Spaces:
Running
Running
Commit
·
d2cc323
1
Parent(s):
80e7e4c
minor fixes
Browse files
app.py
CHANGED
|
@@ -89,7 +89,7 @@ def process_uploaded_file(
|
|
| 89 |
"result_item_error",
|
| 90 |
)
|
| 91 |
|
| 92 |
-
if input_num_speakers
|
| 93 |
try:
|
| 94 |
input_threshold = float(input_threshold)
|
| 95 |
if input_threshold < 0 or input_threshold > 10:
|
|
@@ -142,7 +142,7 @@ def process(
|
|
| 142 |
|
| 143 |
audio, sample_rate = read_wave(filename)
|
| 144 |
|
| 145 |
-
MyPrint("audio
|
| 146 |
|
| 147 |
sd = get_speaker_diarization(
|
| 148 |
segmentation_model=speaker_segmentation_model,
|
|
@@ -150,7 +150,7 @@ def process(
|
|
| 150 |
num_clusters=input_num_speakers,
|
| 151 |
threshold=input_threshold,
|
| 152 |
)
|
| 153 |
-
MyPrint(f"{audio.shape / sd.sample_rate}, {sample_rate}")
|
| 154 |
|
| 155 |
segments = sd.process(audio).sort_by_start_time()
|
| 156 |
s = ""
|
|
@@ -194,6 +194,15 @@ See more information by visiting
|
|
| 194 |
If you want to try it on Android, please download pre-built Android
|
| 195 |
APKs for speaker diarzation by visiting
|
| 196 |
<https://k2-fsa.github.io/sherpa/onnx/speaker-diarization/android.html>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
"""
|
| 198 |
|
| 199 |
# css style is copied from
|
|
|
|
| 89 |
"result_item_error",
|
| 90 |
)
|
| 91 |
|
| 92 |
+
if input_num_speakers <= 0:
|
| 93 |
try:
|
| 94 |
input_threshold = float(input_threshold)
|
| 95 |
if input_threshold < 0 or input_threshold > 10:
|
|
|
|
| 142 |
|
| 143 |
audio, sample_rate = read_wave(filename)
|
| 144 |
|
| 145 |
+
MyPrint(f"audio, {audio.shape}, {sample_rate}")
|
| 146 |
|
| 147 |
sd = get_speaker_diarization(
|
| 148 |
segmentation_model=speaker_segmentation_model,
|
|
|
|
| 150 |
num_clusters=input_num_speakers,
|
| 151 |
threshold=input_threshold,
|
| 152 |
)
|
| 153 |
+
MyPrint(f"{audio.shape[0] / sd.sample_rate}, {sample_rate}")
|
| 154 |
|
| 155 |
segments = sd.process(audio).sort_by_start_time()
|
| 156 |
s = ""
|
|
|
|
| 194 |
If you want to try it on Android, please download pre-built Android
|
| 195 |
APKs for speaker diarzation by visiting
|
| 196 |
<https://k2-fsa.github.io/sherpa/onnx/speaker-diarization/android.html>
|
| 197 |
+
|
| 198 |
+
---
|
| 199 |
+
|
| 200 |
+
Note about the two arguments:
|
| 201 |
+
|
| 202 |
+
- number of speakers: If you know the actual number of speakers in the input file,
|
| 203 |
+
please provide it. Otherwise, please set it to 0
|
| 204 |
+
- clustering threshold: Used only when number of speakers is 0. A larger
|
| 205 |
+
threshold results in fewer clusters, i.e., fewer speakers.
|
| 206 |
"""
|
| 207 |
|
| 208 |
# css style is copied from
|
model.py
CHANGED
|
@@ -16,7 +16,7 @@
|
|
| 16 |
|
| 17 |
import wave
|
| 18 |
from functools import lru_cache
|
| 19 |
-
from typing import
|
| 20 |
|
| 21 |
import numpy as np
|
| 22 |
import sherpa_onnx
|
|
@@ -62,7 +62,7 @@ def _get_nn_model_filename(
|
|
| 62 |
return nn_model_filename
|
| 63 |
|
| 64 |
|
| 65 |
-
def get_speaker_segmentation_model(repo_id) ->
|
| 66 |
assert repo_id in ("pyannote/segmentation-3.0",)
|
| 67 |
|
| 68 |
if repo_id == "pyannote/segmentation-3.0":
|
|
@@ -72,14 +72,14 @@ def get_speaker_segmentation_model(repo_id) -> List[str]:
|
|
| 72 |
)
|
| 73 |
|
| 74 |
|
| 75 |
-
def get_speaker_embedding_model(model_name) ->
|
| 76 |
-
model_name = model_name.split("|")[0]
|
| 77 |
assert (
|
| 78 |
model_name
|
| 79 |
in three_d_speaker_embedding_models
|
| 80 |
+ nemo_speaker_embedding_models
|
| 81 |
+ wespeaker_embedding_models
|
| 82 |
)
|
|
|
|
| 83 |
|
| 84 |
return _get_nn_model_filename(
|
| 85 |
repo_id="csukuangfj/speaker-embedding-models",
|
|
@@ -92,16 +92,18 @@ def get_speaker_diarization(
|
|
| 92 |
):
|
| 93 |
segmentation = get_speaker_segmentation_model(segmentation_model)
|
| 94 |
embedding = get_speaker_embedding_model(embedding_model)
|
| 95 |
-
print("segmentation", segmentation)
|
| 96 |
-
print("embedding", embedding)
|
| 97 |
|
| 98 |
config = sherpa_onnx.OfflineSpeakerDiarizationConfig(
|
| 99 |
segmentation=sherpa_onnx.OfflineSpeakerSegmentationModelConfig(
|
| 100 |
pyannote=sherpa_onnx.OfflineSpeakerSegmentationPyannoteModelConfig(
|
| 101 |
model=segmentation
|
| 102 |
),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
),
|
| 104 |
-
embedding=sherpa_onnx.SpeakerEmbeddingExtractorConfig(model=embedding),
|
| 105 |
clustering=sherpa_onnx.FastClusteringConfig(
|
| 106 |
num_clusters=num_clusters,
|
| 107 |
threshold=threshold,
|
|
|
|
| 16 |
|
| 17 |
import wave
|
| 18 |
from functools import lru_cache
|
| 19 |
+
from typing import Tuple
|
| 20 |
|
| 21 |
import numpy as np
|
| 22 |
import sherpa_onnx
|
|
|
|
| 62 |
return nn_model_filename
|
| 63 |
|
| 64 |
|
| 65 |
+
def get_speaker_segmentation_model(repo_id) -> str:
|
| 66 |
assert repo_id in ("pyannote/segmentation-3.0",)
|
| 67 |
|
| 68 |
if repo_id == "pyannote/segmentation-3.0":
|
|
|
|
| 72 |
)
|
| 73 |
|
| 74 |
|
| 75 |
+
def get_speaker_embedding_model(model_name) -> str:
|
|
|
|
| 76 |
assert (
|
| 77 |
model_name
|
| 78 |
in three_d_speaker_embedding_models
|
| 79 |
+ nemo_speaker_embedding_models
|
| 80 |
+ wespeaker_embedding_models
|
| 81 |
)
|
| 82 |
+
model_name = model_name.split("|")[0]
|
| 83 |
|
| 84 |
return _get_nn_model_filename(
|
| 85 |
repo_id="csukuangfj/speaker-embedding-models",
|
|
|
|
| 92 |
):
|
| 93 |
segmentation = get_speaker_segmentation_model(segmentation_model)
|
| 94 |
embedding = get_speaker_embedding_model(embedding_model)
|
|
|
|
|
|
|
| 95 |
|
| 96 |
config = sherpa_onnx.OfflineSpeakerDiarizationConfig(
|
| 97 |
segmentation=sherpa_onnx.OfflineSpeakerSegmentationModelConfig(
|
| 98 |
pyannote=sherpa_onnx.OfflineSpeakerSegmentationPyannoteModelConfig(
|
| 99 |
model=segmentation
|
| 100 |
),
|
| 101 |
+
debug=True,
|
| 102 |
+
),
|
| 103 |
+
embedding=sherpa_onnx.SpeakerEmbeddingExtractorConfig(
|
| 104 |
+
model=embedding,
|
| 105 |
+
debug=True,
|
| 106 |
),
|
|
|
|
| 107 |
clustering=sherpa_onnx.FastClusteringConfig(
|
| 108 |
num_clusters=num_clusters,
|
| 109 |
threshold=threshold,
|