ntsc207 commited on
Commit
be30855
·
verified ·
1 Parent(s): c382798

Update detect_deepsort.py

Browse files
Files changed (1) hide show
  1. detect_deepsort.py +6 -6
detect_deepsort.py CHANGED
@@ -216,14 +216,14 @@ def run_deepsort(
216
  seen += 1
217
  if webcam: # batch_size >= 1
218
  p, im0, frame = path[i], im0s[i].copy(), dataset.count
219
- s += f'{i}: '
220
  else:
221
  p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
222
 
223
  p = Path(p) # to Path
224
  save_path = str(save_dir / p.name) # im.jpg
225
  txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
226
- s += '%gx%g ' % im.shape[2:] # print string
227
  gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
228
  ims = im0.copy()
229
  if len(det):
@@ -231,9 +231,9 @@ def run_deepsort(
231
  det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
232
 
233
  # Print results
234
- for c in det[:, -1].unique():
235
- n = (det[:, -1] == c).sum() # detections per class
236
- s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
237
  xywh_bboxs = []
238
  confs = []
239
  oids = []
@@ -287,7 +287,7 @@ def run_deepsort(
287
  vid_writer[i].write(ims)
288
 
289
  # Print time (inference-only)
290
- LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
291
  if update:
292
  strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
293
  return save_path
 
216
  seen += 1
217
  if webcam: # batch_size >= 1
218
  p, im0, frame = path[i], im0s[i].copy(), dataset.count
219
+ #s += f'{i}: '
220
  else:
221
  p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
222
 
223
  p = Path(p) # to Path
224
  save_path = str(save_dir / p.name) # im.jpg
225
  txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
226
+ #s += '%gx%g ' % im.shape[2:] # print string
227
  gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
228
  ims = im0.copy()
229
  if len(det):
 
231
  det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
232
 
233
  # Print results
234
+ for c in det[:, 5].unique():
235
+ n = (det[:, 5] == c).sum() # detections per class
236
+ #s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
237
  xywh_bboxs = []
238
  confs = []
239
  oids = []
 
287
  vid_writer[i].write(ims)
288
 
289
  # Print time (inference-only)
290
+ #LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
291
  if update:
292
  strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
293
  return save_path