Spaces:
Running
Running
File size: 84,808 Bytes
f65fe85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 |
;;;; -*-scheme-*-
;;;;
;;;; Copyright (C) 2001, 2003, 2006 Free Software Foundation, Inc.
;;;;
;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 2.1 of the License, or (at your option) any later version.
;;;;
;;;; This library is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;;; Lesser General Public License for more details.
;;;;
;;;; You should have received a copy of the GNU Lesser General Public
;;;; License along with this library; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;;;;
;;; Portable implementation of syntax-case
;;; Extracted from Chez Scheme Version 5.9f
;;; Authors: R. Kent Dybvig, Oscar Waddell, Bob Hieb, Carl Bruggeman
;;; Modified by Mikael Djurfeldt <[email protected]> according
;;; to the ChangeLog distributed in the same directory as this file:
;;; 1997-08-19, 1997-09-03, 1997-09-10, 2000-08-13, 2000-08-24,
;;; 2000-09-12, 2001-03-08
;;; Copyright (c) 1992-1997 Cadence Research Systems
;;; Permission to copy this software, in whole or in part, to use this
;;; software for any lawful purpose, and to redistribute this software
;;; is granted subject to the restriction that all copies made of this
;;; software must include this copyright notice in full. This software
;;; is provided AS IS, with NO WARRANTY, EITHER EXPRESS OR IMPLIED,
;;; INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY
;;; OR FITNESS FOR ANY PARTICULAR PURPOSE. IN NO EVENT SHALL THE
;;; AUTHORS BE LIABLE FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES OF ANY
;;; NATURE WHATSOEVER.
;;; Before attempting to port this code to a new implementation of
;;; Scheme, please read the notes below carefully.
;;; This file defines the syntax-case expander, sc-expand, and a set
;;; of associated syntactic forms and procedures. Of these, the
;;; following are documented in The Scheme Programming Language,
;;; Second Edition (R. Kent Dybvig, Prentice Hall, 1996). Most are
;;; also documented in the R4RS and draft R5RS.
;;;
;;; bound-identifier=?
;;; datum->syntax-object
;;; define-syntax
;;; fluid-let-syntax
;;; free-identifier=?
;;; generate-temporaries
;;; identifier?
;;; identifier-syntax
;;; let-syntax
;;; letrec-syntax
;;; syntax
;;; syntax-case
;;; syntax-object->datum
;;; syntax-rules
;;; with-syntax
;;;
;;; All standard Scheme syntactic forms are supported by the expander
;;; or syntactic abstractions defined in this file. Only the R4RS
;;; delay is omitted, since its expansion is implementation-dependent.
;;; The remaining exports are listed below:
;;;
;;; (sc-expand datum)
;;; if datum represents a valid expression, sc-expand returns an
;;; expanded version of datum in a core language that includes no
;;; syntactic abstractions. The core language includes begin,
;;; define, if, lambda, letrec, quote, and set!.
;;; (eval-when situations expr ...)
;;; conditionally evaluates expr ... at compile-time or run-time
;;; depending upon situations (see the Chez Scheme System Manual,
;;; Revision 3, for a complete description)
;;; (syntax-error object message)
;;; used to report errors found during expansion
;;; (install-global-transformer symbol value)
;;; used by expanded code to install top-level syntactic abstractions
;;; (syntax-dispatch e p)
;;; used by expanded code to handle syntax-case matching
;;; The following nonstandard procedures must be provided by the
;;; implementation for this code to run.
;;;
;;; (void)
;;; returns the implementation's cannonical "unspecified value". This
;;; usually works: (define void (lambda () (if #f #f))).
;;;
;;; (andmap proc list1 list2 ...)
;;; returns true if proc returns true when applied to each element of list1
;;; along with the corresponding elements of list2 ....
;;; The following definition works but does no error checking:
;;;
;;; (define andmap
;;; (lambda (f first . rest)
;;; (or (null? first)
;;; (if (null? rest)
;;; (let andmap ((first first))
;;; (let ((x (car first)) (first (cdr first)))
;;; (if (null? first)
;;; (f x)
;;; (and (f x) (andmap first)))))
;;; (let andmap ((first first) (rest rest))
;;; (let ((x (car first))
;;; (xr (map car rest))
;;; (first (cdr first))
;;; (rest (map cdr rest)))
;;; (if (null? first)
;;; (apply f (cons x xr))
;;; (and (apply f (cons x xr)) (andmap first rest)))))))))
;;;
;;; The following nonstandard procedures must also be provided by the
;;; implementation for this code to run using the standard portable
;;; hooks and output constructors. They are not used by expanded code,
;;; and so need be present only at expansion time.
;;;
;;; (eval x)
;;; where x is always in the form ("noexpand" expr).
;;; returns the value of expr. the "noexpand" flag is used to tell the
;;; evaluator/expander that no expansion is necessary, since expr has
;;; already been fully expanded to core forms.
;;;
;;; eval will not be invoked during the loading of psyntax.pp. After
;;; psyntax.pp has been loaded, the expansion of any macro definition,
;;; whether local or global, will result in a call to eval. If, however,
;;; sc-expand has already been registered as the expander to be used
;;; by eval, and eval accepts one argument, nothing special must be done
;;; to support the "noexpand" flag, since it is handled by sc-expand.
;;;
;;; (error who format-string why what)
;;; where who is either a symbol or #f, format-string is always "~a ~s",
;;; why is always a string, and what may be any object. error should
;;; signal an error with a message something like
;;;
;;; "error in <who>: <why> <what>"
;;;
;;; (gensym)
;;; returns a unique symbol each time it's called
;;;
;;; (putprop symbol key value)
;;; (getprop symbol key)
;;; key is always the symbol *sc-expander*; value may be any object.
;;; putprop should associate the given value with the given symbol in
;;; some way that it can be retrieved later with getprop.
;;; When porting to a new Scheme implementation, you should define the
;;; procedures listed above, load the expanded version of psyntax.ss
;;; (psyntax.pp, which should be available whereever you found
;;; psyntax.ss), and register sc-expand as the current expander (how
;;; you do this depends upon your implementation of Scheme). You may
;;; change the hooks and constructors defined toward the beginning of
;;; the code below, but to avoid bootstrapping problems, do so only
;;; after you have a working version of the expander.
;;; Chez Scheme allows the syntactic form (syntax <template>) to be
;;; abbreviated to #'<template>, just as (quote <datum>) may be
;;; abbreviated to '<datum>. The #' syntax makes programs written
;;; using syntax-case shorter and more readable and draws out the
;;; intuitive connection between syntax and quote.
;;; If you find that this code loads or runs slowly, consider
;;; switching to faster hardware or a faster implementation of
;;; Scheme. In Chez Scheme on a 200Mhz Pentium Pro, expanding,
;;; compiling (with full optimization), and loading this file takes
;;; between one and two seconds.
;;; In the expander implementation, we sometimes use syntactic abstractions
;;; when procedural abstractions would suffice. For example, we define
;;; top-wrap and top-marked? as
;;; (define-syntax top-wrap (identifier-syntax '((top))))
;;; (define-syntax top-marked?
;;; (syntax-rules ()
;;; ((_ w) (memq 'top (wrap-marks w)))))
;;; rather than
;;; (define top-wrap '((top)))
;;; (define top-marked?
;;; (lambda (w) (memq 'top (wrap-marks w))))
;;; On ther other hand, we don't do this consistently; we define make-wrap,
;;; wrap-marks, and wrap-subst simply as
;;; (define make-wrap cons)
;;; (define wrap-marks car)
;;; (define wrap-subst cdr)
;;; In Chez Scheme, the syntactic and procedural forms of these
;;; abstractions are equivalent, since the optimizer consistently
;;; integrates constants and small procedures. Some Scheme
;;; implementations, however, may benefit from more consistent use
;;; of one form or the other.
;;; implementation information:
;;; "begin" is treated as a splicing construct at top level and at
;;; the beginning of bodies. Any sequence of expressions that would
;;; be allowed where the "begin" occurs is allowed.
;;; "let-syntax" and "letrec-syntax" are also treated as splicing
;;; constructs, in violation of the R4RS appendix and probably the R5RS
;;; when it comes out. A consequence, let-syntax and letrec-syntax do
;;; not create local contours, as do let and letrec. Although the
;;; functionality is greater as it is presently implemented, we will
;;; probably change it to conform to the R4RS/expected R5RS.
;;; Objects with no standard print syntax, including objects containing
;;; cycles and syntax object, are allowed in quoted data as long as they
;;; are contained within a syntax form or produced by datum->syntax-object.
;;; Such objects are never copied.
;;; All identifiers that don't have macro definitions and are not bound
;;; lexically are assumed to be global variables
;;; Top-level definitions of macro-introduced identifiers are allowed.
;;; This may not be appropriate for implementations in which the
;;; model is that bindings are created by definitions, as opposed to
;;; one in which initial values are assigned by definitions.
;;; Top-level variable definitions of syntax keywords is not permitted.
;;; Any solution allowing this would be kludgey and would yield
;;; surprising results in some cases. We can provide an undefine-syntax
;;; form. The questions is, should define be an implicit undefine-syntax?
;;; We've decided no for now.
;;; Identifiers and syntax objects are implemented as vectors for
;;; portability. As a result, it is possible to "forge" syntax
;;; objects.
;;; The implementation of generate-temporaries assumes that it is possible
;;; to generate globally unique symbols (gensyms).
;;; The input to sc-expand may contain "annotations" describing, e.g., the
;;; source file and character position from where each object was read if
;;; it was read from a file. These annotations are handled properly by
;;; sc-expand only if the annotation? hook (see hooks below) is implemented
;;; properly and the operators make-annotation, annotation-expression,
;;; annotation-source, annotation-stripped, and set-annotation-stripped!
;;; are supplied. If annotations are supplied, the proper annotation
;;; source is passed to the various output constructors, allowing
;;; implementations to accurately correlate source and expanded code.
;;; Contact one of the authors for details if you wish to make use of
;;; this feature.
;;; Bootstrapping:
;;; When changing syntax-object representations, it is necessary to support
;;; both old and new syntax-object representations in id-var-name. It
;;; should be sufficient to recognize old representations and treat
;;; them as not lexically bound.
(let ()
(define-syntax define-structure
(lambda (x)
(define construct-name
(lambda (template-identifier . args)
(datum->syntax-object
template-identifier
(string->symbol
(apply string-append
(map (lambda (x)
(if (string? x)
x
(symbol->string (syntax-object->datum x))))
args))))))
(syntax-case x ()
((_ (name id1 ...))
(andmap identifier? (syntax (name id1 ...)))
(with-syntax
((constructor (construct-name (syntax name) "make-" (syntax name)))
(predicate (construct-name (syntax name) (syntax name) "?"))
((access ...)
(map (lambda (x) (construct-name x (syntax name) "-" x))
(syntax (id1 ...))))
((assign ...)
(map (lambda (x)
(construct-name x "set-" (syntax name) "-" x "!"))
(syntax (id1 ...))))
(structure-length
(+ (length (syntax (id1 ...))) 1))
((index ...)
(let f ((i 1) (ids (syntax (id1 ...))))
(if (null? ids)
'()
(cons i (f (+ i 1) (cdr ids)))))))
(syntax (begin
(define constructor
(lambda (id1 ...)
(vector 'name id1 ... )))
(define predicate
(lambda (x)
(and (vector? x)
(= (vector-length x) structure-length)
(eq? (vector-ref x 0) 'name))))
(define access
(lambda (x)
(vector-ref x index)))
...
(define assign
(lambda (x update)
(vector-set! x index update)))
...)))))))
(let ()
(define noexpand "noexpand")
;;; hooks to nonportable run-time helpers
(begin
(define fx+ +)
(define fx- -)
(define fx= =)
(define fx< <)
(define annotation? (lambda (x) #f))
(define top-level-eval-hook
(lambda (x)
(eval `(,noexpand ,x) (interaction-environment))))
(define local-eval-hook
(lambda (x)
(eval `(,noexpand ,x) (interaction-environment))))
(define error-hook
(lambda (who why what)
(error who "~a ~s" why what)))
(define-syntax gensym-hook
(syntax-rules ()
((_) (gensym))))
(define put-global-definition-hook
(lambda (symbol binding)
(putprop symbol '*sc-expander* binding)))
(define get-global-definition-hook
(lambda (symbol)
(getprop symbol '*sc-expander*)))
)
;;; output constructors
(begin
(define-syntax build-application
(syntax-rules ()
((_ source fun-exp arg-exps)
`(,fun-exp . ,arg-exps))))
(define-syntax build-conditional
(syntax-rules ()
((_ source test-exp then-exp else-exp)
`(if ,test-exp ,then-exp ,else-exp))))
(define-syntax build-lexical-reference
(syntax-rules ()
((_ type source var)
var)))
(define-syntax build-lexical-assignment
(syntax-rules ()
((_ source var exp)
`(set! ,var ,exp))))
(define-syntax build-global-reference
(syntax-rules ()
((_ source var)
var)))
(define-syntax build-global-assignment
(syntax-rules ()
((_ source var exp)
`(set! ,var ,exp))))
(define-syntax build-global-definition
(syntax-rules ()
((_ source var exp)
`(define ,var ,exp))))
(define-syntax build-lambda
(syntax-rules ()
((_ src vars exp)
`(lambda ,vars ,exp))))
(define-syntax build-primref
(syntax-rules ()
((_ src name) name)
((_ src level name) name)))
(define (build-data src exp)
(if (and (self-evaluating? exp)
(not (vector? exp)))
exp
(list 'quote exp)))
(define build-sequence
(lambda (src exps)
(if (null? (cdr exps))
(car exps)
`(begin ,@exps))))
(define build-let
(lambda (src vars val-exps body-exp)
(if (null? vars)
body-exp
`(let ,(map list vars val-exps) ,body-exp))))
(define build-named-let
(lambda (src vars val-exps body-exp)
(if (null? vars)
body-exp
`(let ,(car vars) ,(map list (cdr vars) val-exps) ,body-exp))))
(define build-letrec
(lambda (src vars val-exps body-exp)
(if (null? vars)
body-exp
`(letrec ,(map list vars val-exps) ,body-exp))))
(define-syntax build-lexical-var
(syntax-rules ()
((_ src id) (gensym (symbol->string id)))))
)
(define-structure (syntax-object expression wrap))
(define-syntax unannotate
(syntax-rules ()
((_ x)
(let ((e x))
(if (annotation? e)
(annotation-expression e)
e)))))
(define-syntax no-source (identifier-syntax #f))
(define source-annotation
(lambda (x)
(cond
((annotation? x) (annotation-source x))
((syntax-object? x) (source-annotation (syntax-object-expression x)))
(else no-source))))
(define-syntax arg-check
(syntax-rules ()
((_ pred? e who)
(let ((x e))
(if (not (pred? x)) (error-hook who "invalid argument" x))))))
;;; compile-time environments
;;; wrap and environment comprise two level mapping.
;;; wrap : id --> label
;;; env : label --> <element>
;;; environments are represented in two parts: a lexical part and a global
;;; part. The lexical part is a simple list of associations from labels
;;; to bindings. The global part is implemented by
;;; {put,get}-global-definition-hook and associates symbols with
;;; bindings.
;;; global (assumed global variable) and displaced-lexical (see below)
;;; do not show up in any environment; instead, they are fabricated by
;;; lookup when it finds no other bindings.
;;; <environment> ::= ((<label> . <binding>)*)
;;; identifier bindings include a type and a value
;;; <binding> ::= (macro . <procedure>) macros
;;; (core . <procedure>) core forms
;;; (external-macro . <procedure>) external-macro
;;; (begin) begin
;;; (define) define
;;; (define-syntax) define-syntax
;;; (local-syntax . rec?) let-syntax/letrec-syntax
;;; (eval-when) eval-when
;;; (syntax . (<var> . <level>)) pattern variables
;;; (global) assumed global variable
;;; (lexical . <var>) lexical variables
;;; (displaced-lexical) displaced lexicals
;;; <level> ::= <nonnegative integer>
;;; <var> ::= variable returned by build-lexical-var
;;; a macro is a user-defined syntactic-form. a core is a system-defined
;;; syntactic form. begin, define, define-syntax, and eval-when are
;;; treated specially since they are sensitive to whether the form is
;;; at top-level and (except for eval-when) can denote valid internal
;;; definitions.
;;; a pattern variable is a variable introduced by syntax-case and can
;;; be referenced only within a syntax form.
;;; any identifier for which no top-level syntax definition or local
;;; binding of any kind has been seen is assumed to be a global
;;; variable.
;;; a lexical variable is a lambda- or letrec-bound variable.
;;; a displaced-lexical identifier is a lexical identifier removed from
;;; it's scope by the return of a syntax object containing the identifier.
;;; a displaced lexical can also appear when a letrec-syntax-bound
;;; keyword is referenced on the rhs of one of the letrec-syntax clauses.
;;; a displaced lexical should never occur with properly written macros.
(define-syntax make-binding
(syntax-rules (quote)
((_ type value) (cons type value))
((_ 'type) '(type))
((_ type) (cons type '()))))
(define binding-type car)
(define binding-value cdr)
(define-syntax null-env (identifier-syntax '()))
(define extend-env
(lambda (labels bindings r)
(if (null? labels)
r
(extend-env (cdr labels) (cdr bindings)
(cons (cons (car labels) (car bindings)) r)))))
(define extend-var-env
; variant of extend-env that forms "lexical" binding
(lambda (labels vars r)
(if (null? labels)
r
(extend-var-env (cdr labels) (cdr vars)
(cons (cons (car labels) (make-binding 'lexical (car vars))) r)))))
;;; we use a "macros only" environment in expansion of local macro
;;; definitions so that their definitions can use local macros without
;;; attempting to use other lexical identifiers.
(define macros-only-env
(lambda (r)
(if (null? r)
'()
(let ((a (car r)))
(if (eq? (cadr a) 'macro)
(cons a (macros-only-env (cdr r)))
(macros-only-env (cdr r)))))))
(define lookup
; x may be a label or a symbol
; although symbols are usually global, we check the environment first
; anyway because a temporary binding may have been established by
; fluid-let-syntax
(lambda (x r)
(cond
((assq x r) => cdr)
((symbol? x)
(or (get-global-definition-hook x) (make-binding 'global)))
(else (make-binding 'displaced-lexical)))))
(define global-extend
(lambda (type sym val)
(put-global-definition-hook sym (make-binding type val))))
;;; Conceptually, identifiers are always syntax objects. Internally,
;;; however, the wrap is sometimes maintained separately (a source of
;;; efficiency and confusion), so that symbols are also considered
;;; identifiers by id?. Externally, they are always wrapped.
(define nonsymbol-id?
(lambda (x)
(and (syntax-object? x)
(symbol? (unannotate (syntax-object-expression x))))))
(define id?
(lambda (x)
(cond
((symbol? x) #t)
((syntax-object? x) (symbol? (unannotate (syntax-object-expression x))))
((annotation? x) (symbol? (annotation-expression x)))
(else #f))))
(define-syntax id-sym-name
(syntax-rules ()
((_ e)
(let ((x e))
(unannotate (if (syntax-object? x) (syntax-object-expression x) x))))))
(define id-sym-name&marks
(lambda (x w)
(if (syntax-object? x)
(values
(unannotate (syntax-object-expression x))
(join-marks (wrap-marks w) (wrap-marks (syntax-object-wrap x))))
(values (unannotate x) (wrap-marks w)))))
;;; syntax object wraps
;;; <wrap> ::= ((<mark> ...) . (<subst> ...))
;;; <subst> ::= <shift> | <subs>
;;; <subs> ::= #(<old name> <label> (<mark> ...))
;;; <shift> ::= positive fixnum
(define make-wrap cons)
(define wrap-marks car)
(define wrap-subst cdr)
(define-syntax subst-rename? (identifier-syntax vector?))
(define-syntax rename-old (syntax-rules () ((_ x) (vector-ref x 0))))
(define-syntax rename-new (syntax-rules () ((_ x) (vector-ref x 1))))
(define-syntax rename-marks (syntax-rules () ((_ x) (vector-ref x 2))))
(define-syntax make-rename
(syntax-rules ()
((_ old new marks) (vector old new marks))))
;;; labels must be comparable with "eq?" and distinct from symbols.
(define gen-label
(lambda () (string #\i)))
(define gen-labels
(lambda (ls)
(if (null? ls)
'()
(cons (gen-label) (gen-labels (cdr ls))))))
(define-structure (ribcage symnames marks labels))
(define-syntax empty-wrap (identifier-syntax '(())))
(define-syntax top-wrap (identifier-syntax '((top))))
(define-syntax top-marked?
(syntax-rules ()
((_ w) (memq 'top (wrap-marks w)))))
;;; Marks must be comparable with "eq?" and distinct from pairs and
;;; the symbol top. We do not use integers so that marks will remain
;;; unique even across file compiles.
(define-syntax the-anti-mark (identifier-syntax #f))
(define anti-mark
(lambda (w)
(make-wrap (cons the-anti-mark (wrap-marks w))
(cons 'shift (wrap-subst w)))))
(define-syntax new-mark
(syntax-rules ()
((_) (string #\m))))
;;; make-empty-ribcage and extend-ribcage maintain list-based ribcages for
;;; internal definitions, in which the ribcages are built incrementally
(define-syntax make-empty-ribcage
(syntax-rules ()
((_) (make-ribcage '() '() '()))))
(define extend-ribcage!
; must receive ids with complete wraps
(lambda (ribcage id label)
(set-ribcage-symnames! ribcage
(cons (unannotate (syntax-object-expression id))
(ribcage-symnames ribcage)))
(set-ribcage-marks! ribcage
(cons (wrap-marks (syntax-object-wrap id))
(ribcage-marks ribcage)))
(set-ribcage-labels! ribcage
(cons label (ribcage-labels ribcage)))))
;;; make-binding-wrap creates vector-based ribcages
(define make-binding-wrap
(lambda (ids labels w)
(if (null? ids)
w
(make-wrap
(wrap-marks w)
(cons
(let ((labelvec (list->vector labels)))
(let ((n (vector-length labelvec)))
(let ((symnamevec (make-vector n)) (marksvec (make-vector n)))
(let f ((ids ids) (i 0))
(if (not (null? ids))
(call-with-values
(lambda () (id-sym-name&marks (car ids) w))
(lambda (symname marks)
(vector-set! symnamevec i symname)
(vector-set! marksvec i marks)
(f (cdr ids) (fx+ i 1))))))
(make-ribcage symnamevec marksvec labelvec))))
(wrap-subst w))))))
(define smart-append
(lambda (m1 m2)
(if (null? m2)
m1
(append m1 m2))))
(define join-wraps
(lambda (w1 w2)
(let ((m1 (wrap-marks w1)) (s1 (wrap-subst w1)))
(if (null? m1)
(if (null? s1)
w2
(make-wrap
(wrap-marks w2)
(smart-append s1 (wrap-subst w2))))
(make-wrap
(smart-append m1 (wrap-marks w2))
(smart-append s1 (wrap-subst w2)))))))
(define join-marks
(lambda (m1 m2)
(smart-append m1 m2)))
(define same-marks?
(lambda (x y)
(or (eq? x y)
(and (not (null? x))
(not (null? y))
(eq? (car x) (car y))
(same-marks? (cdr x) (cdr y))))))
(define id-var-name
(lambda (id w)
(define-syntax first
(syntax-rules ()
((_ e) (call-with-values (lambda () e) (lambda (x . ignore) x)))))
(define search
(lambda (sym subst marks)
(if (null? subst)
(values #f marks)
(let ((fst (car subst)))
(if (eq? fst 'shift)
(search sym (cdr subst) (cdr marks))
(let ((symnames (ribcage-symnames fst)))
(if (vector? symnames)
(search-vector-rib sym subst marks symnames fst)
(search-list-rib sym subst marks symnames fst))))))))
(define search-list-rib
(lambda (sym subst marks symnames ribcage)
(let f ((symnames symnames) (i 0))
(cond
((null? symnames) (search sym (cdr subst) marks))
((and (eq? (car symnames) sym)
(same-marks? marks (list-ref (ribcage-marks ribcage) i)))
(values (list-ref (ribcage-labels ribcage) i) marks))
(else (f (cdr symnames) (fx+ i 1)))))))
(define search-vector-rib
(lambda (sym subst marks symnames ribcage)
(let ((n (vector-length symnames)))
(let f ((i 0))
(cond
((fx= i n) (search sym (cdr subst) marks))
((and (eq? (vector-ref symnames i) sym)
(same-marks? marks (vector-ref (ribcage-marks ribcage) i)))
(values (vector-ref (ribcage-labels ribcage) i) marks))
(else (f (fx+ i 1))))))))
(cond
((symbol? id)
(or (first (search id (wrap-subst w) (wrap-marks w))) id))
((syntax-object? id)
(let ((id (unannotate (syntax-object-expression id)))
(w1 (syntax-object-wrap id)))
(let ((marks (join-marks (wrap-marks w) (wrap-marks w1))))
(call-with-values (lambda () (search id (wrap-subst w) marks))
(lambda (new-id marks)
(or new-id
(first (search id (wrap-subst w1) marks))
id))))))
((annotation? id)
(let ((id (unannotate id)))
(or (first (search id (wrap-subst w) (wrap-marks w))) id)))
(else (error-hook 'id-var-name "invalid id" id)))))
;;; free-id=? must be passed fully wrapped ids since (free-id=? x y)
;;; may be true even if (free-id=? (wrap x w) (wrap y w)) is not.
(define free-id=?
(lambda (i j)
(and (eq? (id-sym-name i) (id-sym-name j)) ; accelerator
(eq? (id-var-name i empty-wrap) (id-var-name j empty-wrap)))))
;;; bound-id=? may be passed unwrapped (or partially wrapped) ids as
;;; long as the missing portion of the wrap is common to both of the ids
;;; since (bound-id=? x y) iff (bound-id=? (wrap x w) (wrap y w))
(define bound-id=?
(lambda (i j)
(if (and (syntax-object? i) (syntax-object? j))
(and (eq? (unannotate (syntax-object-expression i))
(unannotate (syntax-object-expression j)))
(same-marks? (wrap-marks (syntax-object-wrap i))
(wrap-marks (syntax-object-wrap j))))
(eq? (unannotate i) (unannotate j)))))
;;; "valid-bound-ids?" returns #t if it receives a list of distinct ids.
;;; valid-bound-ids? may be passed unwrapped (or partially wrapped) ids
;;; as long as the missing portion of the wrap is common to all of the
;;; ids.
(define valid-bound-ids?
(lambda (ids)
(and (let all-ids? ((ids ids))
(or (null? ids)
(and (id? (car ids))
(all-ids? (cdr ids)))))
(distinct-bound-ids? ids))))
;;; distinct-bound-ids? expects a list of ids and returns #t if there are
;;; no duplicates. It is quadratic on the length of the id list; long
;;; lists could be sorted to make it more efficient. distinct-bound-ids?
;;; may be passed unwrapped (or partially wrapped) ids as long as the
;;; missing portion of the wrap is common to all of the ids.
(define distinct-bound-ids?
(lambda (ids)
(let distinct? ((ids ids))
(or (null? ids)
(and (not (bound-id-member? (car ids) (cdr ids)))
(distinct? (cdr ids)))))))
(define bound-id-member?
(lambda (x list)
(and (not (null? list))
(or (bound-id=? x (car list))
(bound-id-member? x (cdr list))))))
;;; wrapping expressions and identifiers
(define wrap
(lambda (x w)
(cond
((and (null? (wrap-marks w)) (null? (wrap-subst w))) x)
((syntax-object? x)
(make-syntax-object
(syntax-object-expression x)
(join-wraps w (syntax-object-wrap x))))
((null? x) x)
(else (make-syntax-object x w)))))
(define source-wrap
(lambda (x w s)
(wrap (if s (make-annotation x s #f) x) w)))
;;; expanding
(define chi-sequence
(lambda (body r w s)
(build-sequence s
(let dobody ((body body) (r r) (w w))
(if (null? body)
'()
(let ((first (chi (car body) r w)))
(cons first (dobody (cdr body) r w))))))))
(define chi-top-sequence
(lambda (body r w s m esew)
(build-sequence s
(let dobody ((body body) (r r) (w w) (m m) (esew esew))
(if (null? body)
'()
(let ((first (chi-top (car body) r w m esew)))
(cons first (dobody (cdr body) r w m esew))))))))
(define chi-install-global
(lambda (name e)
(build-application no-source
(build-primref no-source 'install-global-transformer)
(list (build-data no-source name) e))))
(define chi-when-list
(lambda (e when-list w)
; when-list is syntax'd version of list of situations
(let f ((when-list when-list) (situations '()))
(if (null? when-list)
situations
(f (cdr when-list)
(cons (let ((x (car when-list)))
(cond
((free-id=? x (syntax compile)) 'compile)
((free-id=? x (syntax load)) 'load)
((free-id=? x (syntax eval)) 'eval)
(else (syntax-error (wrap x w)
"invalid eval-when situation"))))
situations))))))
;;; syntax-type returns five values: type, value, e, w, and s. The first
;;; two are described in the table below.
;;;
;;; type value explanation
;;; -------------------------------------------------------------------
;;; core procedure core form (including singleton)
;;; external-macro procedure external macro
;;; lexical name lexical variable reference
;;; global name global variable reference
;;; begin none begin keyword
;;; define none define keyword
;;; define-syntax none define-syntax keyword
;;; local-syntax rec? letrec-syntax/let-syntax keyword
;;; eval-when none eval-when keyword
;;; syntax level pattern variable
;;; displaced-lexical none displaced lexical identifier
;;; lexical-call name call to lexical variable
;;; global-call name call to global variable
;;; call none any other call
;;; begin-form none begin expression
;;; define-form id variable definition
;;; define-syntax-form id syntax definition
;;; local-syntax-form rec? syntax definition
;;; eval-when-form none eval-when form
;;; constant none self-evaluating datum
;;; other none anything else
;;;
;;; For define-form and define-syntax-form, e is the rhs expression.
;;; For all others, e is the entire form. w is the wrap for e.
;;; s is the source for the entire form.
;;;
;;; syntax-type expands macros and unwraps as necessary to get to
;;; one of the forms above. It also parses define and define-syntax
;;; forms, although perhaps this should be done by the consumer.
(define syntax-type
(lambda (e r w s rib)
(cond
((symbol? e)
(let* ((n (id-var-name e w))
(b (lookup n r))
(type (binding-type b)))
(case type
((lexical) (values type (binding-value b) e w s))
((global) (values type n e w s))
((macro)
(syntax-type (chi-macro (binding-value b) e r w rib) r empty-wrap s rib))
(else (values type (binding-value b) e w s)))))
((pair? e)
(let ((first (car e)))
(if (id? first)
(let* ((n (id-var-name first w))
(b (lookup n r))
(type (binding-type b)))
(case type
((lexical) (values 'lexical-call (binding-value b) e w s))
((global) (values 'global-call n e w s))
((macro)
(syntax-type (chi-macro (binding-value b) e r w rib)
r empty-wrap s rib))
((core external-macro) (values type (binding-value b) e w s))
((local-syntax)
(values 'local-syntax-form (binding-value b) e w s))
((begin) (values 'begin-form #f e w s))
((eval-when) (values 'eval-when-form #f e w s))
((define)
(syntax-case e ()
((_ name val)
(id? (syntax name))
(values 'define-form (syntax name) (syntax val) w s))
((_ (name . args) e1 e2 ...)
(and (id? (syntax name))
(valid-bound-ids? (lambda-var-list (syntax args))))
; need lambda here...
(values 'define-form (wrap (syntax name) w)
(cons (syntax lambda) (wrap (syntax (args e1 e2 ...)) w))
empty-wrap s))
((_ name)
(id? (syntax name))
(values 'define-form (wrap (syntax name) w)
(syntax (void))
empty-wrap s))))
((define-syntax)
(syntax-case e ()
((_ name val)
(id? (syntax name))
(values 'define-syntax-form (syntax name)
(syntax val) w s))))
(else (values 'call #f e w s))))
(values 'call #f e w s))))
((syntax-object? e)
;; s can't be valid source if we've unwrapped
(syntax-type (syntax-object-expression e)
r
(join-wraps w (syntax-object-wrap e))
no-source rib))
((annotation? e)
(syntax-type (annotation-expression e) r w (annotation-source e) rib))
((self-evaluating? e) (values 'constant #f e w s))
(else (values 'other #f e w s)))))
(define chi-top
(lambda (e r w m esew)
(define-syntax eval-if-c&e
(syntax-rules ()
((_ m e)
(let ((x e))
(if (eq? m 'c&e) (top-level-eval-hook x))
x))))
(call-with-values
(lambda () (syntax-type e r w no-source #f))
(lambda (type value e w s)
(case type
((begin-form)
(syntax-case e ()
((_) (chi-void))
((_ e1 e2 ...)
(chi-top-sequence (syntax (e1 e2 ...)) r w s m esew))))
((local-syntax-form)
(chi-local-syntax value e r w s
(lambda (body r w s)
(chi-top-sequence body r w s m esew))))
((eval-when-form)
(syntax-case e ()
((_ (x ...) e1 e2 ...)
(let ((when-list (chi-when-list e (syntax (x ...)) w))
(body (syntax (e1 e2 ...))))
(cond
((eq? m 'e)
(if (memq 'eval when-list)
(chi-top-sequence body r w s 'e '(eval))
(chi-void)))
((memq 'load when-list)
(if (or (memq 'compile when-list)
(and (eq? m 'c&e) (memq 'eval when-list)))
(chi-top-sequence body r w s 'c&e '(compile load))
(if (memq m '(c c&e))
(chi-top-sequence body r w s 'c '(load))
(chi-void))))
((or (memq 'compile when-list)
(and (eq? m 'c&e) (memq 'eval when-list)))
(top-level-eval-hook
(chi-top-sequence body r w s 'e '(eval)))
(chi-void))
(else (chi-void)))))))
((define-syntax-form)
(let ((n (id-var-name value w)) (r (macros-only-env r)))
(case m
((c)
(if (memq 'compile esew)
(let ((e (chi-install-global n (chi e r w))))
(top-level-eval-hook e)
(if (memq 'load esew) e (chi-void)))
(if (memq 'load esew)
(chi-install-global n (chi e r w))
(chi-void))))
((c&e)
(let ((e (chi-install-global n (chi e r w))))
(top-level-eval-hook e)
e))
(else
(if (memq 'eval esew)
(top-level-eval-hook
(chi-install-global n (chi e r w))))
(chi-void)))))
((define-form)
(let* ((n (id-var-name value w))
(type (binding-type (lookup n r))))
(case type
((global)
(eval-if-c&e m
(build-global-definition s n (chi e r w))))
((displaced-lexical)
(syntax-error (wrap value w) "identifier out of context"))
(else
(if (eq? type 'external-macro)
(eval-if-c&e m
(build-global-definition s n (chi e r w)))
(syntax-error (wrap value w)
"cannot define keyword at top level"))))))
(else (eval-if-c&e m (chi-expr type value e r w s))))))))
(define chi
(lambda (e r w)
(call-with-values
(lambda () (syntax-type e r w no-source #f))
(lambda (type value e w s)
(chi-expr type value e r w s)))))
(define chi-expr
(lambda (type value e r w s)
(case type
((lexical)
(build-lexical-reference 'value s value))
((core external-macro) (value e r w s))
((lexical-call)
(chi-application
(build-lexical-reference 'fun (source-annotation (car e)) value)
e r w s))
((global-call)
(chi-application
(build-global-reference (source-annotation (car e)) value)
e r w s))
((constant) (build-data s (strip (source-wrap e w s) empty-wrap)))
((global) (build-global-reference s value))
((call) (chi-application (chi (car e) r w) e r w s))
((begin-form)
(syntax-case e ()
((_ e1 e2 ...) (chi-sequence (syntax (e1 e2 ...)) r w s))))
((local-syntax-form)
(chi-local-syntax value e r w s chi-sequence))
((eval-when-form)
(syntax-case e ()
((_ (x ...) e1 e2 ...)
(let ((when-list (chi-when-list e (syntax (x ...)) w)))
(if (memq 'eval when-list)
(chi-sequence (syntax (e1 e2 ...)) r w s)
(chi-void))))))
((define-form define-syntax-form)
(syntax-error (wrap value w) "invalid context for definition of"))
((syntax)
(syntax-error (source-wrap e w s)
"reference to pattern variable outside syntax form"))
((displaced-lexical)
(syntax-error (source-wrap e w s)
"reference to identifier outside its scope"))
(else (syntax-error (source-wrap e w s))))))
(define chi-application
(lambda (x e r w s)
(syntax-case e ()
((e0 e1 ...)
(build-application s x
(map (lambda (e) (chi e r w)) (syntax (e1 ...))))))))
(define chi-macro
(lambda (p e r w rib)
(define rebuild-macro-output
(lambda (x m)
(cond ((pair? x)
(cons (rebuild-macro-output (car x) m)
(rebuild-macro-output (cdr x) m)))
((syntax-object? x)
(let ((w (syntax-object-wrap x)))
(let ((ms (wrap-marks w)) (s (wrap-subst w)))
(make-syntax-object (syntax-object-expression x)
(if (and (pair? ms) (eq? (car ms) the-anti-mark))
(make-wrap (cdr ms)
(if rib (cons rib (cdr s)) (cdr s)))
(make-wrap (cons m ms)
(if rib
(cons rib (cons 'shift s))
(cons 'shift s))))))))
((vector? x)
(let* ((n (vector-length x)) (v (make-vector n)))
(do ((i 0 (fx+ i 1)))
((fx= i n) v)
(vector-set! v i
(rebuild-macro-output (vector-ref x i) m)))))
((symbol? x)
(syntax-error x "encountered raw symbol in macro output"))
(else x))))
(rebuild-macro-output (p (wrap e (anti-mark w))) (new-mark))))
(define chi-body
;; In processing the forms of the body, we create a new, empty wrap.
;; This wrap is augmented (destructively) each time we discover that
;; the next form is a definition. This is done:
;;
;; (1) to allow the first nondefinition form to be a call to
;; one of the defined ids even if the id previously denoted a
;; definition keyword or keyword for a macro expanding into a
;; definition;
;; (2) to prevent subsequent definition forms (but unfortunately
;; not earlier ones) and the first nondefinition form from
;; confusing one of the bound identifiers for an auxiliary
;; keyword; and
;; (3) so that we do not need to restart the expansion of the
;; first nondefinition form, which is problematic anyway
;; since it might be the first element of a begin that we
;; have just spliced into the body (meaning if we restarted,
;; we'd really need to restart with the begin or the macro
;; call that expanded into the begin, and we'd have to give
;; up allowing (begin <defn>+ <expr>+), which is itself
;; problematic since we don't know if a begin contains only
;; definitions until we've expanded it).
;;
;; Before processing the body, we also create a new environment
;; containing a placeholder for the bindings we will add later and
;; associate this environment with each form. In processing a
;; let-syntax or letrec-syntax, the associated environment may be
;; augmented with local keyword bindings, so the environment may
;; be different for different forms in the body. Once we have
;; gathered up all of the definitions, we evaluate the transformer
;; expressions and splice into r at the placeholder the new variable
;; and keyword bindings. This allows let-syntax or letrec-syntax
;; forms local to a portion or all of the body to shadow the
;; definition bindings.
;;
;; Subforms of a begin, let-syntax, or letrec-syntax are spliced
;; into the body.
;;
;; outer-form is fully wrapped w/source
(lambda (body outer-form r w)
(let* ((r (cons '("placeholder" . (placeholder)) r))
(ribcage (make-empty-ribcage))
(w (make-wrap (wrap-marks w) (cons ribcage (wrap-subst w)))))
(let parse ((body (map (lambda (x) (cons r (wrap x w))) body))
(ids '()) (labels '()) (vars '()) (vals '()) (bindings '()))
(if (null? body)
(syntax-error outer-form "no expressions in body")
(let ((e (cdar body)) (er (caar body)))
(call-with-values
(lambda () (syntax-type e er empty-wrap no-source ribcage))
(lambda (type value e w s)
(case type
((define-form)
(let ((id (wrap value w)) (label (gen-label)))
(let ((var (gen-var id)))
(extend-ribcage! ribcage id label)
(parse (cdr body)
(cons id ids) (cons label labels)
(cons var vars) (cons (cons er (wrap e w)) vals)
(cons (make-binding 'lexical var) bindings)))))
((define-syntax-form)
(let ((id (wrap value w)) (label (gen-label)))
(extend-ribcage! ribcage id label)
(parse (cdr body)
(cons id ids) (cons label labels)
vars vals
(cons (make-binding 'macro (cons er (wrap e w)))
bindings))))
((begin-form)
(syntax-case e ()
((_ e1 ...)
(parse (let f ((forms (syntax (e1 ...))))
(if (null? forms)
(cdr body)
(cons (cons er (wrap (car forms) w))
(f (cdr forms)))))
ids labels vars vals bindings))))
((local-syntax-form)
(chi-local-syntax value e er w s
(lambda (forms er w s)
(parse (let f ((forms forms))
(if (null? forms)
(cdr body)
(cons (cons er (wrap (car forms) w))
(f (cdr forms)))))
ids labels vars vals bindings))))
(else ; found a non-definition
(if (null? ids)
(build-sequence no-source
(map (lambda (x)
(chi (cdr x) (car x) empty-wrap))
(cons (cons er (source-wrap e w s))
(cdr body))))
(begin
(if (not (valid-bound-ids? ids))
(syntax-error outer-form
"invalid or duplicate identifier in definition"))
(let loop ((bs bindings) (er-cache #f) (r-cache #f))
(if (not (null? bs))
(let* ((b (car bs)))
(if (eq? (car b) 'macro)
(let* ((er (cadr b))
(r-cache
(if (eq? er er-cache)
r-cache
(macros-only-env er))))
(set-cdr! b
(eval-local-transformer
(chi (cddr b) r-cache empty-wrap)))
(loop (cdr bs) er r-cache))
(loop (cdr bs) er-cache r-cache)))))
(set-cdr! r (extend-env labels bindings (cdr r)))
(build-letrec no-source
vars
(map (lambda (x)
(chi (cdr x) (car x) empty-wrap))
vals)
(build-sequence no-source
(map (lambda (x)
(chi (cdr x) (car x) empty-wrap))
(cons (cons er (source-wrap e w s))
(cdr body)))))))))))))))))
(define chi-lambda-clause
(lambda (e c r w k)
(syntax-case c ()
(((id ...) e1 e2 ...)
(let ((ids (syntax (id ...))))
(if (not (valid-bound-ids? ids))
(syntax-error e "invalid parameter list in")
(let ((labels (gen-labels ids))
(new-vars (map gen-var ids)))
(k new-vars
(chi-body (syntax (e1 e2 ...))
e
(extend-var-env labels new-vars r)
(make-binding-wrap ids labels w)))))))
((ids e1 e2 ...)
(let ((old-ids (lambda-var-list (syntax ids))))
(if (not (valid-bound-ids? old-ids))
(syntax-error e "invalid parameter list in")
(let ((labels (gen-labels old-ids))
(new-vars (map gen-var old-ids)))
(k (let f ((ls1 (cdr new-vars)) (ls2 (car new-vars)))
(if (null? ls1)
ls2
(f (cdr ls1) (cons (car ls1) ls2))))
(chi-body (syntax (e1 e2 ...))
e
(extend-var-env labels new-vars r)
(make-binding-wrap old-ids labels w)))))))
(_ (syntax-error e)))))
(define chi-local-syntax
(lambda (rec? e r w s k)
(syntax-case e ()
((_ ((id val) ...) e1 e2 ...)
(let ((ids (syntax (id ...))))
(if (not (valid-bound-ids? ids))
(syntax-error e "duplicate bound keyword in")
(let ((labels (gen-labels ids)))
(let ((new-w (make-binding-wrap ids labels w)))
(k (syntax (e1 e2 ...))
(extend-env
labels
(let ((w (if rec? new-w w))
(trans-r (macros-only-env r)))
(map (lambda (x)
(make-binding 'macro
(eval-local-transformer (chi x trans-r w))))
(syntax (val ...))))
r)
new-w
s))))))
(_ (syntax-error (source-wrap e w s))))))
(define eval-local-transformer
(lambda (expanded)
(let ((p (local-eval-hook expanded)))
(if (procedure? p)
p
(syntax-error p "nonprocedure transformer")))))
(define chi-void
(lambda ()
(build-application no-source (build-primref no-source 'void) '())))
(define ellipsis?
(lambda (x)
(and (nonsymbol-id? x)
(free-id=? x (syntax (... ...))))))
;;; data
;;; strips all annotations from potentially circular reader output
(define strip-annotation
(lambda (x parent)
(cond
((pair? x)
(let ((new (cons #f #f)))
(when parent (set-annotation-stripped! parent new))
(set-car! new (strip-annotation (car x) #f))
(set-cdr! new (strip-annotation (cdr x) #f))
new))
((annotation? x)
(or (annotation-stripped x)
(strip-annotation (annotation-expression x) x)))
((vector? x)
(let ((new (make-vector (vector-length x))))
(when parent (set-annotation-stripped! parent new))
(let loop ((i (- (vector-length x) 1)))
(unless (fx< i 0)
(vector-set! new i (strip-annotation (vector-ref x i) #f))
(loop (fx- i 1))))
new))
(else x))))
;;; strips syntax-objects down to top-wrap; if top-wrap is layered directly
;;; on an annotation, strips the annotation as well.
;;; since only the head of a list is annotated by the reader, not each pair
;;; in the spine, we also check for pairs whose cars are annotated in case
;;; we've been passed the cdr of an annotated list
(define strip
(lambda (x w)
(if (top-marked? w)
(if (or (annotation? x) (and (pair? x) (annotation? (car x))))
(strip-annotation x #f)
x)
(let f ((x x))
(cond
((syntax-object? x)
(strip (syntax-object-expression x) (syntax-object-wrap x)))
((pair? x)
(let ((a (f (car x))) (d (f (cdr x))))
(if (and (eq? a (car x)) (eq? d (cdr x)))
x
(cons a d))))
((vector? x)
(let ((old (vector->list x)))
(let ((new (map f old)))
(if (andmap eq? old new) x (list->vector new)))))
(else x))))))
;;; lexical variables
(define gen-var
(lambda (id)
(let ((id (if (syntax-object? id) (syntax-object-expression id) id)))
(if (annotation? id)
(build-lexical-var (annotation-source id) (annotation-expression id))
(build-lexical-var no-source id)))))
(define lambda-var-list
(lambda (vars)
(let lvl ((vars vars) (ls '()) (w empty-wrap))
(cond
((pair? vars) (lvl (cdr vars) (cons (wrap (car vars) w) ls) w))
((id? vars) (cons (wrap vars w) ls))
((null? vars) ls)
((syntax-object? vars)
(lvl (syntax-object-expression vars)
ls
(join-wraps w (syntax-object-wrap vars))))
((annotation? vars)
(lvl (annotation-expression vars) ls w))
; include anything else to be caught by subsequent error
; checking
(else (cons vars ls))))))
;;; core transformers
(global-extend 'local-syntax 'letrec-syntax #t)
(global-extend 'local-syntax 'let-syntax #f)
(global-extend 'core 'fluid-let-syntax
(lambda (e r w s)
(syntax-case e ()
((_ ((var val) ...) e1 e2 ...)
(valid-bound-ids? (syntax (var ...)))
(let ((names (map (lambda (x) (id-var-name x w)) (syntax (var ...)))))
(for-each
(lambda (id n)
(case (binding-type (lookup n r))
((displaced-lexical)
(syntax-error (source-wrap id w s)
"identifier out of context"))))
(syntax (var ...))
names)
(chi-body
(syntax (e1 e2 ...))
(source-wrap e w s)
(extend-env
names
(let ((trans-r (macros-only-env r)))
(map (lambda (x)
(make-binding 'macro
(eval-local-transformer (chi x trans-r w))))
(syntax (val ...))))
r)
w)))
(_ (syntax-error (source-wrap e w s))))))
(global-extend 'core 'quote
(lambda (e r w s)
(syntax-case e ()
((_ e) (build-data s (strip (syntax e) w)))
(_ (syntax-error (source-wrap e w s))))))
(global-extend 'core 'syntax
(let ()
(define gen-syntax
(lambda (src e r maps ellipsis?)
(if (id? e)
(let ((label (id-var-name e empty-wrap)))
(let ((b (lookup label r)))
(if (eq? (binding-type b) 'syntax)
(call-with-values
(lambda ()
(let ((var.lev (binding-value b)))
(gen-ref src (car var.lev) (cdr var.lev) maps)))
(lambda (var maps) (values `(ref ,var) maps)))
(if (ellipsis? e)
(syntax-error src "misplaced ellipsis in syntax form")
(values `(quote ,e) maps)))))
(syntax-case e ()
((dots e)
(ellipsis? (syntax dots))
(gen-syntax src (syntax e) r maps (lambda (x) #f)))
((x dots . y)
; this could be about a dozen lines of code, except that we
; choose to handle (syntax (x ... ...)) forms
(ellipsis? (syntax dots))
(let f ((y (syntax y))
(k (lambda (maps)
(call-with-values
(lambda ()
(gen-syntax src (syntax x) r
(cons '() maps) ellipsis?))
(lambda (x maps)
(if (null? (car maps))
(syntax-error src
"extra ellipsis in syntax form")
(values (gen-map x (car maps))
(cdr maps))))))))
(syntax-case y ()
((dots . y)
(ellipsis? (syntax dots))
(f (syntax y)
(lambda (maps)
(call-with-values
(lambda () (k (cons '() maps)))
(lambda (x maps)
(if (null? (car maps))
(syntax-error src
"extra ellipsis in syntax form")
(values (gen-mappend x (car maps))
(cdr maps))))))))
(_ (call-with-values
(lambda () (gen-syntax src y r maps ellipsis?))
(lambda (y maps)
(call-with-values
(lambda () (k maps))
(lambda (x maps)
(values (gen-append x y) maps)))))))))
((x . y)
(call-with-values
(lambda () (gen-syntax src (syntax x) r maps ellipsis?))
(lambda (x maps)
(call-with-values
(lambda () (gen-syntax src (syntax y) r maps ellipsis?))
(lambda (y maps) (values (gen-cons x y) maps))))))
(#(e1 e2 ...)
(call-with-values
(lambda ()
(gen-syntax src (syntax (e1 e2 ...)) r maps ellipsis?))
(lambda (e maps) (values (gen-vector e) maps))))
(_ (values `(quote ,e) maps))))))
(define gen-ref
(lambda (src var level maps)
(if (fx= level 0)
(values var maps)
(if (null? maps)
(syntax-error src "missing ellipsis in syntax form")
(call-with-values
(lambda () (gen-ref src var (fx- level 1) (cdr maps)))
(lambda (outer-var outer-maps)
(let ((b (assq outer-var (car maps))))
(if b
(values (cdr b) maps)
(let ((inner-var (gen-var 'tmp)))
(values inner-var
(cons (cons (cons outer-var inner-var)
(car maps))
outer-maps)))))))))))
(define gen-mappend
(lambda (e map-env)
`(apply (primitive append) ,(gen-map e map-env))))
(define gen-map
(lambda (e map-env)
(let ((formals (map cdr map-env))
(actuals (map (lambda (x) `(ref ,(car x))) map-env)))
(cond
((eq? (car e) 'ref)
; identity map equivalence:
; (map (lambda (x) x) y) == y
(car actuals))
((andmap
(lambda (x) (and (eq? (car x) 'ref) (memq (cadr x) formals)))
(cdr e))
; eta map equivalence:
; (map (lambda (x ...) (f x ...)) y ...) == (map f y ...)
`(map (primitive ,(car e))
,@(map (let ((r (map cons formals actuals)))
(lambda (x) (cdr (assq (cadr x) r))))
(cdr e))))
(else `(map (lambda ,formals ,e) ,@actuals))))))
(define gen-cons
(lambda (x y)
(case (car y)
((quote)
(if (eq? (car x) 'quote)
`(quote (,(cadr x) . ,(cadr y)))
(if (eq? (cadr y) '())
`(list ,x)
`(cons ,x ,y))))
((list) `(list ,x ,@(cdr y)))
(else `(cons ,x ,y)))))
(define gen-append
(lambda (x y)
(if (equal? y '(quote ()))
x
`(append ,x ,y))))
(define gen-vector
(lambda (x)
(cond
((eq? (car x) 'list) `(vector ,@(cdr x)))
((eq? (car x) 'quote) `(quote #(,@(cadr x))))
(else `(list->vector ,x)))))
(define regen
(lambda (x)
(case (car x)
((ref) (build-lexical-reference 'value no-source (cadr x)))
((primitive) (build-primref no-source (cadr x)))
((quote) (build-data no-source (cadr x)))
((lambda) (build-lambda no-source (cadr x) (regen (caddr x))))
((map) (let ((ls (map regen (cdr x))))
(build-application no-source
(if (fx= (length ls) 2)
(build-primref no-source 'map)
; really need to do our own checking here
(build-primref no-source 2 'map)) ; require error check
ls)))
(else (build-application no-source
(build-primref no-source (car x))
(map regen (cdr x)))))))
(lambda (e r w s)
(let ((e (source-wrap e w s)))
(syntax-case e ()
((_ x)
(call-with-values
(lambda () (gen-syntax e (syntax x) r '() ellipsis?))
(lambda (e maps) (regen e))))
(_ (syntax-error e)))))))
(global-extend 'core 'lambda
(lambda (e r w s)
(syntax-case e ()
((_ . c)
(chi-lambda-clause (source-wrap e w s) (syntax c) r w
(lambda (vars body) (build-lambda s vars body)))))))
(global-extend 'core 'let
(let ()
(define (chi-let e r w s constructor ids vals exps)
(if (not (valid-bound-ids? ids))
(syntax-error e "duplicate bound variable in")
(let ((labels (gen-labels ids))
(new-vars (map gen-var ids)))
(let ((nw (make-binding-wrap ids labels w))
(nr (extend-var-env labels new-vars r)))
(constructor s
new-vars
(map (lambda (x) (chi x r w)) vals)
(chi-body exps (source-wrap e nw s) nr nw))))))
(lambda (e r w s)
(syntax-case e ()
((_ ((id val) ...) e1 e2 ...)
(chi-let e r w s
build-let
(syntax (id ...))
(syntax (val ...))
(syntax (e1 e2 ...))))
((_ f ((id val) ...) e1 e2 ...)
(id? (syntax f))
(chi-let e r w s
build-named-let
(syntax (f id ...))
(syntax (val ...))
(syntax (e1 e2 ...))))
(_ (syntax-error (source-wrap e w s)))))))
(global-extend 'core 'letrec
(lambda (e r w s)
(syntax-case e ()
((_ ((id val) ...) e1 e2 ...)
(let ((ids (syntax (id ...))))
(if (not (valid-bound-ids? ids))
(syntax-error e "duplicate bound variable in")
(let ((labels (gen-labels ids))
(new-vars (map gen-var ids)))
(let ((w (make-binding-wrap ids labels w))
(r (extend-var-env labels new-vars r)))
(build-letrec s
new-vars
(map (lambda (x) (chi x r w)) (syntax (val ...)))
(chi-body (syntax (e1 e2 ...)) (source-wrap e w s) r w)))))))
(_ (syntax-error (source-wrap e w s))))))
(global-extend 'core 'set!
(lambda (e r w s)
(syntax-case e ()
((_ id val)
(id? (syntax id))
(let ((val (chi (syntax val) r w))
(n (id-var-name (syntax id) w)))
(let ((b (lookup n r)))
(case (binding-type b)
((lexical)
(build-lexical-assignment s (binding-value b) val))
((global) (build-global-assignment s n val))
((displaced-lexical)
(syntax-error (wrap (syntax id) w)
"identifier out of context"))
(else (syntax-error (source-wrap e w s)))))))
((_ (getter arg ...) val)
(build-application s
(chi (syntax (setter getter)) r w)
(map (lambda (e) (chi e r w))
(syntax (arg ... val)))))
(_ (syntax-error (source-wrap e w s))))))
(global-extend 'begin 'begin '())
(global-extend 'define 'define '())
(global-extend 'define-syntax 'define-syntax '())
(global-extend 'eval-when 'eval-when '())
(global-extend 'core 'syntax-case
(let ()
(define convert-pattern
; accepts pattern & keys
; returns syntax-dispatch pattern & ids
(lambda (pattern keys)
(let cvt ((p pattern) (n 0) (ids '()))
(if (id? p)
(if (bound-id-member? p keys)
(values (vector 'free-id p) ids)
(values 'any (cons (cons p n) ids)))
(syntax-case p ()
((x dots)
(ellipsis? (syntax dots))
(call-with-values
(lambda () (cvt (syntax x) (fx+ n 1) ids))
(lambda (p ids)
(values (if (eq? p 'any) 'each-any (vector 'each p))
ids))))
((x . y)
(call-with-values
(lambda () (cvt (syntax y) n ids))
(lambda (y ids)
(call-with-values
(lambda () (cvt (syntax x) n ids))
(lambda (x ids)
(values (cons x y) ids))))))
(() (values '() ids))
(#(x ...)
(call-with-values
(lambda () (cvt (syntax (x ...)) n ids))
(lambda (p ids) (values (vector 'vector p) ids))))
(x (values (vector 'atom (strip p empty-wrap)) ids)))))))
(define build-dispatch-call
(lambda (pvars exp y r)
(let ((ids (map car pvars)) (levels (map cdr pvars)))
(let ((labels (gen-labels ids)) (new-vars (map gen-var ids)))
(build-application no-source
(build-primref no-source 'apply)
(list (build-lambda no-source new-vars
(chi exp
(extend-env
labels
(map (lambda (var level)
(make-binding 'syntax `(,var . ,level)))
new-vars
(map cdr pvars))
r)
(make-binding-wrap ids labels empty-wrap)))
y))))))
(define gen-clause
(lambda (x keys clauses r pat fender exp)
(call-with-values
(lambda () (convert-pattern pat keys))
(lambda (p pvars)
(cond
((not (distinct-bound-ids? (map car pvars)))
(syntax-error pat
"duplicate pattern variable in syntax-case pattern"))
((not (andmap (lambda (x) (not (ellipsis? (car x)))) pvars))
(syntax-error pat
"misplaced ellipsis in syntax-case pattern"))
(else
(let ((y (gen-var 'tmp)))
; fat finger binding and references to temp variable y
(build-application no-source
(build-lambda no-source (list y)
(let ((y (build-lexical-reference 'value no-source y)))
(build-conditional no-source
(syntax-case fender ()
(#t y)
(_ (build-conditional no-source
y
(build-dispatch-call pvars fender y r)
(build-data no-source #f))))
(build-dispatch-call pvars exp y r)
(gen-syntax-case x keys clauses r))))
(list (if (eq? p 'any)
(build-application no-source
(build-primref no-source 'list)
(list x))
(build-application no-source
(build-primref no-source 'syntax-dispatch)
(list x (build-data no-source p)))))))))))))
(define gen-syntax-case
(lambda (x keys clauses r)
(if (null? clauses)
(build-application no-source
(build-primref no-source 'syntax-error)
(list x))
(syntax-case (car clauses) ()
((pat exp)
(if (and (id? (syntax pat))
(andmap (lambda (x) (not (free-id=? (syntax pat) x)))
(cons (syntax (... ...)) keys)))
(let ((labels (list (gen-label)))
(var (gen-var (syntax pat))))
(build-application no-source
(build-lambda no-source (list var)
(chi (syntax exp)
(extend-env labels
(list (make-binding 'syntax `(,var . 0)))
r)
(make-binding-wrap (syntax (pat))
labels empty-wrap)))
(list x)))
(gen-clause x keys (cdr clauses) r
(syntax pat) #t (syntax exp))))
((pat fender exp)
(gen-clause x keys (cdr clauses) r
(syntax pat) (syntax fender) (syntax exp)))
(_ (syntax-error (car clauses) "invalid syntax-case clause"))))))
(lambda (e r w s)
(let ((e (source-wrap e w s)))
(syntax-case e ()
((_ val (key ...) m ...)
(if (andmap (lambda (x) (and (id? x) (not (ellipsis? x))))
(syntax (key ...)))
(let ((x (gen-var 'tmp)))
; fat finger binding and references to temp variable x
(build-application s
(build-lambda no-source (list x)
(gen-syntax-case (build-lexical-reference 'value no-source x)
(syntax (key ...)) (syntax (m ...))
r))
(list (chi (syntax val) r empty-wrap))))
(syntax-error e "invalid literals list in"))))))))
;;; The portable sc-expand seeds chi-top's mode m with 'e (for
;;; evaluating) and esew (which stands for "eval syntax expanders
;;; when") with '(eval). In Chez Scheme, m is set to 'c instead of e
;;; if we are compiling a file, and esew is set to
;;; (eval-syntactic-expanders-when), which defaults to the list
;;; '(compile load eval). This means that, by default, top-level
;;; syntactic definitions are evaluated immediately after they are
;;; expanded, and the expanded definitions are also residualized into
;;; the object file if we are compiling a file.
(set! sc-expand
(let ((m 'e) (esew '(eval)))
(lambda (x)
(if (and (pair? x) (equal? (car x) noexpand))
(cadr x)
(chi-top x null-env top-wrap m esew)))))
(set! sc-expand3
(let ((m 'e) (esew '(eval)))
(lambda (x . rest)
(if (and (pair? x) (equal? (car x) noexpand))
(cadr x)
(chi-top x
null-env
top-wrap
(if (null? rest) m (car rest))
(if (or (null? rest) (null? (cdr rest)))
esew
(cadr rest)))))))
(set! identifier?
(lambda (x)
(nonsymbol-id? x)))
(set! datum->syntax-object
(lambda (id datum)
(make-syntax-object datum (syntax-object-wrap id))))
(set! syntax-object->datum
; accepts any object, since syntax objects may consist partially
; or entirely of unwrapped, nonsymbolic data
(lambda (x)
(strip x empty-wrap)))
(set! generate-temporaries
(lambda (ls)
(arg-check list? ls 'generate-temporaries)
(map (lambda (x) (wrap (gensym-hook) top-wrap)) ls)))
(set! free-identifier=?
(lambda (x y)
(arg-check nonsymbol-id? x 'free-identifier=?)
(arg-check nonsymbol-id? y 'free-identifier=?)
(free-id=? x y)))
(set! bound-identifier=?
(lambda (x y)
(arg-check nonsymbol-id? x 'bound-identifier=?)
(arg-check nonsymbol-id? y 'bound-identifier=?)
(bound-id=? x y)))
(set! syntax-error
(lambda (object . messages)
(for-each (lambda (x) (arg-check string? x 'syntax-error)) messages)
(let ((message (if (null? messages)
"invalid syntax"
(apply string-append messages))))
(error-hook #f message (strip object empty-wrap)))))
(set! install-global-transformer
(lambda (sym v)
(arg-check symbol? sym 'define-syntax)
(arg-check procedure? v 'define-syntax)
(global-extend 'macro sym v)))
;;; syntax-dispatch expects an expression and a pattern. If the expression
;;; matches the pattern a list of the matching expressions for each
;;; "any" is returned. Otherwise, #f is returned. (This use of #f will
;;; not work on r4rs implementations that violate the ieee requirement
;;; that #f and () be distinct.)
;;; The expression is matched with the pattern as follows:
;;; pattern: matches:
;;; () empty list
;;; any anything
;;; (<pattern>1 . <pattern>2) (<pattern>1 . <pattern>2)
;;; each-any (any*)
;;; #(free-id <key>) <key> with free-identifier=?
;;; #(each <pattern>) (<pattern>*)
;;; #(vector <pattern>) (list->vector <pattern>)
;;; #(atom <object>) <object> with "equal?"
;;; Vector cops out to pair under assumption that vectors are rare. If
;;; not, should convert to:
;;; #(vector <pattern>*) #(<pattern>*)
(let ()
(define match-each
(lambda (e p w)
(cond
((annotation? e)
(match-each (annotation-expression e) p w))
((pair? e)
(let ((first (match (car e) p w '())))
(and first
(let ((rest (match-each (cdr e) p w)))
(and rest (cons first rest))))))
((null? e) '())
((syntax-object? e)
(match-each (syntax-object-expression e)
p
(join-wraps w (syntax-object-wrap e))))
(else #f))))
(define match-each-any
(lambda (e w)
(cond
((annotation? e)
(match-each-any (annotation-expression e) w))
((pair? e)
(let ((l (match-each-any (cdr e) w)))
(and l (cons (wrap (car e) w) l))))
((null? e) '())
((syntax-object? e)
(match-each-any (syntax-object-expression e)
(join-wraps w (syntax-object-wrap e))))
(else #f))))
(define match-empty
(lambda (p r)
(cond
((null? p) r)
((eq? p 'any) (cons '() r))
((pair? p) (match-empty (car p) (match-empty (cdr p) r)))
((eq? p 'each-any) (cons '() r))
(else
(case (vector-ref p 0)
((each) (match-empty (vector-ref p 1) r))
((free-id atom) r)
((vector) (match-empty (vector-ref p 1) r)))))))
(define match*
(lambda (e p w r)
(cond
((null? p) (and (null? e) r))
((pair? p)
(and (pair? e) (match (car e) (car p) w
(match (cdr e) (cdr p) w r))))
((eq? p 'each-any)
(let ((l (match-each-any e w))) (and l (cons l r))))
(else
(case (vector-ref p 0)
((each)
(if (null? e)
(match-empty (vector-ref p 1) r)
(let ((l (match-each e (vector-ref p 1) w)))
(and l
(let collect ((l l))
(if (null? (car l))
r
(cons (map car l) (collect (map cdr l)))))))))
((free-id) (and (id? e) (free-id=? (wrap e w) (vector-ref p 1)) r))
((atom) (and (equal? (vector-ref p 1) (strip e w)) r))
((vector)
(and (vector? e)
(match (vector->list e) (vector-ref p 1) w r))))))))
(define match
(lambda (e p w r)
(cond
((not r) #f)
((eq? p 'any) (cons (wrap e w) r))
((syntax-object? e)
(match*
(unannotate (syntax-object-expression e))
p
(join-wraps w (syntax-object-wrap e))
r))
(else (match* (unannotate e) p w r)))))
(set! syntax-dispatch
(lambda (e p)
(cond
((eq? p 'any) (list e))
((syntax-object? e)
(match* (unannotate (syntax-object-expression e))
p (syntax-object-wrap e) '()))
(else (match* (unannotate e) p empty-wrap '())))))
(set! sc-chi chi)
))
)
(define-syntax with-syntax
(lambda (x)
(syntax-case x ()
((_ () e1 e2 ...)
(syntax (begin e1 e2 ...)))
((_ ((out in)) e1 e2 ...)
(syntax (syntax-case in () (out (begin e1 e2 ...)))))
((_ ((out in) ...) e1 e2 ...)
(syntax (syntax-case (list in ...) ()
((out ...) (begin e1 e2 ...))))))))
(define-syntax syntax-rules
(lambda (x)
(syntax-case x ()
((_ (k ...) ((keyword . pattern) template) ...)
(syntax (lambda (x)
(syntax-case x (k ...)
((dummy . pattern) (syntax template))
...)))))))
(define-syntax let*
(lambda (x)
(syntax-case x ()
((let* ((x v) ...) e1 e2 ...)
(andmap identifier? (syntax (x ...)))
(let f ((bindings (syntax ((x v) ...))))
(if (null? bindings)
(syntax (let () e1 e2 ...))
(with-syntax ((body (f (cdr bindings)))
(binding (car bindings)))
(syntax (let (binding) body)))))))))
(define-syntax do
(lambda (orig-x)
(syntax-case orig-x ()
((_ ((var init . step) ...) (e0 e1 ...) c ...)
(with-syntax (((step ...)
(map (lambda (v s)
(syntax-case s ()
(() v)
((e) (syntax e))
(_ (syntax-error orig-x))))
(syntax (var ...))
(syntax (step ...)))))
(syntax-case (syntax (e1 ...)) ()
(() (syntax (let doloop ((var init) ...)
(if (not e0)
(begin c ... (doloop step ...))))))
((e1 e2 ...)
(syntax (let doloop ((var init) ...)
(if e0
(begin e1 e2 ...)
(begin c ... (doloop step ...))))))))))))
(define-syntax quasiquote
(letrec
((quasicons
(lambda (x y)
(with-syntax ((x x) (y y))
(syntax-case (syntax y) (quote list)
((quote dy)
(syntax-case (syntax x) (quote)
((quote dx) (syntax (quote (dx . dy))))
(_ (if (null? (syntax dy))
(syntax (list x))
(syntax (cons x y))))))
((list . stuff) (syntax (list x . stuff)))
(else (syntax (cons x y)))))))
(quasiappend
(lambda (x y)
(with-syntax ((x x) (y y))
(syntax-case (syntax y) (quote)
((quote ()) (syntax x))
(_ (syntax (append x y)))))))
(quasivector
(lambda (x)
(with-syntax ((x x))
(syntax-case (syntax x) (quote list)
((quote (x ...)) (syntax (quote #(x ...))))
((list x ...) (syntax (vector x ...)))
(_ (syntax (list->vector x)))))))
(quasi
(lambda (p lev)
(syntax-case p (unquote unquote-splicing quasiquote)
((unquote p)
(if (= lev 0)
(syntax p)
(quasicons (syntax (quote unquote))
(quasi (syntax (p)) (- lev 1)))))
(((unquote-splicing p) . q)
(if (= lev 0)
(quasiappend (syntax p) (quasi (syntax q) lev))
(quasicons (quasicons (syntax (quote unquote-splicing))
(quasi (syntax (p)) (- lev 1)))
(quasi (syntax q) lev))))
((quasiquote p)
(quasicons (syntax (quote quasiquote))
(quasi (syntax (p)) (+ lev 1))))
((p . q)
(quasicons (quasi (syntax p) lev) (quasi (syntax q) lev)))
(#(x ...) (quasivector (quasi (syntax (x ...)) lev)))
(p (syntax (quote p)))))))
(lambda (x)
(syntax-case x ()
((_ e) (quasi (syntax e) 0))))))
(define-syntax include
(lambda (x)
(define read-file
(lambda (fn k)
(let ((p (open-input-file fn)))
(let f ((x (read p)))
(if (eof-object? x)
(begin (close-input-port p) '())
(cons (datum->syntax-object k x)
(f (read p))))))))
(syntax-case x ()
((k filename)
(let ((fn (syntax-object->datum (syntax filename))))
(with-syntax (((exp ...) (read-file fn (syntax k))))
(syntax (begin exp ...))))))))
(define-syntax unquote
(lambda (x)
(syntax-case x ()
((_ e)
(error 'unquote
"expression ,~s not valid outside of quasiquote"
(syntax-object->datum (syntax e)))))))
(define-syntax unquote-splicing
(lambda (x)
(syntax-case x ()
((_ e)
(error 'unquote-splicing
"expression ,@~s not valid outside of quasiquote"
(syntax-object->datum (syntax e)))))))
(define-syntax case
(lambda (x)
(syntax-case x ()
((_ e m1 m2 ...)
(with-syntax
((body (let f ((clause (syntax m1)) (clauses (syntax (m2 ...))))
(if (null? clauses)
(syntax-case clause (else)
((else e1 e2 ...) (syntax (begin e1 e2 ...)))
(((k ...) e1 e2 ...)
(syntax (if (memv t '(k ...)) (begin e1 e2 ...))))
(_ (syntax-error x)))
(with-syntax ((rest (f (car clauses) (cdr clauses))))
(syntax-case clause (else)
(((k ...) e1 e2 ...)
(syntax (if (memv t '(k ...))
(begin e1 e2 ...)
rest)))
(_ (syntax-error x))))))))
(syntax (let ((t e)) body)))))))
(define-syntax identifier-syntax
(lambda (x)
(syntax-case x ()
((_ e)
(syntax
(lambda (x)
(syntax-case x ()
(id
(identifier? (syntax id))
(syntax e))
((_ x (... ...))
(syntax (e x (... ...)))))))))))
|