File size: 1,995 Bytes
e9502c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
from langchain.embeddings import HuggingFaceEmbeddings
from langchain_community.document_loaders import PyPDFDirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import ElasticsearchStore

class PDFEmbedding:
    def __init__(self, model_path="dragonkue/BGE-m3-ko", pdf_dir="./data/pdf", es_url="http://localhost:9200", index_name="pdf_embeddings"):
        self.embeddings = HuggingFaceEmbeddings(
            model_name=model_path,
            model_kwargs={'device': 'cuda:0'},
            encode_kwargs={'normalize_embeddings': True}
        )
        self.pdf_dir = pdf_dir
        self.es_url = es_url
        self.index_name = index_name
        
    def load_pdf_directory(self):
        loader = PyPDFDirectoryLoader(self.pdf_dir)
        pages = loader.load()

        # ์ค„๋ฐ”๊ฟˆ ๋…ธ์ด์ฆˆ ์ •๋ฆฌ
        for page in pages:
            # ํ•˜์ดํ”ˆ์œผ๋กœ ์ค„๋ฐ”๊ฟˆ๋œ ๋‹จ์–ด ๋ณต์›
            page.page_content = page.page_content.replace("-\n", "")
            # ์ผ๋ฐ˜ ์ค„๋ฐ”๊ฟˆ์€ ๊ณต๋ฐฑ์œผ๋กœ ๋ณ€ํ™˜
            page.page_content = page.page_content.replace("\n", " ")

        return pages

    def split_documents(self, documents):
        text_splitter = RecursiveCharacterTextSplitter(
            chunk_size=400,
            chunk_overlap=50,
            length_function=len,
            separators=[r"\n{2,}", r"\n", r"[.!?]", r"[,;:]", r" "],
            is_separator_regex=True
        )
        return text_splitter.split_documents(documents)

    def process_and_store(self):
        # PDF ๋กœ๋“œ
        pdf_data = self.load_pdf_directory()
        
        # ๋ฌธ์„œ ๋ถ„ํ• 
        chunks = self.split_documents(pdf_data)

        # Elasticsearch ๋ฒกํ„ฐ ์Šคํ† ์–ด ์ƒ์„ฑ
        vectorstore = ElasticsearchStore(
            es_url=self.es_url,
            index_name=self.index_name,
            embedding=self.embeddings
        )

        # ๋ฌธ์„œ ์ €์žฅ
        vectorstore.add_documents(chunks)