Spaces:
Running
Running
clean model.py
Browse files
model.py
CHANGED
|
@@ -1,16 +1,6 @@
|
|
| 1 |
import torch
|
| 2 |
import lightning
|
| 3 |
-
# from torch.utils.data import Dataset
|
| 4 |
-
# from typing import Any, Dict
|
| 5 |
-
# import argparse
|
| 6 |
from pydantic import BaseModel
|
| 7 |
-
# from get_dataset_dictionaries import get_dict_pair
|
| 8 |
-
# import os
|
| 9 |
-
# import shutil
|
| 10 |
-
|
| 11 |
-
# import optuna
|
| 12 |
-
# from optuna.integration import PyTorchLightningPruningCallback
|
| 13 |
-
# from functools import partial
|
| 14 |
|
| 15 |
class FFNModule(torch.nn.Module):
|
| 16 |
"""
|
|
@@ -102,297 +92,4 @@ class FeatureNormPredictor(lightning.LightningModule):
|
|
| 102 |
|
| 103 |
def load_model(self, path: str):
|
| 104 |
self.model.load_state_dict(torch.load(path))
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
# class HiddenStateFeatureNormDataset(Dataset):
|
| 108 |
-
# def __init__(
|
| 109 |
-
# self,
|
| 110 |
-
# input_embeddings: Dict[str, torch.Tensor],
|
| 111 |
-
# feature_norms: Dict[str, torch.Tensor],
|
| 112 |
-
# ):
|
| 113 |
-
|
| 114 |
-
# # Invariant: input_embeddings and target_feature_norms have exactly the same keys
|
| 115 |
-
# # this should be done by the train/test split and upstream data processing
|
| 116 |
-
# assert(input_embeddings.keys() == feature_norms.keys())
|
| 117 |
-
|
| 118 |
-
# self.words = list(input_embeddings.keys())
|
| 119 |
-
# self.input_embeddings = torch.stack([
|
| 120 |
-
# input_embeddings[word] for word in self.words
|
| 121 |
-
# ])
|
| 122 |
-
# self.feature_norms = torch.stack([
|
| 123 |
-
# feature_norms[word] for word in self.words
|
| 124 |
-
# ])
|
| 125 |
-
|
| 126 |
-
# def __len__(self):
|
| 127 |
-
# return len(self.words)
|
| 128 |
-
|
| 129 |
-
# def __getitem__(self, idx):
|
| 130 |
-
# return self.input_embeddings[idx], self.feature_norms[idx]
|
| 131 |
-
|
| 132 |
-
# # this is used when not optimizing
|
| 133 |
-
# def train(args : Dict[str, Any]):
|
| 134 |
-
|
| 135 |
-
# # input_embeddings = torch.load(args.input_embeddings)
|
| 136 |
-
# # feature_norms = torch.load(args.feature_norms)
|
| 137 |
-
# # words = list(input_embeddings.keys())
|
| 138 |
-
|
| 139 |
-
# input_embeddings, feature_norms, norm_list = get_dict_pair(
|
| 140 |
-
# args.norm,
|
| 141 |
-
# args.embedding_dir,
|
| 142 |
-
# args.lm_layer,
|
| 143 |
-
# translated= False if args.raw_buchanan else True,
|
| 144 |
-
# normalized= True if args.normal_buchanan else False
|
| 145 |
-
# )
|
| 146 |
-
# norms_file = open(args.save_dir+"/"+args.save_model_name+'.txt','w')
|
| 147 |
-
# norms_file.write("\n".join(norm_list))
|
| 148 |
-
# norms_file.close()
|
| 149 |
-
|
| 150 |
-
# words = list(input_embeddings.keys())
|
| 151 |
-
|
| 152 |
-
# model = FeatureNormPredictor(
|
| 153 |
-
# FFNParams(
|
| 154 |
-
# input_size=input_embeddings[words[0]].shape[0],
|
| 155 |
-
# output_size=feature_norms[words[0]].shape[0],
|
| 156 |
-
# hidden_size=args.hidden_size,
|
| 157 |
-
# num_layers=args.num_layers,
|
| 158 |
-
# dropout=args.dropout,
|
| 159 |
-
# ),
|
| 160 |
-
# TrainingParams(
|
| 161 |
-
# num_epochs=args.num_epochs,
|
| 162 |
-
# batch_size=args.batch_size,
|
| 163 |
-
# learning_rate=args.learning_rate,
|
| 164 |
-
# weight_decay=args.weight_decay,
|
| 165 |
-
# ),
|
| 166 |
-
# )
|
| 167 |
-
|
| 168 |
-
# # train/val split
|
| 169 |
-
# train_size = int(len(words) * 0.8)
|
| 170 |
-
# valid_size = len(words) - train_size
|
| 171 |
-
# train_words, validation_words = torch.utils.data.random_split(words, [train_size, valid_size])
|
| 172 |
-
|
| 173 |
-
# # TODO: Methodology Decision: should we be normalizing the hidden states/feature norms?
|
| 174 |
-
# train_embeddings = {word: input_embeddings[word] for word in train_words}
|
| 175 |
-
# train_feature_norms = {word: feature_norms[word] for word in train_words}
|
| 176 |
-
# validation_embeddings = {word: input_embeddings[word] for word in validation_words}
|
| 177 |
-
# validation_feature_norms = {word: feature_norms[word] for word in validation_words}
|
| 178 |
-
|
| 179 |
-
# train_dataset = HiddenStateFeatureNormDataset(train_embeddings, train_feature_norms)
|
| 180 |
-
# train_dataloader = torch.utils.data.DataLoader(
|
| 181 |
-
# train_dataset,
|
| 182 |
-
# batch_size=args.batch_size,
|
| 183 |
-
# shuffle=True,
|
| 184 |
-
# )
|
| 185 |
-
# validation_dataset = HiddenStateFeatureNormDataset(validation_embeddings, validation_feature_norms)
|
| 186 |
-
# validation_dataloader = torch.utils.data.DataLoader(
|
| 187 |
-
# validation_dataset,
|
| 188 |
-
# batch_size=args.batch_size,
|
| 189 |
-
# shuffle=True,
|
| 190 |
-
# )
|
| 191 |
-
|
| 192 |
-
# callbacks = [
|
| 193 |
-
# lightning.pytorch.callbacks.ModelCheckpoint(
|
| 194 |
-
# save_last=True,
|
| 195 |
-
# dirpath=args.save_dir,
|
| 196 |
-
# filename=args.save_model_name,
|
| 197 |
-
# ),
|
| 198 |
-
# ]
|
| 199 |
-
# if args.early_stopping is not None:
|
| 200 |
-
# callbacks.append(lightning.pytorch.callbacks.EarlyStopping(
|
| 201 |
-
# monitor="val_loss",
|
| 202 |
-
# patience=args.early_stopping,
|
| 203 |
-
# mode='min',
|
| 204 |
-
# min_delta=0.0
|
| 205 |
-
# ))
|
| 206 |
-
|
| 207 |
-
# #TODO Design Decision - other trainer args? Is device necessary?
|
| 208 |
-
# # cpu is fine for the scale of this model - only a few layers and a few hundred words
|
| 209 |
-
# trainer = lightning.Trainer(
|
| 210 |
-
# max_epochs=args.num_epochs,
|
| 211 |
-
# callbacks=callbacks,
|
| 212 |
-
# accelerator="cpu",
|
| 213 |
-
# log_every_n_steps=7
|
| 214 |
-
# )
|
| 215 |
-
|
| 216 |
-
# trainer.fit(model, train_dataloader, validation_dataloader)
|
| 217 |
-
|
| 218 |
-
# trainer.validate(model, validation_dataloader)
|
| 219 |
-
|
| 220 |
-
# return model
|
| 221 |
-
|
| 222 |
-
# # this is used when optimizing
|
| 223 |
-
# def objective(trial: optuna.trial.Trial, args: Dict[str, Any]) -> float:
|
| 224 |
-
# # optimizing hidden size, batch size, and learning rate
|
| 225 |
-
# input_embeddings, feature_norms, norm_list = get_dict_pair(
|
| 226 |
-
# args.norm,
|
| 227 |
-
# args.embedding_dir,
|
| 228 |
-
# args.lm_layer,
|
| 229 |
-
# translated= False if args.raw_buchanan else True,
|
| 230 |
-
# normalized= True if args.normal_buchanan else False
|
| 231 |
-
# )
|
| 232 |
-
# norms_file = open(args.save_dir+"/"+args.save_model_name+'.txt','w')
|
| 233 |
-
# norms_file.write("\n".join(norm_list))
|
| 234 |
-
# norms_file.close()
|
| 235 |
-
|
| 236 |
-
# words = list(input_embeddings.keys())
|
| 237 |
-
# input_size=input_embeddings[words[0]].shape[0]
|
| 238 |
-
# output_size=feature_norms[words[0]].shape[0]
|
| 239 |
-
# min_size = min(output_size, input_size)
|
| 240 |
-
# max_size = min(output_size, 2*input_size)if min_size == input_size else min(2*output_size, input_size)
|
| 241 |
-
# hidden_size = trial.suggest_int("hidden_size", min_size, max_size, log=True)
|
| 242 |
-
# batch_size = trial.suggest_int("batch_size", 16, 128, log=True)
|
| 243 |
-
# learning_rate = trial.suggest_float("learning_rate", 1e-6, 1, log=True)
|
| 244 |
-
|
| 245 |
-
# model = FeatureNormPredictor(
|
| 246 |
-
# FFNParams(
|
| 247 |
-
# input_size=input_size,
|
| 248 |
-
# output_size=output_size,
|
| 249 |
-
# hidden_size=hidden_size,
|
| 250 |
-
# num_layers=args.num_layers,
|
| 251 |
-
# dropout=args.dropout,
|
| 252 |
-
# ),
|
| 253 |
-
# TrainingParams(
|
| 254 |
-
# num_epochs=args.num_epochs,
|
| 255 |
-
# batch_size=batch_size,
|
| 256 |
-
# learning_rate=learning_rate,
|
| 257 |
-
# weight_decay=args.weight_decay,
|
| 258 |
-
# ),
|
| 259 |
-
# )
|
| 260 |
-
|
| 261 |
-
# # train/val split
|
| 262 |
-
# train_size = int(len(words) * 0.8)
|
| 263 |
-
# valid_size = len(words) - train_size
|
| 264 |
-
# train_words, validation_words = torch.utils.data.random_split(words, [train_size, valid_size])
|
| 265 |
-
|
| 266 |
-
# train_embeddings = {word: input_embeddings[word] for word in train_words}
|
| 267 |
-
# train_feature_norms = {word: feature_norms[word] for word in train_words}
|
| 268 |
-
# validation_embeddings = {word: input_embeddings[word] for word in validation_words}
|
| 269 |
-
# validation_feature_norms = {word: feature_norms[word] for word in validation_words}
|
| 270 |
-
|
| 271 |
-
# train_dataset = HiddenStateFeatureNormDataset(train_embeddings, train_feature_norms)
|
| 272 |
-
# train_dataloader = torch.utils.data.DataLoader(
|
| 273 |
-
# train_dataset,
|
| 274 |
-
# batch_size=args.batch_size,
|
| 275 |
-
# shuffle=True,
|
| 276 |
-
# )
|
| 277 |
-
# validation_dataset = HiddenStateFeatureNormDataset(validation_embeddings, validation_feature_norms)
|
| 278 |
-
# validation_dataloader = torch.utils.data.DataLoader(
|
| 279 |
-
# validation_dataset,
|
| 280 |
-
# batch_size=args.batch_size,
|
| 281 |
-
# shuffle=True,
|
| 282 |
-
# )
|
| 283 |
-
|
| 284 |
-
# callbacks = [
|
| 285 |
-
# # all trial models will be saved in temporary directory
|
| 286 |
-
# lightning.pytorch.callbacks.ModelCheckpoint(
|
| 287 |
-
# save_last=True,
|
| 288 |
-
# dirpath=os.path.join(args.save_dir,'optuna_trials'),
|
| 289 |
-
# filename="{}".format(trial.number)
|
| 290 |
-
# ),
|
| 291 |
-
# ]
|
| 292 |
-
|
| 293 |
-
# if args.prune is not None:
|
| 294 |
-
# callbacks.append(PyTorchLightningPruningCallback(
|
| 295 |
-
# trial,
|
| 296 |
-
# monitor='val_loss'
|
| 297 |
-
# ))
|
| 298 |
-
|
| 299 |
-
# if args.early_stopping is not None:
|
| 300 |
-
# callbacks.append(lightning.pytorch.callbacks.EarlyStopping(
|
| 301 |
-
# monitor="val_loss",
|
| 302 |
-
# patience=args.early_stopping,
|
| 303 |
-
# mode='min',
|
| 304 |
-
# min_delta=0.0
|
| 305 |
-
# ))
|
| 306 |
-
# # note that if optimizing is chosen, will automatically not implement vanilla early stopping
|
| 307 |
-
# #TODO Design Decision - other trainer args? Is device necessary?
|
| 308 |
-
# # cpu is fine for the scale of this model - only a few layers and a few hundred words
|
| 309 |
-
# trainer = lightning.Trainer(
|
| 310 |
-
# max_epochs=args.num_epochs,
|
| 311 |
-
# callbacks=callbacks,
|
| 312 |
-
# accelerator="cpu",
|
| 313 |
-
# log_every_n_steps=7,
|
| 314 |
-
# # enable_checkpointing=False
|
| 315 |
-
# )
|
| 316 |
-
|
| 317 |
-
# trainer.fit(model, train_dataloader, validation_dataloader)
|
| 318 |
-
|
| 319 |
-
# trainer.validate(model, validation_dataloader)
|
| 320 |
-
|
| 321 |
-
# return trainer.callback_metrics['val_loss'].item()
|
| 322 |
-
|
| 323 |
-
# if __name__ == "__main__":
|
| 324 |
-
# # parse args
|
| 325 |
-
# parser = argparse.ArgumentParser()
|
| 326 |
-
# #TODO: Design Decision: Should we input paths, to the pre-extracted layers, or the model/layer we want to generate them from
|
| 327 |
-
# # required inputs
|
| 328 |
-
# parser.add_argument("--norm", type=str, required=True, help="feature norm set to use")
|
| 329 |
-
# parser.add_argument("--embedding_dir", type=str, required=True, help=" directory containing embeddings")
|
| 330 |
-
# parser.add_argument("--lm_layer", type=int, required=True, help="layer of embeddings to use")
|
| 331 |
-
# # if user selects optimize, hidden_size, batch_size and learning_rate will be optimized.
|
| 332 |
-
# parser.add_argument("--optimize", action="store_true", help="optimize hyperparameters for training")
|
| 333 |
-
# parser.add_argument("--prune", action="store_true", help="prune unpromising trials when optimizing")
|
| 334 |
-
# # optional hyperparameter specs
|
| 335 |
-
# parser.add_argument("--num_layers", type=int, default=2, help="number of layers in FFN")
|
| 336 |
-
# parser.add_argument("--hidden_size", type=int, default=100, help="hidden size of FFN")
|
| 337 |
-
# parser.add_argument("--dropout", type=float, default=0.1, help="dropout rate of FFN")
|
| 338 |
-
# # set this to at least 100 if doing early stopping
|
| 339 |
-
# parser.add_argument("--num_epochs", type=int, default=10, help="number of epochs to train for")
|
| 340 |
-
# parser.add_argument("--batch_size", type=int, default=32, help="batch size for training")
|
| 341 |
-
# parser.add_argument("--learning_rate", type=float, default=0.001, help="learning rate for training")
|
| 342 |
-
# parser.add_argument("--weight_decay", type=float, default=0.0, help="weight decay for training")
|
| 343 |
-
# parser.add_argument("--early_stopping", type=int, default=None, help="number of epochs to wait for early stopping")
|
| 344 |
-
# # optional dataset specs, for buchanan really
|
| 345 |
-
# parser.add_argument('--raw_buchanan', action="store_true", help="do not use translated values for buchanan")
|
| 346 |
-
# parser.add_argument('--normal_buchanan', action="store_true", help="use normalized features for buchanan")
|
| 347 |
-
# # required for output
|
| 348 |
-
# parser.add_argument("--save_dir", type=str, required=True, help="directory to save model to")
|
| 349 |
-
# parser.add_argument("--save_model_name", type=str, required=True, help="name of model to save")
|
| 350 |
-
|
| 351 |
-
# args = parser.parse_args()
|
| 352 |
-
|
| 353 |
-
# if args.early_stopping is not None:
|
| 354 |
-
# args.num_epochs = max(50, args.num_epochs)
|
| 355 |
-
|
| 356 |
-
# torch.manual_seed(10)
|
| 357 |
-
|
| 358 |
-
# if args.optimize:
|
| 359 |
-
# # call optimizer code here
|
| 360 |
-
# print("optimizing for learning rate, batch size, and hidden size")
|
| 361 |
-
# pruner = optuna.pruners.MedianPruner() if args.prune else optuna.pruners.NopPruner()
|
| 362 |
-
# sampler = optuna.samplers.TPESampler(seed=10)
|
| 363 |
-
|
| 364 |
-
# study = optuna.create_study(direction='minimize', pruner=pruner, sampler=sampler)
|
| 365 |
-
# study.optimize(partial(objective, args=args), n_trials = 100, timeout=600)
|
| 366 |
-
|
| 367 |
-
# other_params = {
|
| 368 |
-
# "num_layers": args.num_layers,
|
| 369 |
-
# "num_epochs": args.num_epochs,
|
| 370 |
-
# "dropout": args.dropout,
|
| 371 |
-
# "weight_decay": args.weight_decay,
|
| 372 |
-
# }
|
| 373 |
-
|
| 374 |
-
# print("Number of finished trials: {}".format(len(study.trials)))
|
| 375 |
-
|
| 376 |
-
# trial = study.best_trial
|
| 377 |
-
# print("Best trial: "+str(trial.number))
|
| 378 |
-
|
| 379 |
-
|
| 380 |
-
# print(" Validation Loss: {}".format(trial.value))
|
| 381 |
-
|
| 382 |
-
# print(" Optimized Params: ")
|
| 383 |
-
# for key, value in trial.params.items():
|
| 384 |
-
# print(" {}: {}".format(key, value))
|
| 385 |
-
|
| 386 |
-
# print(" User Defined Params: ")
|
| 387 |
-
# for key, value in other_params.items():
|
| 388 |
-
# print(" {}: {}".format(key, value))
|
| 389 |
-
|
| 390 |
-
# print('saving best trial')
|
| 391 |
-
# for filename in os.listdir(os.path.join(args.save_dir,'optuna_trials')):
|
| 392 |
-
# if filename == "{}.ckpt".format(trial.number):
|
| 393 |
-
# shutil.move(os.path.join(args.save_dir,'optuna_trials',filename), os.path.join(args.save_dir, "{}.ckpt".format(args.save_model_name)))
|
| 394 |
-
# shutil.rmtree(os.path.join(args.save_dir,'optuna_trials'))
|
| 395 |
-
|
| 396 |
-
# else:
|
| 397 |
-
# model = train(args)
|
| 398 |
|
|
|
|
| 1 |
import torch
|
| 2 |
import lightning
|
|
|
|
|
|
|
|
|
|
| 3 |
from pydantic import BaseModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
class FFNModule(torch.nn.Module):
|
| 6 |
"""
|
|
|
|
| 92 |
|
| 93 |
def load_model(self, path: str):
|
| 94 |
self.model.load_state_dict(torch.load(path))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|