Spaces:
Sleeping
Sleeping
File size: 13,783 Bytes
f65fe85 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 |
;;; transformation of letrec into simpler forms
;; Copyright (C) 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 3 of the License, or (at your option) any later version.
;;;;
;;;; This library is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;;; Lesser General Public License for more details.
;;;;
;;;; You should have received a copy of the GNU Lesser General Public
;;;; License along with this library; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
(define-module (language tree-il fix-letrec)
#:use-module (system base syntax)
#:use-module (srfi srfi-1)
#:use-module (srfi srfi-11)
#:use-module (language tree-il)
#:use-module (language tree-il effects)
#:export (fix-letrec!))
;; For a detailed discussion, see "Fixing Letrec: A Faithful Yet
;; Efficient Implementation of Scheme's Recursive Binding Construct", by
;; Oscar Waddell, Dipanwita Sarkar, and R. Kent Dybvig.
(define fix-fold
(make-tree-il-folder unref ref set simple lambda complex))
(define (simple-expression? x bound-vars simple-primcall?)
(record-case x
((<void>) #t)
((<const>) #t)
((<lexical-ref> gensym)
(not (memq gensym bound-vars)))
((<conditional> test consequent alternate)
(and (simple-expression? test bound-vars simple-primcall?)
(simple-expression? consequent bound-vars simple-primcall?)
(simple-expression? alternate bound-vars simple-primcall?)))
((<sequence> exps)
(and-map (lambda (x) (simple-expression? x bound-vars simple-primcall?))
exps))
((<application> proc args)
(and (primitive-ref? proc)
(simple-primcall? x)
(and-map (lambda (x)
(simple-expression? x bound-vars simple-primcall?))
args)))
(else #f)))
(define (partition-vars x)
(let-values
(((unref ref set simple lambda* complex)
(fix-fold x
(lambda (x unref ref set simple lambda* complex)
(record-case x
((<lexical-ref> gensym)
(values (delq gensym unref)
(lset-adjoin eq? ref gensym)
set
simple
lambda*
complex))
((<lexical-set> gensym)
(values unref
ref
(lset-adjoin eq? set gensym)
simple
lambda*
complex))
((<letrec> gensyms)
(values (append gensyms unref)
ref
set
simple
lambda*
complex))
((<let> gensyms)
(values (append gensyms unref)
ref
set
simple
lambda*
complex))
(else
(values unref ref set simple lambda* complex))))
(lambda (x unref ref set simple lambda* complex)
(record-case x
((<letrec> in-order? (orig-gensyms gensyms) vals)
(define compute-effects
(make-effects-analyzer (lambda (x) (memq x set))))
(define (effect-free-primcall? x)
(let ((effects (compute-effects x)))
(effect-free?
(exclude-effects effects (logior &allocation
&type-check)))))
(define (effect+exception-free-primcall? x)
(let ((effects (compute-effects x)))
(effect-free?
(exclude-effects effects &allocation))))
(let lp ((gensyms orig-gensyms) (vals vals)
(s '()) (l '()) (c '()))
(cond
((null? gensyms)
;; Unreferenced complex vars are still
;; complex for letrec*. We need to update
;; our algorithm to "Fixing letrec reloaded"
;; to fix this.
(values (if in-order?
(lset-difference eq? unref c)
unref)
ref
set
(append s simple)
(append l lambda*)
(append c complex)))
((memq (car gensyms) unref)
;; See above note about unref and letrec*.
(if (and in-order?
(not (lambda? (car vals)))
(not (simple-expression?
(car vals) orig-gensyms
effect+exception-free-primcall?)))
(lp (cdr gensyms) (cdr vals)
s l (cons (car gensyms) c))
(lp (cdr gensyms) (cdr vals)
s l c)))
((memq (car gensyms) set)
(lp (cdr gensyms) (cdr vals)
s l (cons (car gensyms) c)))
((lambda? (car vals))
(lp (cdr gensyms) (cdr vals)
s (cons (car gensyms) l) c))
((simple-expression?
(car vals) orig-gensyms
(if in-order?
effect+exception-free-primcall?
effect-free-primcall?))
;; For letrec*, we can't consider e.g. `car' to be
;; "simple", as it could raise an exception. Hence
;; effect+exception-free-primitive? above.
(lp (cdr gensyms) (cdr vals)
(cons (car gensyms) s) l c))
(else
(lp (cdr gensyms) (cdr vals)
s l (cons (car gensyms) c))))))
((<let> (orig-gensyms gensyms) vals)
;; The point is to compile let-bound lambdas as
;; efficiently as we do letrec-bound lambdas, so
;; we use the same algorithm for analyzing the
;; gensyms. There is no problem recursing into the
;; bindings after the let, because all variables
;; have been renamed.
(let lp ((gensyms orig-gensyms) (vals vals)
(s '()) (l '()) (c '()))
(cond
((null? gensyms)
(values unref
ref
set
(append s simple)
(append l lambda*)
(append c complex)))
((memq (car gensyms) unref)
(lp (cdr gensyms) (cdr vals)
s l c))
((memq (car gensyms) set)
(lp (cdr gensyms) (cdr vals)
s l (cons (car gensyms) c)))
((and (lambda? (car vals))
(not (memq (car gensyms) set)))
(lp (cdr gensyms) (cdr vals)
s (cons (car gensyms) l) c))
;; There is no difference between simple and
;; complex, for the purposes of let. Just lump
;; them all into complex.
(else
(lp (cdr gensyms) (cdr vals)
s l (cons (car gensyms) c))))))
(else
(values unref ref set simple lambda* complex))))
'()
'()
'()
'()
'()
'())))
(values unref simple lambda* complex)))
(define (make-sequence* src exps)
(let lp ((in exps) (out '()))
(if (null? (cdr in))
(if (null? out)
(car in)
(make-sequence src (reverse (cons (car in) out))))
(let ((head (car in)))
(record-case head
((<lambda>) (lp (cdr in) out))
((<const>) (lp (cdr in) out))
((<lexical-ref>) (lp (cdr in) out))
((<void>) (lp (cdr in) out))
(else (lp (cdr in) (cons head out))))))))
(define (fix-letrec! x)
(let-values (((unref simple lambda* complex) (partition-vars x)))
(post-order!
(lambda (x)
(record-case x
;; Sets to unreferenced variables may be replaced by their
;; expression, called for effect.
((<lexical-set> gensym exp)
(if (memq gensym unref)
(make-sequence* #f (list exp (make-void #f)))
x))
((<letrec> src in-order? names gensyms vals body)
(let ((binds (map list gensyms names vals)))
;; The bindings returned by this function need to appear in the same
;; order that they appear in the letrec.
(define (lookup set)
(let lp ((binds binds))
(cond
((null? binds) '())
((memq (caar binds) set)
(cons (car binds) (lp (cdr binds))))
(else (lp (cdr binds))))))
(let ((u (lookup unref))
(s (lookup simple))
(l (lookup lambda*))
(c (lookup complex)))
;; Bind "simple" bindings, and locations for complex
;; bindings.
(make-let
src
(append (map cadr s) (map cadr c))
(append (map car s) (map car c))
(append (map caddr s) (map (lambda (x) (make-void #f)) c))
;; Bind lambdas using the fixpoint operator.
(make-fix
src (map cadr l) (map car l) (map caddr l)
(make-sequence*
src
(append
;; The right-hand-sides of the unreferenced
;; bindings, for effect.
(map caddr u)
(cond
((null? c)
;; No complex bindings, just emit the body.
(list body))
(in-order?
;; For letrec*, assign complex bindings in order, then the
;; body.
(append
(map (lambda (c)
(make-lexical-set #f (cadr c) (car c)
(caddr c)))
c)
(list body)))
(else
;; Otherwise for plain letrec, evaluate the "complex"
;; bindings, in a `let' to indicate that order doesn't
;; matter, and bind to their variables.
(list
(let ((tmps (map (lambda (x) (gensym)) c)))
(make-let
#f (map cadr c) tmps (map caddr c)
(make-sequence
#f
(map (lambda (x tmp)
(make-lexical-set
#f (cadr x) (car x)
(make-lexical-ref #f (cadr x) tmp)))
c tmps))))
body))))))))))
((<let> src names gensyms vals body)
(let ((binds (map list gensyms names vals)))
(define (lookup set)
(map (lambda (v) (assq v binds))
(lset-intersection eq? gensyms set)))
(let ((u (lookup unref))
(l (lookup lambda*))
(c (lookup complex)))
(make-sequence*
src
(append
;; unreferenced bindings, called for effect.
(map caddr u)
(list
;; unassigned lambdas use fix.
(make-fix src (map cadr l) (map car l) (map caddr l)
;; and the "complex" bindings.
(make-let src (map cadr c) (map car c) (map caddr c)
body))))))))
(else x)))
x)))
;;; Local Variables:
;;; eval: (put 'record-case 'scheme-indent-function 1)
;;; End:
|