#!/usr/bin/env python3 """ Madverse Music API AI Music Detection Service """ from fastapi import FastAPI, HTTPException, BackgroundTasks, Header, Depends from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials from pydantic import BaseModel, HttpUrl import torch import librosa import tempfile import os import requests from pathlib import Path import time from typing import Optional, Annotated, List import uvicorn import asyncio # Initialize FastAPI app app = FastAPI( title="Madverse Music API", description="AI-powered music detection API to identify AI-generated vs human-created music", version="1.0.0", docs_url="/", redoc_url="/docs" ) # API Key Configuration API_KEY = os.getenv("MADVERSE_API_KEY", "madverse-music-api-key-2024") # Default key for demo # Global model variable model = None async def verify_api_key(x_api_key: Annotated[str | None, Header()] = None): """Verify API key from header""" if x_api_key is None: raise HTTPException( status_code=401, detail="Missing API key. Please provide a valid X-API-Key header." ) if x_api_key != API_KEY: raise HTTPException( status_code=401, detail="Invalid API key. Please provide a valid X-API-Key header." ) return x_api_key class MusicAnalysisRequest(BaseModel): urls: List[HttpUrl] def check_api_key_first(request: MusicAnalysisRequest, x_api_key: Annotated[str | None, Header()] = None): """Check API key before processing request""" if x_api_key is None: raise HTTPException( status_code=401, detail="Missing API key. Please provide a valid X-API-Key header." ) if x_api_key != API_KEY: raise HTTPException( status_code=401, detail="Invalid API key. Please provide a valid X-API-Key header." ) return request class FileAnalysisResult(BaseModel): url: str success: bool classification: Optional[str] = None # "Real" or "Fake" confidence: Optional[float] = None # 0.0 to 1.0 probability: Optional[float] = None # Raw sigmoid probability raw_score: Optional[float] = None # Raw model output duration: Optional[float] = None # Audio duration in seconds message: str processing_time: Optional[float] = None error: Optional[str] = None class MusicAnalysisResponse(BaseModel): success: bool total_files: int successful_analyses: int failed_analyses: int results: List[FileAnalysisResult] total_processing_time: float message: str class ErrorResponse(BaseModel): success: bool error: str message: str @app.on_event("startup") async def load_model(): """Load the AI model on startup""" global model try: from sonics import HFAudioClassifier print("🔄 Loading Madverse Music AI model...") model = HFAudioClassifier.from_pretrained("awsaf49/sonics-spectttra-alpha-120s") model.eval() print("✅ Model loaded successfully!") except Exception as e: print(f"❌ Failed to load model: {e}") raise def cleanup_file(file_path: str): """Background task to cleanup temporary files""" try: if os.path.exists(file_path): os.unlink(file_path) except: pass def download_audio(url: str, max_size_mb: int = 100) -> str: """Download audio file from URL with size validation""" try: # Check if URL is accessible response = requests.head(str(url), timeout=10) # Check content size content_length = response.headers.get('Content-Length') if content_length and int(content_length) > max_size_mb * 1024 * 1024: raise HTTPException( status_code=413, detail=f"File too large. Maximum size: {max_size_mb}MB" ) # Download file response = requests.get(str(url), timeout=30, stream=True) response.raise_for_status() # Create temporary file with tempfile.NamedTemporaryFile(delete=False, suffix='.tmp') as tmp_file: downloaded_size = 0 for chunk in response.iter_content(chunk_size=8192): downloaded_size += len(chunk) if downloaded_size > max_size_mb * 1024 * 1024: os.unlink(tmp_file.name) raise HTTPException( status_code=413, detail=f"File too large. Maximum size: {max_size_mb}MB" ) tmp_file.write(chunk) return tmp_file.name except requests.exceptions.RequestException as e: raise HTTPException( status_code=400, detail=f"Failed to download audio: {str(e)}" ) except Exception as e: raise HTTPException( status_code=500, detail=f"Error downloading file: {str(e)}" ) def classify_audio(file_path: str) -> dict: """Classify audio file using the AI model""" try: # Load audio (model uses 16kHz sample rate) audio, sr = librosa.load(file_path, sr=16000) # Convert to tensor and add batch dimension audio_tensor = torch.FloatTensor(audio).unsqueeze(0) # Get prediction with torch.no_grad(): output = model(audio_tensor) # Convert logit to probability using sigmoid prob = torch.sigmoid(output).item() # Classify: prob < 0.5 = Real, prob >= 0.5 = Fake if prob < 0.5: classification = "Real" confidence = (1 - prob) * 2 # Convert to 0-1 scale else: classification = "Fake" confidence = (prob - 0.5) * 2 # Convert to 0-1 scale return { "classification": classification, "confidence": min(confidence, 1.0), # Cap at 1.0 "probability": prob, "raw_score": output.item(), "duration": len(audio) / sr } except Exception as e: raise HTTPException( status_code=500, detail=f"Error analyzing audio: {str(e)}" ) async def process_single_url(url: str) -> FileAnalysisResult: """Process a single URL and return result""" start_time = time.time() try: # Download audio file temp_file = download_audio(url) # Classify audio result = classify_audio(temp_file) # Calculate processing time processing_time = time.time() - start_time # Cleanup file in background try: os.unlink(temp_file) except: pass # Prepare response emoji = "🎤" if result["classification"] == "Real" else "🤖" message = f'{emoji} Detected as {result["classification"].lower()} music' return FileAnalysisResult( url=str(url), success=True, classification=result["classification"], confidence=result["confidence"], probability=result["probability"], raw_score=result["raw_score"], duration=result["duration"], message=message, processing_time=processing_time ) except Exception as e: processing_time = time.time() - start_time error_msg = str(e) return FileAnalysisResult( url=str(url), success=False, message=f"❌ Failed to process: {error_msg}", processing_time=processing_time, error=error_msg ) @app.post("/analyze", response_model=MusicAnalysisResponse) async def analyze_music( request: MusicAnalysisRequest = Depends(check_api_key_first) ): """ Analyze music from URL(s) to detect if it's AI-generated or human-created - **urls**: Array of direct URLs to audio files (MP3, WAV, FLAC, M4A, OGG) - Returns classification results for each file - Processes files concurrently for better performance when multiple URLs provided """ start_time = time.time() if not model: raise HTTPException( status_code=503, detail="Model not loaded. Please try again later." ) if len(request.urls) > 50: # Limit processing raise HTTPException( status_code=400, detail="Too many URLs. Maximum 50 files per request." ) if len(request.urls) == 0: raise HTTPException( status_code=400, detail="At least one URL is required." ) try: # Process all URLs concurrently with limited concurrency semaphore = asyncio.Semaphore(5) # Limit to 5 concurrent downloads async def process_with_semaphore(url): async with semaphore: return await process_single_url(str(url)) # Create tasks for all URLs tasks = [process_with_semaphore(url) for url in request.urls] # Wait for all tasks to complete results = await asyncio.gather(*tasks, return_exceptions=True) # Process results and handle any exceptions processed_results = [] successful_count = 0 failed_count = 0 for i, result in enumerate(results): if isinstance(result, Exception): # Handle exception case processed_results.append(FileAnalysisResult( url=str(request.urls[i]), success=False, message=f"❌ Processing failed: {str(result)}", error=str(result) )) failed_count += 1 else: processed_results.append(result) if result.success: successful_count += 1 else: failed_count += 1 # Calculate total processing time total_processing_time = time.time() - start_time # Prepare summary message total_files = len(request.urls) if total_files == 1: # Single file message if successful_count == 1: message = processed_results[0].message else: message = processed_results[0].message else: # Multiple files message if successful_count == total_files: message = f"✅ Successfully analyzed all {total_files} files" elif successful_count > 0: message = f"⚠️ Analyzed {successful_count}/{total_files} files successfully" else: message = f"❌ Failed to analyze any files" return MusicAnalysisResponse( success=successful_count > 0, total_files=total_files, successful_analyses=successful_count, failed_analyses=failed_count, results=processed_results, total_processing_time=total_processing_time, message=message ) except Exception as e: raise HTTPException( status_code=500, detail=f"Internal server error during processing: {str(e)}" ) @app.get("/health") async def health_check(): """Health check endpoint""" return { "status": "healthy", "model_loaded": model is not None, "service": "Madverse Music API" } @app.get("/info") async def get_info(): """Get API information""" return { "name": "Madverse Music API", "version": "1.0.0", "description": "AI-powered music detection to identify AI-generated vs human-created music", "model": "SpecTTTra-α (120s)", "accuracy": { "f1_score": 0.97, "sensitivity": 0.96, "specificity": 0.99 }, "supported_formats": ["MP3", "WAV", "FLAC", "M4A", "OGG"], "max_file_size": "100MB", "max_duration": "120 seconds", "authentication": { "required": True, "type": "API Key", "header": "X-API-Key", "example": "X-API-Key: your-api-key-here" }, "usage": { "curl_example": "curl -X POST 'http://localhost:8000/analyze' -H 'X-API-Key: your-api-key' -H 'Content-Type: application/json' -d '{\"url\":\"https://example.com/song.mp3\"}'" } } if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000)