Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -23,12 +23,21 @@ from model_suggestions import add_suggestion, get_suggestions_html
|
|
23 |
from release_notes import get_release_notes_html
|
24 |
|
25 |
|
26 |
-
#
|
27 |
logging.basicConfig(
|
28 |
level=logging.INFO,
|
29 |
-
format='%(asctime)s - %(levelname)s - %(message)s'
|
|
|
30 |
)
|
31 |
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
# Start the backup thread
|
34 |
start_backup_thread()
|
@@ -56,7 +65,7 @@ def call_ollama_api(model, prompt):
|
|
56 |
)
|
57 |
|
58 |
try:
|
59 |
-
logger.info(
|
60 |
response = client.chat.completions.create(
|
61 |
model=model,
|
62 |
messages=[
|
@@ -71,40 +80,56 @@ def call_ollama_api(model, prompt):
|
|
71 |
],
|
72 |
timeout=180
|
73 |
)
|
74 |
-
logger.info(
|
75 |
|
76 |
if not response or not response.choices:
|
77 |
-
logger.error(
|
78 |
-
return
|
|
|
|
|
|
|
79 |
|
80 |
content = response.choices[0].message.content
|
81 |
if not content:
|
82 |
-
logger.error(
|
83 |
-
return
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
|
88 |
-
#
|
89 |
import re
|
90 |
-
|
91 |
-
|
92 |
-
# Clean up any double newlines that might be left
|
93 |
-
content = re.sub(r'\n\s*\n', '\n', content.strip())
|
94 |
|
95 |
-
if
|
96 |
-
|
97 |
-
|
98 |
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
except requests.exceptions.Timeout:
|
103 |
-
logger.error(
|
104 |
-
return
|
|
|
|
|
|
|
105 |
except Exception as e:
|
106 |
-
logger.error(f"Error calling Ollama API
|
107 |
-
return
|
|
|
|
|
|
|
108 |
|
109 |
# Generate responses using two randomly selected models
|
110 |
def get_battle_counts():
|
@@ -117,7 +142,13 @@ def get_battle_counts():
|
|
117 |
def generate_responses(prompt):
|
118 |
available_models = get_available_models()
|
119 |
if len(available_models) < 2:
|
120 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
battle_counts = get_battle_counts()
|
123 |
|
@@ -142,16 +173,20 @@ def generate_responses(prompt):
|
|
142 |
# Update recent opponents
|
143 |
update_recent_opponents(model_a, model_b)
|
144 |
|
145 |
-
|
146 |
-
|
|
|
147 |
|
148 |
-
|
|
|
149 |
|
150 |
def battle_arena(prompt):
|
151 |
response_a, response_b, model_a, model_b = generate_responses(prompt)
|
152 |
|
153 |
# Check for API errors in responses
|
154 |
-
if "Error: Unable to get response from the model" in
|
|
|
|
|
155 |
return (
|
156 |
[], [], None, None,
|
157 |
gr.update(value=[]),
|
@@ -168,21 +203,12 @@ def battle_arena(prompt):
|
|
168 |
nickname_a = random.choice(config.model_nicknames)
|
169 |
nickname_b = random.choice(config.model_nicknames)
|
170 |
|
171 |
-
#
|
172 |
-
response_a_formatted = [
|
173 |
-
{"role": "user", "content": prompt},
|
174 |
-
{"role": "assistant", "content": response_a}
|
175 |
-
]
|
176 |
-
response_b_formatted = [
|
177 |
-
{"role": "user", "content": prompt},
|
178 |
-
{"role": "assistant", "content": response_b}
|
179 |
-
]
|
180 |
-
|
181 |
if random.choice([True, False]):
|
182 |
return (
|
183 |
-
|
184 |
-
gr.update(label=nickname_a, value=
|
185 |
-
gr.update(label=nickname_b, value=
|
186 |
gr.update(interactive=True, value=f"Vote for {nickname_a}"),
|
187 |
gr.update(interactive=True, value=f"Vote for {nickname_b}"),
|
188 |
gr.update(interactive=True, visible=True),
|
@@ -193,9 +219,9 @@ def battle_arena(prompt):
|
|
193 |
)
|
194 |
else:
|
195 |
return (
|
196 |
-
|
197 |
-
gr.update(label=nickname_a, value=
|
198 |
-
gr.update(label=nickname_b, value=
|
199 |
gr.update(interactive=True, value=f"Vote for {nickname_a}"),
|
200 |
gr.update(interactive=True, value=f"Vote for {nickname_b}"),
|
201 |
gr.update(interactive=True, visible=True),
|
|
|
23 |
from release_notes import get_release_notes_html
|
24 |
|
25 |
|
26 |
+
# Update the logging format to redact URLs
|
27 |
logging.basicConfig(
|
28 |
level=logging.INFO,
|
29 |
+
format='%(asctime)s - %(levelname)s - %(message)s',
|
30 |
+
filters=[lambda s: s.replace(config.API_URL, '[REDACTED]') if config.API_URL in s else s]
|
31 |
)
|
32 |
logger = logging.getLogger(__name__)
|
33 |
+
# Add this at the top with other imports
|
34 |
+
class RedactURLsFilter(logging.Filter):
|
35 |
+
def filter(self, record):
|
36 |
+
record.msg = record.msg.replace(config.NEXTCLOUD_URL, '[CLOUD_STORAGE]')
|
37 |
+
return super().filter(record)
|
38 |
+
|
39 |
+
# Apply the filter to all loggers
|
40 |
+
logging.getLogger().addFilter(RedactURLsFilter())
|
41 |
|
42 |
# Start the backup thread
|
43 |
start_backup_thread()
|
|
|
65 |
)
|
66 |
|
67 |
try:
|
68 |
+
logger.info("Starting API call")
|
69 |
response = client.chat.completions.create(
|
70 |
model=model,
|
71 |
messages=[
|
|
|
80 |
],
|
81 |
timeout=180
|
82 |
)
|
83 |
+
logger.info("Received response")
|
84 |
|
85 |
if not response or not response.choices:
|
86 |
+
logger.error("Empty response received")
|
87 |
+
return [
|
88 |
+
{"role": "user", "content": prompt},
|
89 |
+
{"role": "assistant", "content": "Error: Empty response from the model"}
|
90 |
+
]
|
91 |
|
92 |
content = response.choices[0].message.content
|
93 |
if not content:
|
94 |
+
logger.error("Empty content received")
|
95 |
+
return [
|
96 |
+
{"role": "user", "content": prompt},
|
97 |
+
{"role": "assistant", "content": "Error: Empty content from the model"}
|
98 |
+
]
|
99 |
|
100 |
+
# Extract thinking part and main content using regex
|
101 |
import re
|
102 |
+
thinking_match = re.search(r'<think>(.*?)</think>', content, flags=re.DOTALL)
|
|
|
|
|
|
|
103 |
|
104 |
+
if thinking_match:
|
105 |
+
thinking_content = thinking_match.group(1).strip()
|
106 |
+
main_content = re.sub(r'<think>.*?</think>', '', content, flags=re.DOTALL).strip()
|
107 |
|
108 |
+
logger.info("Found thinking content, creating structured response")
|
109 |
+
return [
|
110 |
+
{"role": "user", "content": prompt},
|
111 |
+
{"role": "assistant", "content": f"{main_content}\n\n<details><summary>🤔 View thinking process</summary>\n\n{thinking_content}\n\n</details>"}
|
112 |
+
]
|
113 |
+
|
114 |
+
# If no thinking tags, return normal content
|
115 |
+
logger.info("No thinking tags found, returning normal content")
|
116 |
+
return [
|
117 |
+
{"role": "user", "content": prompt},
|
118 |
+
{"role": "assistant", "content": content.strip()}
|
119 |
+
]
|
120 |
|
121 |
except requests.exceptions.Timeout:
|
122 |
+
logger.error("Timeout error after 180 seconds")
|
123 |
+
return [
|
124 |
+
{"role": "user", "content": prompt},
|
125 |
+
{"role": "assistant", "content": "Error: Model response timed out after 180 seconds"}
|
126 |
+
]
|
127 |
except Exception as e:
|
128 |
+
logger.error(f"Error calling Ollama API: {str(e)}", exc_info=True)
|
129 |
+
return [
|
130 |
+
{"role": "user", "content": prompt},
|
131 |
+
{"role": "assistant", "content": f"Error: Unable to get response from the model. Error: {str(e)}"}
|
132 |
+
]
|
133 |
|
134 |
# Generate responses using two randomly selected models
|
135 |
def get_battle_counts():
|
|
|
142 |
def generate_responses(prompt):
|
143 |
available_models = get_available_models()
|
144 |
if len(available_models) < 2:
|
145 |
+
return [
|
146 |
+
{"role": "user", "content": prompt},
|
147 |
+
{"role": "assistant", "content": "Error: Not enough models available"}
|
148 |
+
], [
|
149 |
+
{"role": "user", "content": prompt},
|
150 |
+
{"role": "assistant", "content": "Error: Not enough models available"}
|
151 |
+
], None, None
|
152 |
|
153 |
battle_counts = get_battle_counts()
|
154 |
|
|
|
173 |
# Update recent opponents
|
174 |
update_recent_opponents(model_a, model_b)
|
175 |
|
176 |
+
# Get responses from both models
|
177 |
+
response_a = call_ollama_api(model_a, prompt)
|
178 |
+
response_b = call_ollama_api(model_b, prompt)
|
179 |
|
180 |
+
# Return responses directly (already formatted correctly)
|
181 |
+
return response_a, response_b, model_a, model_b
|
182 |
|
183 |
def battle_arena(prompt):
|
184 |
response_a, response_b, model_a, model_b = generate_responses(prompt)
|
185 |
|
186 |
# Check for API errors in responses
|
187 |
+
if any("Error: Unable to get response from the model" in msg["content"]
|
188 |
+
for msg in response_a + response_b
|
189 |
+
if msg["role"] == "assistant"):
|
190 |
return (
|
191 |
[], [], None, None,
|
192 |
gr.update(value=[]),
|
|
|
203 |
nickname_a = random.choice(config.model_nicknames)
|
204 |
nickname_b = random.choice(config.model_nicknames)
|
205 |
|
206 |
+
# The responses are already in the correct format, no need to reformat
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
if random.choice([True, False]):
|
208 |
return (
|
209 |
+
response_a, response_b, model_a, model_b,
|
210 |
+
gr.update(label=nickname_a, value=response_a),
|
211 |
+
gr.update(label=nickname_b, value=response_b),
|
212 |
gr.update(interactive=True, value=f"Vote for {nickname_a}"),
|
213 |
gr.update(interactive=True, value=f"Vote for {nickname_b}"),
|
214 |
gr.update(interactive=True, visible=True),
|
|
|
219 |
)
|
220 |
else:
|
221 |
return (
|
222 |
+
response_b, response_a, model_b, model_a,
|
223 |
+
gr.update(label=nickname_a, value=response_b),
|
224 |
+
gr.update(label=nickname_b, value=response_a),
|
225 |
gr.update(interactive=True, value=f"Vote for {nickname_a}"),
|
226 |
gr.update(interactive=True, value=f"Vote for {nickname_b}"),
|
227 |
gr.update(interactive=True, visible=True),
|