File size: 1,995 Bytes
e9502c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
from langchain.embeddings import HuggingFaceEmbeddings
from langchain_community.document_loaders import PyPDFDirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import ElasticsearchStore
class PDFEmbedding:
def __init__(self, model_path="dragonkue/BGE-m3-ko", pdf_dir="./data/pdf", es_url="http://localhost:9200", index_name="pdf_embeddings"):
self.embeddings = HuggingFaceEmbeddings(
model_name=model_path,
model_kwargs={'device': 'cuda:0'},
encode_kwargs={'normalize_embeddings': True}
)
self.pdf_dir = pdf_dir
self.es_url = es_url
self.index_name = index_name
def load_pdf_directory(self):
loader = PyPDFDirectoryLoader(self.pdf_dir)
pages = loader.load()
# ์ค๋ฐ๊ฟ ๋
ธ์ด์ฆ ์ ๋ฆฌ
for page in pages:
# ํ์ดํ์ผ๋ก ์ค๋ฐ๊ฟ๋ ๋จ์ด ๋ณต์
page.page_content = page.page_content.replace("-\n", "")
# ์ผ๋ฐ ์ค๋ฐ๊ฟ์ ๊ณต๋ฐฑ์ผ๋ก ๋ณํ
page.page_content = page.page_content.replace("\n", " ")
return pages
def split_documents(self, documents):
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=400,
chunk_overlap=50,
length_function=len,
separators=[r"\n{2,}", r"\n", r"[.!?]", r"[,;:]", r" "],
is_separator_regex=True
)
return text_splitter.split_documents(documents)
def process_and_store(self):
# PDF ๋ก๋
pdf_data = self.load_pdf_directory()
# ๋ฌธ์ ๋ถํ
chunks = self.split_documents(pdf_data)
# Elasticsearch ๋ฒกํฐ ์คํ ์ด ์์ฑ
vectorstore = ElasticsearchStore(
es_url=self.es_url,
index_name=self.index_name,
embedding=self.embeddings
)
# ๋ฌธ์ ์ ์ฅ
vectorstore.add_documents(chunks)
|