File size: 8,754 Bytes
a747f19
 
 
 
 
30a49e8
a747f19
30a49e8
a747f19
 
 
 
 
30a49e8
 
 
a747f19
a25a8f7
 
 
 
 
a747f19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30a49e8
a747f19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30a49e8
a747f19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
882f627
 
 
a747f19
 
 
 
 
882f627
a747f19
 
 
 
 
882f627
a747f19
 
 
 
 
 
 
 
 
 
 
 
 
30a49e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a747f19
c143ab3
a747f19
 
5d73aeb
 
 
 
 
 
 
 
30a49e8
d9109ca
5d73aeb
 
 
 
 
 
 
30a49e8
d9109ca
 
30a49e8
d9109ca
c143ab3
d9109ca
30a49e8
c143ab3
30a49e8
d9109ca
5d73aeb
30a49e8
5d73aeb
eea0ea5
5d73aeb
30a49e8
5d73aeb
30a49e8
5d73aeb
 
30a49e8
5d73aeb
eea0ea5
d9109ca
30a49e8
5d73aeb
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import re
import json
import base64
import requests
import torch
import uvicorn
import nest_asyncio
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from sentence_transformers import SentenceTransformer, models
import gradio as gr

############################################
# Configuration
############################################

import os

HF_TOKEN = os.environ.get("HF_TOKEN")
GITHUB_TOKEN = os.environ.get("GITHUB_TOKEN")


############################################
# GitHub API Functions
############################################

def extract_repo_info(github_url: str):
    pattern = r"github\.com/([^/]+)/([^/]+)"
    match = re.search(pattern, github_url)
    if match:
        owner = match.group(1)
        repo = match.group(2).replace('.git', '')
        return owner, repo
    else:
        raise ValueError("Invalid GitHub URL provided.")

def get_repo_metadata(owner: str, repo: str):
    headers = {'Authorization': f'token {GITHUB_TOKEN}'}
    repo_url = f"https://api.github.com/repos/{owner}/{repo}"
    response = requests.get(repo_url, headers=headers)
    return response.json()

def get_repo_tree(owner: str, repo: str, branch: str):
    headers = {'Authorization': f'token {GITHUB_TOKEN}'}
    tree_url = f"https://api.github.com/repos/{owner}/{repo}/git/trees/{branch}?recursive=1"
    response = requests.get(tree_url, headers=headers)
    return response.json()

def get_file_content(owner: str, repo: str, file_path: str):
    headers = {'Authorization': f'token {GITHUB_TOKEN}'}
    content_url = f"https://api.github.com/repos/{owner}/{repo}/contents/{file_path}"
    response = requests.get(content_url, headers=headers)
    data = response.json()
    if 'content' in data:
        return base64.b64decode(data['content']).decode('utf-8')
    else:
        return None

############################################
# Embedding Functions
############################################

def preprocess_text(text: str) -> str:
    cleaned_text = text.strip()
    cleaned_text = re.sub(r'\s+', ' ', cleaned_text)
    return cleaned_text

def load_embedding_model(model_name: str = 'huggingface/CodeBERTa-small-v1') -> SentenceTransformer:
    transformer_model = models.Transformer(model_name)
    pooling_model = models.Pooling(transformer_model.get_word_embedding_dimension(), pooling_mode_mean_tokens=True)
    model = SentenceTransformer(modules=[transformer_model, pooling_model])
    return model

def generate_embedding(text: str, model_name: str = 'huggingface/CodeBERTa-small-v1') -> list:
    processed_text = preprocess_text(text)
    model = load_embedding_model(model_name)
    embedding = model.encode(processed_text)
    return embedding

############################################
# LLM Integration Functions
############################################

def is_detailed_query(query: str) -> bool:
    keywords = ["detail", "detailed", "thorough", "in depth", "comprehensive", "extensive"]
    return any(keyword in query.lower() for keyword in keywords)

def generate_prompt(query: str, context_snippets: list) -> str:
    context = "\n\n".join(context_snippets)
    if is_detailed_query(query):
        instruction = "Provide an extremely detailed and thorough explanation of at least 500 words."
    else:
        instruction = "Answer concisely."
    
    prompt = (
        f"Below is some context from a GitHub repository:\n\n"
        f"{context}\n\n"
        f"Based on the above, {instruction}\n{query}\n"
        f"Answer:"
    )
    return prompt

def get_llm_response(prompt: str, model_name: str = "meta-llama/Llama-2-7b-chat-hf", max_new_tokens: int = None) -> str:
    if max_new_tokens is None:
        max_new_tokens = 1024 if is_detailed_query(prompt) else 256

    torch.cuda.empty_cache()

    if not os.path.exists("offload"):
        os.makedirs("offload")
    
    tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, token=HF_TOKEN)
    model = AutoModelForCausalLM.from_pretrained(
        model_name,
        device_map="auto",
        offload_folder="offload",  # Specify the folder where weights will be offloaded
        use_safetensors=False,
        trust_remote_code=True,
        torch_dtype=torch.float16,
        token=HF_TOKEN
    )

    
    text_gen = pipeline("text-generation", model=model, tokenizer=tokenizer)
    outputs = text_gen(prompt, max_new_tokens=max_new_tokens, do_sample=True, temperature=0.7)
    full_response = outputs[0]['generated_text']
    
    marker = "Answer:"
    if marker in full_response:
        answer = full_response.split(marker, 1)[1].strip()
    else:
        answer = full_response.strip()
    
    return answer

############################################
# Gradio Interface Functions
############################################

# For file content retrieval, we now use the file path directly.
def get_file_content_for_choice(github_url: str, file_path: str):
    try:
        owner, repo = extract_repo_info(github_url)
    except Exception as e:
        return str(e)
    content = get_file_content(owner, repo, file_path)
    return content, file_path

def chat_with_file(github_url: str, file_path: str, user_query: str):
    result = get_file_content_for_choice(github_url, file_path)
    if isinstance(result, str):
        return result  # Error message
    file_content, selected_file = result
    preprocessed = preprocess_text(file_content)
    context_snippet = preprocessed[:1000]  # use first 1000 characters as context
    prompt = generate_prompt(user_query, [context_snippet])
    llm_response = get_llm_response(prompt)
    return f"File: {selected_file}\n\nLLM Response:\n{llm_response}"

def load_repo_contents_backend(github_url: str):
    try:
        owner, repo = extract_repo_info(github_url)
    except Exception as e:
        return f"Error: {str(e)}"
    repo_data = get_repo_metadata(owner, repo)
    default_branch = repo_data.get("default_branch", "main")
    tree_data = get_repo_tree(owner, repo, default_branch)
    if "tree" not in tree_data:
        return "Error: Could not fetch repository tree."
    file_list = [item["path"] for item in tree_data["tree"] if item["type"] == "blob"]
    return file_list

############################################
# Gradio Interface Setup
############################################

with gr.Blocks() as demo:
    gr.Markdown("# RepoChat - Chat with Repository Files")
    
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("### Repository Information")
            github_url_input = gr.Textbox(label="GitHub Repository URL", placeholder="https://github.com/username/repository")
            load_repo_btn = gr.Button("Load Repository Contents")
            # Dropdown with choices as file paths; default value is empty.
            file_dropdown = gr.Dropdown(label="Select a File", interactive=True, value="", choices=[])
            repo_content_output = gr.Textbox(label="File Content", interactive=False, lines=10)
        with gr.Column(scale=2):
            gr.Markdown("### Chat Interface")
            chat_query_input = gr.Textbox(label="Your Query", placeholder="Type your query here")
            chat_output = gr.Textbox(label="Chatbot Response", interactive=False, lines=10)
            chat_btn = gr.Button("Send Query")
    
    # Callback: Update file dropdown choices.
    def update_file_dropdown(github_url):
        files = load_repo_contents_backend(github_url)
        if isinstance(files, str):  # Error message
            print("Error loading files:", files)
            return gr.update(choices=[], value="")
        print("Files loaded:", files)
        # Do not pre-select any file (empty value)
        return gr.update(choices=files, value="")
    
    load_repo_btn.click(fn=update_file_dropdown, inputs=[github_url_input], outputs=[file_dropdown])
    
    # Callback: Update repository content when a file is selected.
    def update_repo_content(github_url, file_choice):
        if not file_choice:
            return "No file selected."
        content, _ = get_file_content_for_choice(github_url, file_choice)
        return content
    
    file_dropdown.change(fn=update_repo_content, inputs=[github_url_input, file_dropdown], outputs=[repo_content_output])
    
    # Callback: Process chat query.
    def process_chat(github_url, file_choice, chat_query):
        if not file_choice:
            return "Please select a file first."
        return chat_with_file(github_url, file_choice, chat_query)
    
    chat_btn.click(fn=process_chat, inputs=[github_url_input, file_dropdown, chat_query_input], outputs=[chat_output])
    
demo.launch(share=True)