTensor(audio).unsqueeze(0)
# Get prediction
with torch.no_grad():
output = model(audio_tensor)
# Convert logit to probability using sigmoid
prob = torch.sigmoid(output).item()
# Classify: prob < 0.5 = Real, prob >= 0.5 = Fake
if prob < 0.5:
classification = "Real"
confidence = (1 - prob) * 2 # Convert to 0-1 scale
else:
classification = "Fake"
confidence = (prob - 0.5) * 2 # Convert to 0-1 scale
return {
"classification": classification,
"confidence": min(confidence, 1.0), # Cap at 1.0
"probability": prob,
"raw_score": output.item(),
"duration": len(audio) / sr
}
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Error analyzing audio: {str(e)}"
)
async def process_single_url(url: str) -> FileAnalysisResult:
"""Process a single URL and return result"""
start_time = time.time()
try:
# Download audio file
temp_file = download_audio(url)
# Classify audio
result = classify_audio(temp_file)
# Calculate processing time
processing_time = time.time() - start_time
# Cleanup file in background
try:
os.unlink(temp_file)
except:
pass
# Prepare response
emoji = "π€" if result["classification"] == "Real" else "π€"
message = f'{emoji} Detected as {result["classification"].lower()} music'
return FileAnalysisResult(
url=str(url),
success=True,
classification=result["classification"],
confidence=result["confidence"],
probability=result["probability"],
raw_score=result["raw_score"],
duration=result["duration"],
message=message,
processing_time=processing_time
)
except Exception as e:
processing_time = time.time() - start_time
error_msg = str(e)
return FileAnalysisResult(
url=str(url),
success=False,
message=f"β Failed to process: {error_msg}",
processing_time=processing_time,
error=error_msg
)
@app.post("/analyze", response_model=MusicAnalysisResponse)
async def analyze_music(
request: MusicAnalysisRequest = Depends(check_api_key_first)
):
"""
Analyze music from URL(s) to detect if it's AI-generated or human-created
- **urls**: Array of direct URLs to audio files (MP3, WAV, FLAC, M4A, OGG)
- Returns classification results for each file
- Processes files concurrently for better performance when multiple URLs provided
"""
start_time = time.time()
if not model:
raise HTTPException(
status_code=503,
detail="Model not loaded. Please try again later."
)
if len(request.urls) > 50: # Limit processing
raise HTTPException(
status_code=400,
detail="Too many URLs. Maximum 50 files per request."
)
if len(request.urls) == 0:
raise HTTPException(
status_code=400,
detail="At least one URL is required."
)
try:
# Process all URLs concurrently with limited concurrency
semaphore = asyncio.Semaphore(5) # Limit to 5 concurrent downloads
async def process_with_semaphore(url):
async with semaphore:
return await process_single_url(str(url))
# Create tasks for all URLs
tasks = [process_with_semaphore(url) for url in request.urls]
# Wait for all tasks to complete
results = await asyncio.gather(*tasks, return_exceptions=True)
# Process results and handle any exceptions
processed_results = []
successful_count = 0
failed_count = 0
for i, result in enumerate(results):
if isinstance(result, Exception):
# Handle exception case
processed_results.append(FileAnalysisResult(
url=str(request.urls[i]),
success=False,
message=f"β Processing failed: {str(result)}",
error=str(result)
))
failed_count += 1
else:
processed_results.append(result)
if result.success:
successful_count += 1
else:
failed_count += 1
# Calculate total processing time
total_processing_time = time.time() - start_time
# Prepare summary message
total_files = len(request.urls)
if total_files == 1:
# Single file message
if successful_count == 1:
message = processed_results[0].message
else:
message = processed_results[0].message
else:
# Multiple files message
if successful_count == total_files:
message = f"β
Successfully analyzed all {total_files} files"
elif successful_count > 0:
message = f"β οΈ Analyzed {successful_count}/{total_files} files successfully"
else:
message = f"β Failed to analyze any files"
return MusicAnalysisResponse(
success=successful_count > 0,
total_files=total_files,
successful_analyses=successful_count,
failed_analyses=failed_count,
results=processed_results,
total_processing_time=total_processing_time,
message=message
)
except Exception as e:
raise HTTPException(
status_code=500,
detail=f"Internal server error during processing: {str(e)}"
)
@app.get("/health")
async def health_check():
"""Health check endpoint"""
return {
"status": "healthy",
"model_loaded": model is not None,
"service": "Madverse Music API"
}
@app.get("/info")
async def get_info():
"""Get API information"""
return {
"name": "Madverse Music API",
"version": "1.0.0",
"description": "AI-powered music detection to identify AI-generated vs human-created music",
"model": "SpecTTTra-Ξ± (120s)",
"accuracy": {
"f1_score": 0.97,
"sensitivity": 0.96,
"specificity": 0.99
},
"supported_formats": ["MP3", "WAV", "FLAC", "M4A", "OGG"],
"max_file_size": "100MB",
"max_duration": "120 seconds",
"authentication": {
"required": True,
"type": "API Key",
"header": "X-API-Key",
"example": "X-API-Key: your-api-key-here"
},
"usage": {
"curl_example": "curl -X POST 'http://localhost:8000/analyze' -H 'X-API-Key: your-api-key' -H 'Content-Type: application/json' -d '{\"url\":\"https://example.com/song.mp3\"}'"
}
}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000) |