Spaces:
Runtime error
Runtime error
thai thong
commited on
Commit
·
f4c379b
0
Parent(s):
add file via upload
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitignore +164 -0
- app.py +88 -0
- benchmarks.py +142 -0
- data/coco.yaml +106 -0
- data/hyps/hyp.scratch-high-ver2.yaml +30 -0
- data/hyps/hyp.scratch-high.yaml +30 -0
- detect.py +235 -0
- detect_dual.py +232 -0
- export.py +686 -0
- hubconf.py +107 -0
- models/__init__.py +1 -0
- models/attention/blocks.py +631 -0
- models/common.py +1360 -0
- models/experimental.py +275 -0
- models/tf.py +596 -0
- models/yolo.py +853 -0
- requirements.txt +47 -0
- utils/__init__.py +75 -0
- utils/augmentations.py +395 -0
- utils/autoanchor.py +164 -0
- utils/autobatch.py +67 -0
- utils/callbacks.py +71 -0
- utils/coco_utils.py +108 -0
- utils/dataloaders.py +1217 -0
- utils/downloads.py +103 -0
- utils/general.py +1227 -0
- utils/lion.py +67 -0
- utils/loggers/__init__.py +653 -0
- utils/loggers/clearml/__init__.py +1 -0
- utils/loggers/clearml/clearml_utils.py +157 -0
- utils/loggers/clearml/hpo.py +84 -0
- utils/loggers/comet/__init__.py +508 -0
- utils/loggers/comet/comet_utils.py +150 -0
- utils/loggers/comet/hpo.py +118 -0
- utils/loggers/comet/optimizer_config.json +209 -0
- utils/loggers/wandb/__init__.py +1 -0
- utils/loggers/wandb/log_dataset.py +27 -0
- utils/loggers/wandb/sweep.py +41 -0
- utils/loggers/wandb/sweep.yaml +143 -0
- utils/loggers/wandb/wandb_utils.py +589 -0
- utils/metrics.py +397 -0
- utils/panoptic/__init__.py +1 -0
- utils/panoptic/augmentations.py +183 -0
- utils/panoptic/dataloaders.py +478 -0
- utils/panoptic/general.py +137 -0
- utils/panoptic/loss.py +186 -0
- utils/panoptic/loss_tal.py +285 -0
- utils/panoptic/metrics.py +272 -0
- utils/panoptic/plots.py +164 -0
- utils/panoptic/tal/__init__.py +1 -0
.gitignore
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Byte-compiled / optimized / DLL files
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
|
| 6 |
+
# C extensions
|
| 7 |
+
*.so
|
| 8 |
+
|
| 9 |
+
# Distribution / packaging
|
| 10 |
+
.Python
|
| 11 |
+
build/
|
| 12 |
+
develop-eggs/
|
| 13 |
+
dist/
|
| 14 |
+
downloads/
|
| 15 |
+
eggs/
|
| 16 |
+
.eggs/
|
| 17 |
+
lib/
|
| 18 |
+
lib64/
|
| 19 |
+
parts/
|
| 20 |
+
sdist/
|
| 21 |
+
var/
|
| 22 |
+
wheels/
|
| 23 |
+
share/python-wheels/
|
| 24 |
+
*.egg-info/
|
| 25 |
+
.installed.cfg
|
| 26 |
+
*.egg
|
| 27 |
+
MANIFEST
|
| 28 |
+
|
| 29 |
+
# PyInstaller
|
| 30 |
+
# Usually these files are written by a python script from a template
|
| 31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
| 32 |
+
*.manifest
|
| 33 |
+
*.spec
|
| 34 |
+
|
| 35 |
+
# Installer logs
|
| 36 |
+
pip-log.txt
|
| 37 |
+
pip-delete-this-directory.txt
|
| 38 |
+
|
| 39 |
+
# Unit test / coverage reports
|
| 40 |
+
htmlcov/
|
| 41 |
+
.tox/
|
| 42 |
+
.nox/
|
| 43 |
+
.coverage
|
| 44 |
+
.coverage.*
|
| 45 |
+
.cache
|
| 46 |
+
nosetests.xml
|
| 47 |
+
coverage.xml
|
| 48 |
+
*.cover
|
| 49 |
+
*.py,cover
|
| 50 |
+
.hypothesis/
|
| 51 |
+
.pytest_cache/
|
| 52 |
+
cover/
|
| 53 |
+
|
| 54 |
+
# Translations
|
| 55 |
+
*.mo
|
| 56 |
+
*.pot
|
| 57 |
+
|
| 58 |
+
# Django stuff:
|
| 59 |
+
*.log
|
| 60 |
+
local_settings.py
|
| 61 |
+
db.sqlite3
|
| 62 |
+
db.sqlite3-journal
|
| 63 |
+
|
| 64 |
+
# Flask stuff:
|
| 65 |
+
instance/
|
| 66 |
+
.webassets-cache
|
| 67 |
+
|
| 68 |
+
# Scrapy stuff:
|
| 69 |
+
.scrapy
|
| 70 |
+
|
| 71 |
+
# Sphinx documentation
|
| 72 |
+
docs/_build/
|
| 73 |
+
|
| 74 |
+
# PyBuilder
|
| 75 |
+
.pybuilder/
|
| 76 |
+
target/
|
| 77 |
+
|
| 78 |
+
# Jupyter Notebook
|
| 79 |
+
.ipynb_checkpoints
|
| 80 |
+
|
| 81 |
+
# IPython
|
| 82 |
+
profile_default/
|
| 83 |
+
ipython_config.py
|
| 84 |
+
|
| 85 |
+
# pyenv
|
| 86 |
+
# For a library or package, you might want to ignore these files since the code is
|
| 87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
| 88 |
+
# .python-version
|
| 89 |
+
|
| 90 |
+
# pipenv
|
| 91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
| 92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
| 93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
| 94 |
+
# install all needed dependencies.
|
| 95 |
+
#Pipfile.lock
|
| 96 |
+
|
| 97 |
+
# poetry
|
| 98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
| 99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
| 100 |
+
# commonly ignored for libraries.
|
| 101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
| 102 |
+
#poetry.lock
|
| 103 |
+
|
| 104 |
+
# pdm
|
| 105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
| 106 |
+
#pdm.lock
|
| 107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
| 108 |
+
# in version control.
|
| 109 |
+
# https://pdm.fming.dev/#use-with-ide
|
| 110 |
+
.pdm.toml
|
| 111 |
+
|
| 112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
| 113 |
+
__pypackages__/
|
| 114 |
+
|
| 115 |
+
# Celery stuff
|
| 116 |
+
celerybeat-schedule
|
| 117 |
+
celerybeat.pid
|
| 118 |
+
|
| 119 |
+
# SageMath parsed files
|
| 120 |
+
*.sage.py
|
| 121 |
+
|
| 122 |
+
# Environments
|
| 123 |
+
.env
|
| 124 |
+
.venv
|
| 125 |
+
env/
|
| 126 |
+
venv/
|
| 127 |
+
ENV/
|
| 128 |
+
env.bak/
|
| 129 |
+
venv.bak/
|
| 130 |
+
|
| 131 |
+
# Spyder project settings
|
| 132 |
+
.spyderproject
|
| 133 |
+
.spyproject
|
| 134 |
+
|
| 135 |
+
# Rope project settings
|
| 136 |
+
.ropeproject
|
| 137 |
+
|
| 138 |
+
# mkdocs documentation
|
| 139 |
+
/site
|
| 140 |
+
|
| 141 |
+
# mypy
|
| 142 |
+
.mypy_cache/
|
| 143 |
+
.dmypy.json
|
| 144 |
+
dmypy.json
|
| 145 |
+
|
| 146 |
+
# Pyre type checker
|
| 147 |
+
.pyre/
|
| 148 |
+
|
| 149 |
+
# pytype static type analyzer
|
| 150 |
+
.pytype/
|
| 151 |
+
|
| 152 |
+
# Cython debug symbols
|
| 153 |
+
cython_debug/
|
| 154 |
+
|
| 155 |
+
# PyCharm
|
| 156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
| 157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
| 158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
| 159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
| 160 |
+
#.idea/
|
| 161 |
+
runs_/
|
| 162 |
+
weights/
|
| 163 |
+
*.DS_Store
|
| 164 |
+
.vscode/
|
app.py
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
#import spaces
|
| 3 |
+
#from huggingface_hub import hf_hub_download
|
| 4 |
+
from detect import run
|
| 5 |
+
|
| 6 |
+
def yolov9_inference(model_id, image_size, conf_threshold, iou_threshold, input_path = None):
|
| 7 |
+
|
| 8 |
+
# if img_path is not None:
|
| 9 |
+
# # Load the model
|
| 10 |
+
# # model_path = download_models(model_id)
|
| 11 |
+
# model = load_model(model_id)
|
| 12 |
+
# # Set model parameters
|
| 13 |
+
# model.conf = conf_threshold
|
| 14 |
+
# model.iou = iou_threshold
|
| 15 |
+
# # Perform inference
|
| 16 |
+
# results = model(img_path, size=image_size)
|
| 17 |
+
# # Optionally, show detection bounding boxes on image
|
| 18 |
+
# output = results.render()
|
| 19 |
+
# return output[0]
|
| 20 |
+
# else:
|
| 21 |
+
model = run(weights=model_id, imgsz=(image_size,image_size), conf_thres=conf_threshold, iou_thres=iou_threshold, source=input_path, hide_conf=True, device='cpu')
|
| 22 |
+
return model, model
|
| 23 |
+
|
| 24 |
+
def app():
|
| 25 |
+
with gr.Blocks():
|
| 26 |
+
with gr.Row():
|
| 27 |
+
with gr.Column():
|
| 28 |
+
img_path = gr.Image(type="filepath", label="Image")
|
| 29 |
+
input_path = gr.Video(label="Input video")
|
| 30 |
+
model_id = gr.Dropdown(
|
| 31 |
+
label="Model",
|
| 32 |
+
choices=[
|
| 33 |
+
"last_best_model.pt",
|
| 34 |
+
],
|
| 35 |
+
value="./last_best_model.pt",
|
| 36 |
+
)
|
| 37 |
+
image_size = gr.Slider(
|
| 38 |
+
label="Image Size",
|
| 39 |
+
minimum=320,
|
| 40 |
+
maximum=1280,
|
| 41 |
+
step=32,
|
| 42 |
+
value=640,
|
| 43 |
+
)
|
| 44 |
+
conf_threshold = gr.Slider(
|
| 45 |
+
label="Confidence Threshold",
|
| 46 |
+
minimum=0.1,
|
| 47 |
+
maximum=1.0,
|
| 48 |
+
step=0.1,
|
| 49 |
+
value=0.4,
|
| 50 |
+
)
|
| 51 |
+
iou_threshold = gr.Slider(
|
| 52 |
+
label="IoU Threshold",
|
| 53 |
+
minimum=0.1,
|
| 54 |
+
maximum=1.0,
|
| 55 |
+
step=0.1,
|
| 56 |
+
value=0.5,
|
| 57 |
+
)
|
| 58 |
+
yolov9_infer = gr.Button(value="Inference")
|
| 59 |
+
|
| 60 |
+
with gr.Column():
|
| 61 |
+
output = gr.Video(label="Output")
|
| 62 |
+
output_path = gr.Textbox(label="Output path")
|
| 63 |
+
yolov9_infer.click(
|
| 64 |
+
fn=yolov9_inference,
|
| 65 |
+
inputs=[
|
| 66 |
+
model_id,
|
| 67 |
+
image_size,
|
| 68 |
+
conf_threshold,
|
| 69 |
+
iou_threshold,
|
| 70 |
+
input_path
|
| 71 |
+
],
|
| 72 |
+
outputs=[output, output_path],
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
gradio_app = gr.Blocks()
|
| 77 |
+
with gradio_app:
|
| 78 |
+
gr.HTML(
|
| 79 |
+
"""
|
| 80 |
+
<h1 style='text-align: center'>
|
| 81 |
+
YOLOv9: Real-time Object Detection
|
| 82 |
+
</h1>
|
| 83 |
+
""")
|
| 84 |
+
with gr.Row():
|
| 85 |
+
with gr.Column():
|
| 86 |
+
app()
|
| 87 |
+
|
| 88 |
+
gradio_app.launch(debug=True)
|
benchmarks.py
ADDED
|
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import platform
|
| 3 |
+
import sys
|
| 4 |
+
import time
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
|
| 7 |
+
import pandas as pd
|
| 8 |
+
|
| 9 |
+
FILE = Path(__file__).resolve()
|
| 10 |
+
ROOT = FILE.parents[0] # YOLO root directory
|
| 11 |
+
if str(ROOT) not in sys.path:
|
| 12 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
| 13 |
+
# ROOT = ROOT.relative_to(Path.cwd()) # relative
|
| 14 |
+
|
| 15 |
+
import export
|
| 16 |
+
from models.experimental import attempt_load
|
| 17 |
+
from models.yolo import SegmentationModel
|
| 18 |
+
from segment.val import run as val_seg
|
| 19 |
+
from utils import notebook_init
|
| 20 |
+
from utils.general import LOGGER, check_yaml, file_size, print_args
|
| 21 |
+
from utils.torch_utils import select_device
|
| 22 |
+
from val import run as val_det
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def run(
|
| 26 |
+
weights=ROOT / 'yolo.pt', # weights path
|
| 27 |
+
imgsz=640, # inference size (pixels)
|
| 28 |
+
batch_size=1, # batch size
|
| 29 |
+
data=ROOT / 'data/coco.yaml', # dataset.yaml path
|
| 30 |
+
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
| 31 |
+
half=False, # use FP16 half-precision inference
|
| 32 |
+
test=False, # test exports only
|
| 33 |
+
pt_only=False, # test PyTorch only
|
| 34 |
+
hard_fail=False, # throw error on benchmark failure
|
| 35 |
+
):
|
| 36 |
+
y, t = [], time.time()
|
| 37 |
+
device = select_device(device)
|
| 38 |
+
model_type = type(attempt_load(weights, fuse=False)) # DetectionModel, SegmentationModel, etc.
|
| 39 |
+
for i, (name, f, suffix, cpu, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, CPU, GPU)
|
| 40 |
+
try:
|
| 41 |
+
assert i not in (9, 10), 'inference not supported' # Edge TPU and TF.js are unsupported
|
| 42 |
+
assert i != 5 or platform.system() == 'Darwin', 'inference only supported on macOS>=10.13' # CoreML
|
| 43 |
+
if 'cpu' in device.type:
|
| 44 |
+
assert cpu, 'inference not supported on CPU'
|
| 45 |
+
if 'cuda' in device.type:
|
| 46 |
+
assert gpu, 'inference not supported on GPU'
|
| 47 |
+
|
| 48 |
+
# Export
|
| 49 |
+
if f == '-':
|
| 50 |
+
w = weights # PyTorch format
|
| 51 |
+
else:
|
| 52 |
+
w = export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # all others
|
| 53 |
+
assert suffix in str(w), 'export failed'
|
| 54 |
+
|
| 55 |
+
# Validate
|
| 56 |
+
if model_type == SegmentationModel:
|
| 57 |
+
result = val_seg(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half)
|
| 58 |
+
metric = result[0][7] # (box(p, r, map50, map), mask(p, r, map50, map), *loss(box, obj, cls))
|
| 59 |
+
else: # DetectionModel:
|
| 60 |
+
result = val_det(data, w, batch_size, imgsz, plots=False, device=device, task='speed', half=half)
|
| 61 |
+
metric = result[0][3] # (p, r, map50, map, *loss(box, obj, cls))
|
| 62 |
+
speed = result[2][1] # times (preprocess, inference, postprocess)
|
| 63 |
+
y.append([name, round(file_size(w), 1), round(metric, 4), round(speed, 2)]) # MB, mAP, t_inference
|
| 64 |
+
except Exception as e:
|
| 65 |
+
if hard_fail:
|
| 66 |
+
assert type(e) is AssertionError, f'Benchmark --hard-fail for {name}: {e}'
|
| 67 |
+
LOGGER.warning(f'WARNING ⚠️ Benchmark failure for {name}: {e}')
|
| 68 |
+
y.append([name, None, None, None]) # mAP, t_inference
|
| 69 |
+
if pt_only and i == 0:
|
| 70 |
+
break # break after PyTorch
|
| 71 |
+
|
| 72 |
+
# Print results
|
| 73 |
+
LOGGER.info('\n')
|
| 74 |
+
parse_opt()
|
| 75 |
+
notebook_init() # print system info
|
| 76 |
+
c = ['Format', 'Size (MB)', 'mAP50-95', 'Inference time (ms)'] if map else ['Format', 'Export', '', '']
|
| 77 |
+
py = pd.DataFrame(y, columns=c)
|
| 78 |
+
LOGGER.info(f'\nBenchmarks complete ({time.time() - t:.2f}s)')
|
| 79 |
+
LOGGER.info(str(py if map else py.iloc[:, :2]))
|
| 80 |
+
if hard_fail and isinstance(hard_fail, str):
|
| 81 |
+
metrics = py['mAP50-95'].array # values to compare to floor
|
| 82 |
+
floor = eval(hard_fail) # minimum metric floor to pass
|
| 83 |
+
assert all(x > floor for x in metrics if pd.notna(x)), f'HARD FAIL: mAP50-95 < floor {floor}'
|
| 84 |
+
return py
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
def test(
|
| 88 |
+
weights=ROOT / 'yolo.pt', # weights path
|
| 89 |
+
imgsz=640, # inference size (pixels)
|
| 90 |
+
batch_size=1, # batch size
|
| 91 |
+
data=ROOT / 'data/coco128.yaml', # dataset.yaml path
|
| 92 |
+
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
| 93 |
+
half=False, # use FP16 half-precision inference
|
| 94 |
+
test=False, # test exports only
|
| 95 |
+
pt_only=False, # test PyTorch only
|
| 96 |
+
hard_fail=False, # throw error on benchmark failure
|
| 97 |
+
):
|
| 98 |
+
y, t = [], time.time()
|
| 99 |
+
device = select_device(device)
|
| 100 |
+
for i, (name, f, suffix, gpu) in export.export_formats().iterrows(): # index, (name, file, suffix, gpu-capable)
|
| 101 |
+
try:
|
| 102 |
+
w = weights if f == '-' else \
|
| 103 |
+
export.run(weights=weights, imgsz=[imgsz], include=[f], device=device, half=half)[-1] # weights
|
| 104 |
+
assert suffix in str(w), 'export failed'
|
| 105 |
+
y.append([name, True])
|
| 106 |
+
except Exception:
|
| 107 |
+
y.append([name, False]) # mAP, t_inference
|
| 108 |
+
|
| 109 |
+
# Print results
|
| 110 |
+
LOGGER.info('\n')
|
| 111 |
+
parse_opt()
|
| 112 |
+
notebook_init() # print system info
|
| 113 |
+
py = pd.DataFrame(y, columns=['Format', 'Export'])
|
| 114 |
+
LOGGER.info(f'\nExports complete ({time.time() - t:.2f}s)')
|
| 115 |
+
LOGGER.info(str(py))
|
| 116 |
+
return py
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def parse_opt():
|
| 120 |
+
parser = argparse.ArgumentParser()
|
| 121 |
+
parser.add_argument('--weights', type=str, default=ROOT / 'yolo.pt', help='weights path')
|
| 122 |
+
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
|
| 123 |
+
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
| 124 |
+
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
|
| 125 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
| 126 |
+
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
| 127 |
+
parser.add_argument('--test', action='store_true', help='test exports only')
|
| 128 |
+
parser.add_argument('--pt-only', action='store_true', help='test PyTorch only')
|
| 129 |
+
parser.add_argument('--hard-fail', nargs='?', const=True, default=False, help='Exception on error or < min metric')
|
| 130 |
+
opt = parser.parse_args()
|
| 131 |
+
opt.data = check_yaml(opt.data) # check YAML
|
| 132 |
+
print_args(vars(opt))
|
| 133 |
+
return opt
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
def main(opt):
|
| 137 |
+
test(**vars(opt)) if opt.test else run(**vars(opt))
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
if __name__ == "__main__":
|
| 141 |
+
opt = parse_opt()
|
| 142 |
+
main(opt)
|
data/coco.yaml
ADDED
|
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
path: ../datasets/coco # dataset root dir
|
| 2 |
+
train: train2017.txt # train images (relative to 'path') 118287 images
|
| 3 |
+
val: val2017.txt # val images (relative to 'path') 5000 images
|
| 4 |
+
test: test-dev2017.txt # 20288 of 40670 images, submit to https://competitions.codalab.org/competitions/20794
|
| 5 |
+
|
| 6 |
+
# Classes
|
| 7 |
+
names:
|
| 8 |
+
0: person
|
| 9 |
+
1: bicycle
|
| 10 |
+
2: car
|
| 11 |
+
3: motorcycle
|
| 12 |
+
4: airplane
|
| 13 |
+
5: bus
|
| 14 |
+
6: train
|
| 15 |
+
7: truck
|
| 16 |
+
8: boat
|
| 17 |
+
9: traffic light
|
| 18 |
+
10: fire hydrant
|
| 19 |
+
11: stop sign
|
| 20 |
+
12: parking meter
|
| 21 |
+
13: bench
|
| 22 |
+
14: bird
|
| 23 |
+
15: cat
|
| 24 |
+
16: dog
|
| 25 |
+
17: horse
|
| 26 |
+
18: sheep
|
| 27 |
+
19: cow
|
| 28 |
+
20: elephant
|
| 29 |
+
21: bear
|
| 30 |
+
22: zebra
|
| 31 |
+
23: giraffe
|
| 32 |
+
24: backpack
|
| 33 |
+
25: umbrella
|
| 34 |
+
26: handbag
|
| 35 |
+
27: tie
|
| 36 |
+
28: suitcase
|
| 37 |
+
29: frisbee
|
| 38 |
+
30: skis
|
| 39 |
+
31: snowboard
|
| 40 |
+
32: sports ball
|
| 41 |
+
33: kite
|
| 42 |
+
34: baseball bat
|
| 43 |
+
35: baseball glove
|
| 44 |
+
36: skateboard
|
| 45 |
+
37: surfboard
|
| 46 |
+
38: tennis racket
|
| 47 |
+
39: bottle
|
| 48 |
+
40: wine glass
|
| 49 |
+
41: cup
|
| 50 |
+
42: fork
|
| 51 |
+
43: knife
|
| 52 |
+
44: spoon
|
| 53 |
+
45: bowl
|
| 54 |
+
46: banana
|
| 55 |
+
47: apple
|
| 56 |
+
48: sandwich
|
| 57 |
+
49: orange
|
| 58 |
+
50: broccoli
|
| 59 |
+
51: carrot
|
| 60 |
+
52: hot dog
|
| 61 |
+
53: pizza
|
| 62 |
+
54: donut
|
| 63 |
+
55: cake
|
| 64 |
+
56: chair
|
| 65 |
+
57: couch
|
| 66 |
+
58: potted plant
|
| 67 |
+
59: bed
|
| 68 |
+
60: dining table
|
| 69 |
+
61: toilet
|
| 70 |
+
62: tv
|
| 71 |
+
63: laptop
|
| 72 |
+
64: mouse
|
| 73 |
+
65: remote
|
| 74 |
+
66: keyboard
|
| 75 |
+
67: cell phone
|
| 76 |
+
68: microwave
|
| 77 |
+
69: oven
|
| 78 |
+
70: toaster
|
| 79 |
+
71: sink
|
| 80 |
+
72: refrigerator
|
| 81 |
+
73: book
|
| 82 |
+
74: clock
|
| 83 |
+
75: vase
|
| 84 |
+
76: scissors
|
| 85 |
+
77: teddy bear
|
| 86 |
+
78: hair drier
|
| 87 |
+
79: toothbrush
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
# Download script/URL (optional)
|
| 91 |
+
download: |
|
| 92 |
+
from utils.general import download, Path
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
# Download labels
|
| 96 |
+
#segments = True # segment or box labels
|
| 97 |
+
#dir = Path(yaml['path']) # dataset root dir
|
| 98 |
+
#url = 'https://github.com/WongKinYiu/yolov7/releases/download/v0.1/'
|
| 99 |
+
#urls = [url + ('coco2017labels-segments.zip' if segments else 'coco2017labels.zip')] # labels
|
| 100 |
+
#download(urls, dir=dir.parent)
|
| 101 |
+
|
| 102 |
+
# Download data
|
| 103 |
+
#urls = ['http://images.cocodataset.org/zips/train2017.zip', # 19G, 118k images
|
| 104 |
+
# 'http://images.cocodataset.org/zips/val2017.zip', # 1G, 5k images
|
| 105 |
+
# 'http://images.cocodataset.org/zips/test2017.zip'] # 7G, 41k images (optional)
|
| 106 |
+
#download(urls, dir=dir / 'images', threads=3)
|
data/hyps/hyp.scratch-high-ver2.yaml
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
| 2 |
+
lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
|
| 3 |
+
momentum: 0.937 # SGD momentum/Adam beta1
|
| 4 |
+
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
| 5 |
+
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
| 6 |
+
warmup_momentum: 0.8 # warmup initial momentum
|
| 7 |
+
warmup_bias_lr: 0.1 # warmup initial bias lr
|
| 8 |
+
box: 7.5 # box loss gain
|
| 9 |
+
cls: 0.5 # cls loss gain
|
| 10 |
+
cls_pw: 1.0 # cls BCELoss positive_weight
|
| 11 |
+
obj: 0.7 # obj loss gain (scale with pixels)
|
| 12 |
+
obj_pw: 1.0 # obj BCELoss positive_weight
|
| 13 |
+
dfl: 1.5 # dfl loss gain
|
| 14 |
+
iou_t: 0.5 # IoU training threshold
|
| 15 |
+
anchor_t: 5.0 # anchor-multiple threshold
|
| 16 |
+
# anchors: 3 # anchors per output layer (0 to ignore)
|
| 17 |
+
fl_gamma: 0.5 # focal loss gamma (efficientDet default gamma=1.5)
|
| 18 |
+
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
| 19 |
+
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
| 20 |
+
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
| 21 |
+
degrees: 0.0 # image rotation (+/- deg)
|
| 22 |
+
translate: 0.1 # image translation (+/- fraction)
|
| 23 |
+
scale: 0.9 # image scale (+/- gain)
|
| 24 |
+
shear: 0.0 # image shear (+/- deg)
|
| 25 |
+
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
| 26 |
+
flipud: 0.0 # image flip up-down (probability)
|
| 27 |
+
fliplr: 0.5 # image flip left-right (probability)
|
| 28 |
+
mosaic: 1.0 # image mosaic (probability)
|
| 29 |
+
mixup: 0.15 # image mixup (probability)
|
| 30 |
+
copy_paste: 0.3 # segment copy-paste (probability)
|
data/hyps/hyp.scratch-high.yaml
ADDED
|
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
lr0: 0.01 # initial learning rate (SGD=1E-2, Adam=1E-3)
|
| 2 |
+
lrf: 0.01 # final OneCycleLR learning rate (lr0 * lrf)
|
| 3 |
+
momentum: 0.937 # SGD momentum/Adam beta1
|
| 4 |
+
weight_decay: 0.0005 # optimizer weight decay 5e-4
|
| 5 |
+
warmup_epochs: 3.0 # warmup epochs (fractions ok)
|
| 6 |
+
warmup_momentum: 0.8 # warmup initial momentum
|
| 7 |
+
warmup_bias_lr: 0.1 # warmup initial bias lr
|
| 8 |
+
box: 7.5 # box loss gain
|
| 9 |
+
cls: 0.5 # cls loss gain
|
| 10 |
+
cls_pw: 1.0 # cls BCELoss positive_weight
|
| 11 |
+
obj: 0.7 # obj loss gain (scale with pixels)
|
| 12 |
+
obj_pw: 1.0 # obj BCELoss positive_weight
|
| 13 |
+
dfl: 1.5 # dfl loss gain
|
| 14 |
+
iou_t: 0.5 # IoU training threshold
|
| 15 |
+
anchor_t: 5.0 # anchor-multiple threshold
|
| 16 |
+
# anchors: 3 # anchors per output layer (0 to ignore)
|
| 17 |
+
fl_gamma: 0.0 # focal loss gamma (efficientDet default gamma=1.5)
|
| 18 |
+
hsv_h: 0.015 # image HSV-Hue augmentation (fraction)
|
| 19 |
+
hsv_s: 0.7 # image HSV-Saturation augmentation (fraction)
|
| 20 |
+
hsv_v: 0.4 # image HSV-Value augmentation (fraction)
|
| 21 |
+
degrees: 0.0 # image rotation (+/- deg)
|
| 22 |
+
translate: 0.1 # image translation (+/- fraction)
|
| 23 |
+
scale: 0.9 # image scale (+/- gain)
|
| 24 |
+
shear: 0.0 # image shear (+/- deg)
|
| 25 |
+
perspective: 0.0 # image perspective (+/- fraction), range 0-0.001
|
| 26 |
+
flipud: 0.0 # image flip up-down (probability)
|
| 27 |
+
fliplr: 0.5 # image flip left-right (probability)
|
| 28 |
+
mosaic: 1.0 # image mosaic (probability)
|
| 29 |
+
mixup: 0.15 # image mixup (probability)
|
| 30 |
+
copy_paste: 0.3 # segment copy-paste (probability)
|
detect.py
ADDED
|
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import os
|
| 3 |
+
import platform
|
| 4 |
+
import sys
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
+
FILE = Path(__file__).resolve()
|
| 10 |
+
ROOT = FILE.parents[0] # YOLO root directory
|
| 11 |
+
if str(ROOT) not in sys.path:
|
| 12 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
| 13 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
| 14 |
+
|
| 15 |
+
from models.common import DetectMultiBackend
|
| 16 |
+
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
|
| 17 |
+
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
|
| 18 |
+
increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
|
| 19 |
+
from utils.plots import Annotator, colors, save_one_box
|
| 20 |
+
from utils.torch_utils import select_device, smart_inference_mode
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
@smart_inference_mode()
|
| 24 |
+
def run(
|
| 25 |
+
weights=ROOT / 'yolo.pt', # model path or triton URL
|
| 26 |
+
source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
|
| 27 |
+
data=ROOT / 'data/coco.yaml', # dataset.yaml path
|
| 28 |
+
imgsz=(640, 640), # inference size (height, width)
|
| 29 |
+
conf_thres=0.25, # confidence threshold
|
| 30 |
+
iou_thres=0.45, # NMS IOU threshold
|
| 31 |
+
max_det=1000, # maximum detections per image
|
| 32 |
+
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
| 33 |
+
view_img=False, # show results
|
| 34 |
+
save_txt=False, # save results to *.txt
|
| 35 |
+
save_conf=False, # save confidences in --save-txt labels
|
| 36 |
+
save_crop=False, # save cropped prediction boxes
|
| 37 |
+
nosave=False, # do not save images/videos
|
| 38 |
+
classes=None, # filter by class: --class 0, or --class 0 2 3
|
| 39 |
+
agnostic_nms=False, # class-agnostic NMS
|
| 40 |
+
augment=False, # augmented inference
|
| 41 |
+
visualize=False, # visualize features
|
| 42 |
+
update=False, # update all models
|
| 43 |
+
project=ROOT / 'runs/detect', # save results to project/name
|
| 44 |
+
name='exp', # save results to project/name
|
| 45 |
+
exist_ok=False, # existing project/name ok, do not increment
|
| 46 |
+
line_thickness=3, # bounding box thickness (pixels)
|
| 47 |
+
hide_labels=False, # hide labels
|
| 48 |
+
hide_conf=False, # hide confidences
|
| 49 |
+
half=False, # use FP16 half-precision inference
|
| 50 |
+
dnn=False, # use OpenCV DNN for ONNX inference
|
| 51 |
+
vid_stride=1, # video frame-rate stride
|
| 52 |
+
):
|
| 53 |
+
source = str(source)
|
| 54 |
+
save_img = not nosave and not source.endswith('.txt') # save inference images
|
| 55 |
+
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
|
| 56 |
+
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
|
| 57 |
+
webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
|
| 58 |
+
screenshot = source.lower().startswith('screen')
|
| 59 |
+
if is_url and is_file:
|
| 60 |
+
source = check_file(source) # download
|
| 61 |
+
|
| 62 |
+
# Directories
|
| 63 |
+
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
| 64 |
+
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
| 65 |
+
|
| 66 |
+
# Load model
|
| 67 |
+
device = select_device(device)
|
| 68 |
+
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
|
| 69 |
+
stride, names, pt = model.stride, model.names, model.pt
|
| 70 |
+
imgsz = check_img_size(imgsz, s=stride) # check image size
|
| 71 |
+
|
| 72 |
+
# Dataloader
|
| 73 |
+
bs = 1 # batch_size
|
| 74 |
+
if webcam:
|
| 75 |
+
view_img = check_imshow(warn=True)
|
| 76 |
+
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
| 77 |
+
bs = len(dataset)
|
| 78 |
+
elif screenshot:
|
| 79 |
+
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
|
| 80 |
+
else:
|
| 81 |
+
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
| 82 |
+
vid_path, vid_writer = [None] * bs, [None] * bs
|
| 83 |
+
|
| 84 |
+
# Run inference
|
| 85 |
+
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
|
| 86 |
+
seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
|
| 87 |
+
for path, im, im0s, vid_cap, s in dataset:
|
| 88 |
+
with dt[0]:
|
| 89 |
+
im = torch.from_numpy(im).to(model.device)
|
| 90 |
+
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
|
| 91 |
+
im /= 255 # 0 - 255 to 0.0 - 1.0
|
| 92 |
+
if len(im.shape) == 3:
|
| 93 |
+
im = im[None] # expand for batch dim
|
| 94 |
+
|
| 95 |
+
# Inference
|
| 96 |
+
with dt[1]:
|
| 97 |
+
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
|
| 98 |
+
pred = model(im, augment=augment, visualize=visualize)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
# NMS
|
| 102 |
+
with dt[2]:
|
| 103 |
+
pred = pred[0][0] if isinstance(pred[0], list) else pred[0] # single model or ensemble
|
| 104 |
+
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
# Second-stage classifier (optional)
|
| 108 |
+
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
|
| 109 |
+
|
| 110 |
+
# Process predictions
|
| 111 |
+
for i, det in enumerate(pred): # per image
|
| 112 |
+
seen += 1
|
| 113 |
+
if webcam: # batch_size >= 1
|
| 114 |
+
p, im0, frame = path[i], im0s[i].copy(), dataset.count
|
| 115 |
+
s += f'{i}: '
|
| 116 |
+
else:
|
| 117 |
+
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
|
| 118 |
+
|
| 119 |
+
p = Path(p) # to Path
|
| 120 |
+
save_path = str(save_dir / p.name) # im.jpg
|
| 121 |
+
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
|
| 122 |
+
s += '%gx%g ' % im.shape[2:] # print string
|
| 123 |
+
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
| 124 |
+
imc = im0.copy() if save_crop else im0 # for save_crop
|
| 125 |
+
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
|
| 126 |
+
if len(det):
|
| 127 |
+
# Rescale boxes from img_size to im0 size
|
| 128 |
+
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
|
| 129 |
+
|
| 130 |
+
# Print results
|
| 131 |
+
for c in det[:, 5].unique():
|
| 132 |
+
n = (det[:, 5] == c).sum() # detections per class
|
| 133 |
+
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
|
| 134 |
+
|
| 135 |
+
# Write results
|
| 136 |
+
for *xyxy, conf, cls in reversed(det):
|
| 137 |
+
if save_txt: # Write to file
|
| 138 |
+
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
| 139 |
+
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
|
| 140 |
+
with open(f'{txt_path}.txt', 'a') as f:
|
| 141 |
+
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
| 142 |
+
|
| 143 |
+
if save_img or save_crop or view_img: # Add bbox to image
|
| 144 |
+
c = int(cls) # integer class
|
| 145 |
+
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
|
| 146 |
+
annotator.box_label(xyxy, label, color=colors(c, True))
|
| 147 |
+
if save_crop:
|
| 148 |
+
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
|
| 149 |
+
|
| 150 |
+
# Stream results
|
| 151 |
+
im0 = annotator.result()
|
| 152 |
+
if view_img:
|
| 153 |
+
if platform.system() == 'Linux' and p not in windows:
|
| 154 |
+
windows.append(p)
|
| 155 |
+
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
|
| 156 |
+
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
|
| 157 |
+
cv2.imshow(str(p), im0)
|
| 158 |
+
cv2.waitKey(1) # 1 millisecond
|
| 159 |
+
|
| 160 |
+
# Save results (image with detections)
|
| 161 |
+
if save_img:
|
| 162 |
+
if dataset.mode == 'image':
|
| 163 |
+
cv2.imwrite(save_path, im0)
|
| 164 |
+
else: # 'video' or 'stream'
|
| 165 |
+
if vid_path[i] != save_path: # new video
|
| 166 |
+
vid_path[i] = save_path
|
| 167 |
+
if isinstance(vid_writer[i], cv2.VideoWriter):
|
| 168 |
+
vid_writer[i].release() # release previous video writer
|
| 169 |
+
if vid_cap: # video
|
| 170 |
+
fps = vid_cap.get(cv2.CAP_PROP_FPS)
|
| 171 |
+
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 172 |
+
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 173 |
+
else: # stream
|
| 174 |
+
fps, w, h = 30, im0.shape[1], im0.shape[0]
|
| 175 |
+
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
|
| 176 |
+
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'h264'), fps, (w, h))
|
| 177 |
+
vid_writer[i].write(im0)
|
| 178 |
+
|
| 179 |
+
# Print time (inference-only)
|
| 180 |
+
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
|
| 181 |
+
|
| 182 |
+
#vid_writer.release()
|
| 183 |
+
# Print results
|
| 184 |
+
t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
|
| 185 |
+
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
|
| 186 |
+
if save_txt or save_img:
|
| 187 |
+
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
| 188 |
+
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
|
| 189 |
+
if update:
|
| 190 |
+
strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
|
| 191 |
+
return save_path
|
| 192 |
+
|
| 193 |
+
def parse_opt():
|
| 194 |
+
parser = argparse.ArgumentParser()
|
| 195 |
+
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolo.pt', help='model path or triton URL')
|
| 196 |
+
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
|
| 197 |
+
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
|
| 198 |
+
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
|
| 199 |
+
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
|
| 200 |
+
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
|
| 201 |
+
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
|
| 202 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
| 203 |
+
parser.add_argument('--view-img', action='store_true', help='show results')
|
| 204 |
+
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
| 205 |
+
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
| 206 |
+
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
|
| 207 |
+
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
|
| 208 |
+
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
|
| 209 |
+
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
|
| 210 |
+
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
| 211 |
+
parser.add_argument('--visualize', action='store_true', help='visualize features')
|
| 212 |
+
parser.add_argument('--update', action='store_true', help='update all models')
|
| 213 |
+
parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
|
| 214 |
+
parser.add_argument('--name', default='exp', help='save results to project/name')
|
| 215 |
+
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
| 216 |
+
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
|
| 217 |
+
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
|
| 218 |
+
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
|
| 219 |
+
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
| 220 |
+
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
|
| 221 |
+
parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
|
| 222 |
+
opt = parser.parse_args()
|
| 223 |
+
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
|
| 224 |
+
print_args(vars(opt))
|
| 225 |
+
return opt
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
def main(opt):
|
| 229 |
+
check_requirements(exclude=('tensorboard', 'thop'))
|
| 230 |
+
run(**vars(opt))
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
if __name__ == "__main__":
|
| 234 |
+
opt = parse_opt()
|
| 235 |
+
main(opt)
|
detect_dual.py
ADDED
|
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import os
|
| 3 |
+
import platform
|
| 4 |
+
import sys
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
+
FILE = Path(__file__).resolve()
|
| 10 |
+
ROOT = FILE.parents[0] # YOLO root directory
|
| 11 |
+
if str(ROOT) not in sys.path:
|
| 12 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
| 13 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
| 14 |
+
|
| 15 |
+
from models.common import DetectMultiBackend
|
| 16 |
+
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
|
| 17 |
+
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
|
| 18 |
+
increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
|
| 19 |
+
from utils.plots import Annotator, colors, save_one_box
|
| 20 |
+
from utils.torch_utils import select_device, smart_inference_mode
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
@smart_inference_mode()
|
| 24 |
+
def run(
|
| 25 |
+
weights=ROOT / 'yolo.pt', # model path or triton URL
|
| 26 |
+
source=ROOT / 'data/images', # file/dir/URL/glob/screen/0(webcam)
|
| 27 |
+
data=ROOT / 'data/coco.yaml', # dataset.yaml path
|
| 28 |
+
imgsz=(640, 640), # inference size (height, width)
|
| 29 |
+
conf_thres=0.25, # confidence threshold
|
| 30 |
+
iou_thres=0.45, # NMS IOU threshold
|
| 31 |
+
max_det=1000, # maximum detections per image
|
| 32 |
+
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
| 33 |
+
view_img=False, # show results
|
| 34 |
+
save_txt=False, # save results to *.txt
|
| 35 |
+
save_conf=False, # save confidences in --save-txt labels
|
| 36 |
+
save_crop=False, # save cropped prediction boxes
|
| 37 |
+
nosave=False, # do not save images/videos
|
| 38 |
+
classes=None, # filter by class: --class 0, or --class 0 2 3
|
| 39 |
+
agnostic_nms=False, # class-agnostic NMS
|
| 40 |
+
augment=False, # augmented inference
|
| 41 |
+
visualize=False, # visualize features
|
| 42 |
+
update=False, # update all models
|
| 43 |
+
project=ROOT / 'runs/detect', # save results to project/name
|
| 44 |
+
name='exp', # save results to project/name
|
| 45 |
+
exist_ok=False, # existing project/name ok, do not increment
|
| 46 |
+
line_thickness=3, # bounding box thickness (pixels)
|
| 47 |
+
hide_labels=False, # hide labels
|
| 48 |
+
hide_conf=False, # hide confidences
|
| 49 |
+
half=False, # use FP16 half-precision inference
|
| 50 |
+
dnn=False, # use OpenCV DNN for ONNX inference
|
| 51 |
+
vid_stride=1, # video frame-rate stride
|
| 52 |
+
):
|
| 53 |
+
source = str(source)
|
| 54 |
+
save_img = not nosave and not source.endswith('.txt') # save inference images
|
| 55 |
+
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
|
| 56 |
+
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
|
| 57 |
+
webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
|
| 58 |
+
screenshot = source.lower().startswith('screen')
|
| 59 |
+
if is_url and is_file:
|
| 60 |
+
source = check_file(source) # download
|
| 61 |
+
|
| 62 |
+
# Directories
|
| 63 |
+
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
|
| 64 |
+
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
|
| 65 |
+
|
| 66 |
+
# Load model
|
| 67 |
+
device = select_device(device)
|
| 68 |
+
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
|
| 69 |
+
stride, names, pt = model.stride, model.names, model.pt
|
| 70 |
+
imgsz = check_img_size(imgsz, s=stride) # check image size
|
| 71 |
+
|
| 72 |
+
# Dataloader
|
| 73 |
+
bs = 1 # batch_size
|
| 74 |
+
if webcam:
|
| 75 |
+
view_img = check_imshow(warn=True)
|
| 76 |
+
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
| 77 |
+
bs = len(dataset)
|
| 78 |
+
elif screenshot:
|
| 79 |
+
dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
|
| 80 |
+
else:
|
| 81 |
+
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
|
| 82 |
+
vid_path, vid_writer = [None] * bs, [None] * bs
|
| 83 |
+
|
| 84 |
+
# Run inference
|
| 85 |
+
model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)) # warmup
|
| 86 |
+
seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
|
| 87 |
+
for path, im, im0s, vid_cap, s in dataset:
|
| 88 |
+
with dt[0]:
|
| 89 |
+
im = torch.from_numpy(im).to(model.device)
|
| 90 |
+
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
|
| 91 |
+
im /= 255 # 0 - 255 to 0.0 - 1.0
|
| 92 |
+
if len(im.shape) == 3:
|
| 93 |
+
im = im[None] # expand for batch dim
|
| 94 |
+
|
| 95 |
+
# Inference
|
| 96 |
+
with dt[1]:
|
| 97 |
+
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
|
| 98 |
+
pred = model(im, augment=augment, visualize=visualize)
|
| 99 |
+
pred = pred[0][1]
|
| 100 |
+
|
| 101 |
+
# NMS
|
| 102 |
+
with dt[2]:
|
| 103 |
+
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
|
| 104 |
+
|
| 105 |
+
# Second-stage classifier (optional)
|
| 106 |
+
# pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)
|
| 107 |
+
|
| 108 |
+
# Process predictions
|
| 109 |
+
for i, det in enumerate(pred): # per image
|
| 110 |
+
seen += 1
|
| 111 |
+
if webcam: # batch_size >= 1
|
| 112 |
+
p, im0, frame = path[i], im0s[i].copy(), dataset.count
|
| 113 |
+
s += f'{i}: '
|
| 114 |
+
else:
|
| 115 |
+
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
|
| 116 |
+
|
| 117 |
+
p = Path(p) # to Path
|
| 118 |
+
save_path = str(save_dir / p.name) # im.jpg
|
| 119 |
+
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
|
| 120 |
+
s += '%gx%g ' % im.shape[2:] # print string
|
| 121 |
+
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
|
| 122 |
+
imc = im0.copy() if save_crop else im0 # for save_crop
|
| 123 |
+
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
|
| 124 |
+
if len(det):
|
| 125 |
+
# Rescale boxes from img_size to im0 size
|
| 126 |
+
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()
|
| 127 |
+
|
| 128 |
+
# Print results
|
| 129 |
+
for c in det[:, 5].unique():
|
| 130 |
+
n = (det[:, 5] == c).sum() # detections per class
|
| 131 |
+
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
|
| 132 |
+
|
| 133 |
+
# Write results
|
| 134 |
+
for *xyxy, conf, cls in reversed(det):
|
| 135 |
+
if save_txt: # Write to file
|
| 136 |
+
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
|
| 137 |
+
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
|
| 138 |
+
with open(f'{txt_path}.txt', 'a') as f:
|
| 139 |
+
f.write(('%g ' * len(line)).rstrip() % line + '\n')
|
| 140 |
+
|
| 141 |
+
if save_img or save_crop or view_img: # Add bbox to image
|
| 142 |
+
c = int(cls) # integer class
|
| 143 |
+
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
|
| 144 |
+
annotator.box_label(xyxy, label, color=colors(c, True))
|
| 145 |
+
if save_crop:
|
| 146 |
+
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
|
| 147 |
+
|
| 148 |
+
# Stream results
|
| 149 |
+
im0 = annotator.result()
|
| 150 |
+
if view_img:
|
| 151 |
+
if platform.system() == 'Linux' and p not in windows:
|
| 152 |
+
windows.append(p)
|
| 153 |
+
cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO) # allow window resize (Linux)
|
| 154 |
+
cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
|
| 155 |
+
cv2.imshow(str(p), im0)
|
| 156 |
+
cv2.waitKey(1) # 1 millisecond
|
| 157 |
+
|
| 158 |
+
# Save results (image with detections)
|
| 159 |
+
if save_img:
|
| 160 |
+
if dataset.mode == 'image':
|
| 161 |
+
cv2.imwrite(save_path, im0)
|
| 162 |
+
else: # 'video' or 'stream'
|
| 163 |
+
if vid_path[i] != save_path: # new video
|
| 164 |
+
vid_path[i] = save_path
|
| 165 |
+
if isinstance(vid_writer[i], cv2.VideoWriter):
|
| 166 |
+
vid_writer[i].release() # release previous video writer
|
| 167 |
+
if vid_cap: # video
|
| 168 |
+
fps = vid_cap.get(cv2.CAP_PROP_FPS)
|
| 169 |
+
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 170 |
+
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 171 |
+
else: # stream
|
| 172 |
+
fps, w, h = 30, im0.shape[1], im0.shape[0]
|
| 173 |
+
save_path = str(Path(save_path).with_suffix('.mp4')) # force *.mp4 suffix on results videos
|
| 174 |
+
vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'h264'), fps, (w, h))
|
| 175 |
+
vid_writer[i].write(im0)
|
| 176 |
+
|
| 177 |
+
# Print time (inference-only)
|
| 178 |
+
LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")
|
| 179 |
+
|
| 180 |
+
# Print results
|
| 181 |
+
t = tuple(x.t / seen * 1E3 for x in dt) # speeds per image
|
| 182 |
+
LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
|
| 183 |
+
if save_txt or save_img:
|
| 184 |
+
s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
|
| 185 |
+
LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
|
| 186 |
+
if update:
|
| 187 |
+
strip_optimizer(weights[0]) # update model (to fix SourceChangeWarning)
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
def parse_opt():
|
| 191 |
+
parser = argparse.ArgumentParser()
|
| 192 |
+
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolo.pt', help='model path or triton URL')
|
| 193 |
+
parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
|
| 194 |
+
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
|
| 195 |
+
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
|
| 196 |
+
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
|
| 197 |
+
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
|
| 198 |
+
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
|
| 199 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
| 200 |
+
parser.add_argument('--view-img', action='store_true', help='show results')
|
| 201 |
+
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
|
| 202 |
+
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
|
| 203 |
+
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
|
| 204 |
+
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
|
| 205 |
+
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
|
| 206 |
+
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
|
| 207 |
+
parser.add_argument('--augment', action='store_true', help='augmented inference')
|
| 208 |
+
parser.add_argument('--visualize', action='store_true', help='visualize features')
|
| 209 |
+
parser.add_argument('--update', action='store_true', help='update all models')
|
| 210 |
+
parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
|
| 211 |
+
parser.add_argument('--name', default='exp', help='save results to project/name')
|
| 212 |
+
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
| 213 |
+
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
|
| 214 |
+
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
|
| 215 |
+
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
|
| 216 |
+
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
|
| 217 |
+
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
|
| 218 |
+
parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
|
| 219 |
+
opt = parser.parse_args()
|
| 220 |
+
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
|
| 221 |
+
print_args(vars(opt))
|
| 222 |
+
return opt
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def main(opt):
|
| 226 |
+
check_requirements(exclude=('tensorboard', 'thop'))
|
| 227 |
+
run(**vars(opt))
|
| 228 |
+
|
| 229 |
+
|
| 230 |
+
if __name__ == "__main__":
|
| 231 |
+
opt = parse_opt()
|
| 232 |
+
main(opt)
|
export.py
ADDED
|
@@ -0,0 +1,686 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import contextlib
|
| 3 |
+
import json
|
| 4 |
+
import os
|
| 5 |
+
import platform
|
| 6 |
+
import re
|
| 7 |
+
import subprocess
|
| 8 |
+
import sys
|
| 9 |
+
import time
|
| 10 |
+
import warnings
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
|
| 13 |
+
import pandas as pd
|
| 14 |
+
import torch
|
| 15 |
+
from torch.utils.mobile_optimizer import optimize_for_mobile
|
| 16 |
+
|
| 17 |
+
FILE = Path(__file__).resolve()
|
| 18 |
+
ROOT = FILE.parents[0] # YOLO root directory
|
| 19 |
+
if str(ROOT) not in sys.path:
|
| 20 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
| 21 |
+
if platform.system() != 'Windows':
|
| 22 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
| 23 |
+
|
| 24 |
+
from models.experimental import attempt_load, End2End
|
| 25 |
+
from models.yolo import ClassificationModel, Detect, DDetect, DualDetect, DualDDetect, IDualDDetect, DetectionModel, SegmentationModel
|
| 26 |
+
from utils.dataloaders import LoadImages
|
| 27 |
+
from utils.general import (LOGGER, Profile, check_dataset, check_img_size, check_requirements, check_version,
|
| 28 |
+
check_yaml, colorstr, file_size, get_default_args, print_args, url2file, yaml_save)
|
| 29 |
+
from utils.torch_utils import select_device, smart_inference_mode
|
| 30 |
+
|
| 31 |
+
MACOS = platform.system() == 'Darwin' # macOS environment
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def export_formats():
|
| 35 |
+
# YOLO export formats
|
| 36 |
+
x = [
|
| 37 |
+
['PyTorch', '-', '.pt', True, True],
|
| 38 |
+
['TorchScript', 'torchscript', '.torchscript', True, True],
|
| 39 |
+
['ONNX', 'onnx', '.onnx', True, True],
|
| 40 |
+
['ONNX END2END', 'onnx_end2end', '_end2end.onnx', True, True],
|
| 41 |
+
['OpenVINO', 'openvino', '_openvino_model', True, False],
|
| 42 |
+
['TensorRT', 'engine', '.engine', False, True],
|
| 43 |
+
['CoreML', 'coreml', '.mlmodel', True, False],
|
| 44 |
+
['TensorFlow SavedModel', 'saved_model', '_saved_model', True, True],
|
| 45 |
+
['TensorFlow GraphDef', 'pb', '.pb', True, True],
|
| 46 |
+
['TensorFlow Lite', 'tflite', '.tflite', True, False],
|
| 47 |
+
['TensorFlow Edge TPU', 'edgetpu', '_edgetpu.tflite', False, False],
|
| 48 |
+
['TensorFlow.js', 'tfjs', '_web_model', False, False],
|
| 49 |
+
['PaddlePaddle', 'paddle', '_paddle_model', True, True],]
|
| 50 |
+
return pd.DataFrame(x, columns=['Format', 'Argument', 'Suffix', 'CPU', 'GPU'])
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def try_export(inner_func):
|
| 54 |
+
# YOLO export decorator, i..e @try_export
|
| 55 |
+
inner_args = get_default_args(inner_func)
|
| 56 |
+
|
| 57 |
+
def outer_func(*args, **kwargs):
|
| 58 |
+
prefix = inner_args['prefix']
|
| 59 |
+
try:
|
| 60 |
+
with Profile() as dt:
|
| 61 |
+
f, model = inner_func(*args, **kwargs)
|
| 62 |
+
LOGGER.info(f'{prefix} export success ✅ {dt.t:.1f}s, saved as {f} ({file_size(f):.1f} MB)')
|
| 63 |
+
return f, model
|
| 64 |
+
except Exception as e:
|
| 65 |
+
LOGGER.info(f'{prefix} export failure ❌ {dt.t:.1f}s: {e}')
|
| 66 |
+
return None, None
|
| 67 |
+
|
| 68 |
+
return outer_func
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
@try_export
|
| 72 |
+
def export_torchscript(model, im, file, optimize, prefix=colorstr('TorchScript:')):
|
| 73 |
+
# YOLO TorchScript model export
|
| 74 |
+
LOGGER.info(f'\n{prefix} starting export with torch {torch.__version__}...')
|
| 75 |
+
f = file.with_suffix('.torchscript')
|
| 76 |
+
|
| 77 |
+
ts = torch.jit.trace(model, im, strict=False)
|
| 78 |
+
d = {"shape": im.shape, "stride": int(max(model.stride)), "names": model.names}
|
| 79 |
+
extra_files = {'config.txt': json.dumps(d)} # torch._C.ExtraFilesMap()
|
| 80 |
+
if optimize: # https://pytorch.org/tutorials/recipes/mobile_interpreter.html
|
| 81 |
+
optimize_for_mobile(ts)._save_for_lite_interpreter(str(f), _extra_files=extra_files)
|
| 82 |
+
else:
|
| 83 |
+
ts.save(str(f), _extra_files=extra_files)
|
| 84 |
+
return f, None
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
@try_export
|
| 88 |
+
def export_onnx(model, im, file, opset, dynamic, simplify, prefix=colorstr('ONNX:')):
|
| 89 |
+
# YOLO ONNX export
|
| 90 |
+
check_requirements('onnx')
|
| 91 |
+
import onnx
|
| 92 |
+
|
| 93 |
+
LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
|
| 94 |
+
f = file.with_suffix('.onnx')
|
| 95 |
+
|
| 96 |
+
output_names = ['output0', 'output1'] if isinstance(model, SegmentationModel) else ['output0']
|
| 97 |
+
if dynamic:
|
| 98 |
+
dynamic = {'images': {0: 'batch', 2: 'height', 3: 'width'}} # shape(1,3,640,640)
|
| 99 |
+
if isinstance(model, SegmentationModel):
|
| 100 |
+
dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
|
| 101 |
+
dynamic['output1'] = {0: 'batch', 2: 'mask_height', 3: 'mask_width'} # shape(1,32,160,160)
|
| 102 |
+
elif isinstance(model, DetectionModel):
|
| 103 |
+
dynamic['output0'] = {0: 'batch', 1: 'anchors'} # shape(1,25200,85)
|
| 104 |
+
|
| 105 |
+
torch.onnx.export(
|
| 106 |
+
model.cpu() if dynamic else model, # --dynamic only compatible with cpu
|
| 107 |
+
im.cpu() if dynamic else im,
|
| 108 |
+
f,
|
| 109 |
+
verbose=False,
|
| 110 |
+
opset_version=opset,
|
| 111 |
+
do_constant_folding=True,
|
| 112 |
+
input_names=['images'],
|
| 113 |
+
output_names=output_names,
|
| 114 |
+
dynamic_axes=dynamic or None)
|
| 115 |
+
|
| 116 |
+
# Checks
|
| 117 |
+
model_onnx = onnx.load(f) # load onnx model
|
| 118 |
+
onnx.checker.check_model(model_onnx) # check onnx model
|
| 119 |
+
|
| 120 |
+
# Metadata
|
| 121 |
+
d = {'stride': int(max(model.stride)), 'names': model.names}
|
| 122 |
+
for k, v in d.items():
|
| 123 |
+
meta = model_onnx.metadata_props.add()
|
| 124 |
+
meta.key, meta.value = k, str(v)
|
| 125 |
+
onnx.save(model_onnx, f)
|
| 126 |
+
|
| 127 |
+
# Simplify
|
| 128 |
+
if simplify:
|
| 129 |
+
try:
|
| 130 |
+
cuda = torch.cuda.is_available()
|
| 131 |
+
check_requirements(('onnxruntime-gpu' if cuda else 'onnxruntime', 'onnx-simplifier>=0.4.1'))
|
| 132 |
+
import onnxsim
|
| 133 |
+
|
| 134 |
+
LOGGER.info(f'{prefix} simplifying with onnx-simplifier {onnxsim.__version__}...')
|
| 135 |
+
model_onnx, check = onnxsim.simplify(model_onnx)
|
| 136 |
+
assert check, 'assert check failed'
|
| 137 |
+
onnx.save(model_onnx, f)
|
| 138 |
+
except Exception as e:
|
| 139 |
+
LOGGER.info(f'{prefix} simplifier failure: {e}')
|
| 140 |
+
return f, model_onnx
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
@try_export
|
| 144 |
+
def export_onnx_end2end(model, im, file, simplify, topk_all, iou_thres, conf_thres, device, labels, prefix=colorstr('ONNX END2END:')):
|
| 145 |
+
# YOLO ONNX export
|
| 146 |
+
check_requirements('onnx')
|
| 147 |
+
import onnx
|
| 148 |
+
LOGGER.info(f'\n{prefix} starting export with onnx {onnx.__version__}...')
|
| 149 |
+
f = os.path.splitext(file)[0] + "-end2end.onnx"
|
| 150 |
+
batch_size = 'batch'
|
| 151 |
+
|
| 152 |
+
dynamic_axes = {'images': {0 : 'batch', 2: 'height', 3:'width'}, } # variable length axes
|
| 153 |
+
|
| 154 |
+
output_axes = {
|
| 155 |
+
'num_dets': {0: 'batch'},
|
| 156 |
+
'det_boxes': {0: 'batch'},
|
| 157 |
+
'det_scores': {0: 'batch'},
|
| 158 |
+
'det_classes': {0: 'batch'},
|
| 159 |
+
}
|
| 160 |
+
dynamic_axes.update(output_axes)
|
| 161 |
+
model = End2End(model, topk_all, iou_thres, conf_thres, None ,device, labels)
|
| 162 |
+
|
| 163 |
+
output_names = ['num_dets', 'det_boxes', 'det_scores', 'det_classes']
|
| 164 |
+
shapes = [ batch_size, 1, batch_size, topk_all, 4,
|
| 165 |
+
batch_size, topk_all, batch_size, topk_all]
|
| 166 |
+
|
| 167 |
+
torch.onnx.export(model,
|
| 168 |
+
im,
|
| 169 |
+
f,
|
| 170 |
+
verbose=False,
|
| 171 |
+
export_params=True, # store the trained parameter weights inside the model file
|
| 172 |
+
opset_version=12,
|
| 173 |
+
do_constant_folding=True, # whether to execute constant folding for optimization
|
| 174 |
+
input_names=['images'],
|
| 175 |
+
output_names=output_names,
|
| 176 |
+
dynamic_axes=dynamic_axes)
|
| 177 |
+
|
| 178 |
+
# Checks
|
| 179 |
+
model_onnx = onnx.load(f) # load onnx model
|
| 180 |
+
onnx.checker.check_model(model_onnx) # check onnx model
|
| 181 |
+
for i in model_onnx.graph.output:
|
| 182 |
+
for j in i.type.tensor_type.shape.dim:
|
| 183 |
+
j.dim_param = str(shapes.pop(0))
|
| 184 |
+
|
| 185 |
+
if simplify:
|
| 186 |
+
try:
|
| 187 |
+
import onnxsim
|
| 188 |
+
|
| 189 |
+
print('\nStarting to simplify ONNX...')
|
| 190 |
+
model_onnx, check = onnxsim.simplify(model_onnx)
|
| 191 |
+
assert check, 'assert check failed'
|
| 192 |
+
except Exception as e:
|
| 193 |
+
print(f'Simplifier failure: {e}')
|
| 194 |
+
|
| 195 |
+
# print(onnx.helper.printable_graph(onnx_model.graph)) # print a human readable model
|
| 196 |
+
onnx.save(model_onnx,f)
|
| 197 |
+
print('ONNX export success, saved as %s' % f)
|
| 198 |
+
return f, model_onnx
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
@try_export
|
| 202 |
+
def export_openvino(file, metadata, half, prefix=colorstr('OpenVINO:')):
|
| 203 |
+
# YOLO OpenVINO export
|
| 204 |
+
check_requirements('openvino-dev') # requires openvino-dev: https://pypi.org/project/openvino-dev/
|
| 205 |
+
import openvino.inference_engine as ie
|
| 206 |
+
|
| 207 |
+
LOGGER.info(f'\n{prefix} starting export with openvino {ie.__version__}...')
|
| 208 |
+
f = str(file).replace('.pt', f'_openvino_model{os.sep}')
|
| 209 |
+
|
| 210 |
+
#cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} --data_type {'FP16' if half else 'FP32'}"
|
| 211 |
+
#cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} {"--compress_to_fp16" if half else ""}"
|
| 212 |
+
half_arg = "--compress_to_fp16" if half else ""
|
| 213 |
+
cmd = f"mo --input_model {file.with_suffix('.onnx')} --output_dir {f} {half_arg}"
|
| 214 |
+
subprocess.run(cmd.split(), check=True, env=os.environ) # export
|
| 215 |
+
yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml
|
| 216 |
+
return f, None
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
@try_export
|
| 220 |
+
def export_paddle(model, im, file, metadata, prefix=colorstr('PaddlePaddle:')):
|
| 221 |
+
# YOLO Paddle export
|
| 222 |
+
check_requirements(('paddlepaddle', 'x2paddle'))
|
| 223 |
+
import x2paddle
|
| 224 |
+
from x2paddle.convert import pytorch2paddle
|
| 225 |
+
|
| 226 |
+
LOGGER.info(f'\n{prefix} starting export with X2Paddle {x2paddle.__version__}...')
|
| 227 |
+
f = str(file).replace('.pt', f'_paddle_model{os.sep}')
|
| 228 |
+
|
| 229 |
+
pytorch2paddle(module=model, save_dir=f, jit_type='trace', input_examples=[im]) # export
|
| 230 |
+
yaml_save(Path(f) / file.with_suffix('.yaml').name, metadata) # add metadata.yaml
|
| 231 |
+
return f, None
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
@try_export
|
| 235 |
+
def export_coreml(model, im, file, int8, half, prefix=colorstr('CoreML:')):
|
| 236 |
+
# YOLO CoreML export
|
| 237 |
+
check_requirements('coremltools')
|
| 238 |
+
import coremltools as ct
|
| 239 |
+
|
| 240 |
+
LOGGER.info(f'\n{prefix} starting export with coremltools {ct.__version__}...')
|
| 241 |
+
f = file.with_suffix('.mlmodel')
|
| 242 |
+
|
| 243 |
+
ts = torch.jit.trace(model, im, strict=False) # TorchScript model
|
| 244 |
+
ct_model = ct.convert(ts, inputs=[ct.ImageType('image', shape=im.shape, scale=1 / 255, bias=[0, 0, 0])])
|
| 245 |
+
bits, mode = (8, 'kmeans_lut') if int8 else (16, 'linear') if half else (32, None)
|
| 246 |
+
if bits < 32:
|
| 247 |
+
if MACOS: # quantization only supported on macOS
|
| 248 |
+
with warnings.catch_warnings():
|
| 249 |
+
warnings.filterwarnings("ignore", category=DeprecationWarning) # suppress numpy==1.20 float warning
|
| 250 |
+
ct_model = ct.models.neural_network.quantization_utils.quantize_weights(ct_model, bits, mode)
|
| 251 |
+
else:
|
| 252 |
+
print(f'{prefix} quantization only supported on macOS, skipping...')
|
| 253 |
+
ct_model.save(f)
|
| 254 |
+
return f, ct_model
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
@try_export
|
| 258 |
+
def export_engine(model, im, file, half, dynamic, simplify, workspace=4, verbose=False, prefix=colorstr('TensorRT:')):
|
| 259 |
+
# YOLO TensorRT export https://developer.nvidia.com/tensorrt
|
| 260 |
+
assert im.device.type != 'cpu', 'export running on CPU but must be on GPU, i.e. `python export.py --device 0`'
|
| 261 |
+
try:
|
| 262 |
+
import tensorrt as trt
|
| 263 |
+
except Exception:
|
| 264 |
+
if platform.system() == 'Linux':
|
| 265 |
+
check_requirements('nvidia-tensorrt', cmds='-U --index-url https://pypi.ngc.nvidia.com')
|
| 266 |
+
import tensorrt as trt
|
| 267 |
+
|
| 268 |
+
if trt.__version__[0] == '7': # TensorRT 7 handling https://github.com/ultralytics/yolov5/issues/6012
|
| 269 |
+
grid = model.model[-1].anchor_grid
|
| 270 |
+
model.model[-1].anchor_grid = [a[..., :1, :1, :] for a in grid]
|
| 271 |
+
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
|
| 272 |
+
model.model[-1].anchor_grid = grid
|
| 273 |
+
else: # TensorRT >= 8
|
| 274 |
+
check_version(trt.__version__, '8.0.0', hard=True) # require tensorrt>=8.0.0
|
| 275 |
+
export_onnx(model, im, file, 12, dynamic, simplify) # opset 12
|
| 276 |
+
onnx = file.with_suffix('.onnx')
|
| 277 |
+
|
| 278 |
+
LOGGER.info(f'\n{prefix} starting export with TensorRT {trt.__version__}...')
|
| 279 |
+
assert onnx.exists(), f'failed to export ONNX file: {onnx}'
|
| 280 |
+
f = file.with_suffix('.engine') # TensorRT engine file
|
| 281 |
+
logger = trt.Logger(trt.Logger.INFO)
|
| 282 |
+
if verbose:
|
| 283 |
+
logger.min_severity = trt.Logger.Severity.VERBOSE
|
| 284 |
+
|
| 285 |
+
builder = trt.Builder(logger)
|
| 286 |
+
config = builder.create_builder_config()
|
| 287 |
+
config.max_workspace_size = workspace * 1 << 30
|
| 288 |
+
# config.set_memory_pool_limit(trt.MemoryPoolType.WORKSPACE, workspace << 30) # fix TRT 8.4 deprecation notice
|
| 289 |
+
|
| 290 |
+
flag = (1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH))
|
| 291 |
+
network = builder.create_network(flag)
|
| 292 |
+
parser = trt.OnnxParser(network, logger)
|
| 293 |
+
if not parser.parse_from_file(str(onnx)):
|
| 294 |
+
raise RuntimeError(f'failed to load ONNX file: {onnx}')
|
| 295 |
+
|
| 296 |
+
inputs = [network.get_input(i) for i in range(network.num_inputs)]
|
| 297 |
+
outputs = [network.get_output(i) for i in range(network.num_outputs)]
|
| 298 |
+
for inp in inputs:
|
| 299 |
+
LOGGER.info(f'{prefix} input "{inp.name}" with shape{inp.shape} {inp.dtype}')
|
| 300 |
+
for out in outputs:
|
| 301 |
+
LOGGER.info(f'{prefix} output "{out.name}" with shape{out.shape} {out.dtype}')
|
| 302 |
+
|
| 303 |
+
if dynamic:
|
| 304 |
+
if im.shape[0] <= 1:
|
| 305 |
+
LOGGER.warning(f"{prefix} WARNING ⚠️ --dynamic model requires maximum --batch-size argument")
|
| 306 |
+
profile = builder.create_optimization_profile()
|
| 307 |
+
for inp in inputs:
|
| 308 |
+
profile.set_shape(inp.name, (1, *im.shape[1:]), (max(1, im.shape[0] // 2), *im.shape[1:]), im.shape)
|
| 309 |
+
config.add_optimization_profile(profile)
|
| 310 |
+
|
| 311 |
+
LOGGER.info(f'{prefix} building FP{16 if builder.platform_has_fast_fp16 and half else 32} engine as {f}')
|
| 312 |
+
if builder.platform_has_fast_fp16 and half:
|
| 313 |
+
config.set_flag(trt.BuilderFlag.FP16)
|
| 314 |
+
with builder.build_engine(network, config) as engine, open(f, 'wb') as t:
|
| 315 |
+
t.write(engine.serialize())
|
| 316 |
+
return f, None
|
| 317 |
+
|
| 318 |
+
|
| 319 |
+
@try_export
|
| 320 |
+
def export_saved_model(model,
|
| 321 |
+
im,
|
| 322 |
+
file,
|
| 323 |
+
dynamic,
|
| 324 |
+
tf_nms=False,
|
| 325 |
+
agnostic_nms=False,
|
| 326 |
+
topk_per_class=100,
|
| 327 |
+
topk_all=100,
|
| 328 |
+
iou_thres=0.45,
|
| 329 |
+
conf_thres=0.25,
|
| 330 |
+
keras=False,
|
| 331 |
+
prefix=colorstr('TensorFlow SavedModel:')):
|
| 332 |
+
# YOLO TensorFlow SavedModel export
|
| 333 |
+
try:
|
| 334 |
+
import tensorflow as tf
|
| 335 |
+
except Exception:
|
| 336 |
+
check_requirements(f"tensorflow{'' if torch.cuda.is_available() else '-macos' if MACOS else '-cpu'}")
|
| 337 |
+
import tensorflow as tf
|
| 338 |
+
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
| 339 |
+
|
| 340 |
+
from models.tf import TFModel
|
| 341 |
+
|
| 342 |
+
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
| 343 |
+
f = str(file).replace('.pt', '_saved_model')
|
| 344 |
+
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
| 345 |
+
|
| 346 |
+
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
|
| 347 |
+
im = tf.zeros((batch_size, *imgsz, ch)) # BHWC order for TensorFlow
|
| 348 |
+
_ = tf_model.predict(im, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
| 349 |
+
inputs = tf.keras.Input(shape=(*imgsz, ch), batch_size=None if dynamic else batch_size)
|
| 350 |
+
outputs = tf_model.predict(inputs, tf_nms, agnostic_nms, topk_per_class, topk_all, iou_thres, conf_thres)
|
| 351 |
+
keras_model = tf.keras.Model(inputs=inputs, outputs=outputs)
|
| 352 |
+
keras_model.trainable = False
|
| 353 |
+
keras_model.summary()
|
| 354 |
+
if keras:
|
| 355 |
+
keras_model.save(f, save_format='tf')
|
| 356 |
+
else:
|
| 357 |
+
spec = tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype)
|
| 358 |
+
m = tf.function(lambda x: keras_model(x)) # full model
|
| 359 |
+
m = m.get_concrete_function(spec)
|
| 360 |
+
frozen_func = convert_variables_to_constants_v2(m)
|
| 361 |
+
tfm = tf.Module()
|
| 362 |
+
tfm.__call__ = tf.function(lambda x: frozen_func(x)[:4] if tf_nms else frozen_func(x), [spec])
|
| 363 |
+
tfm.__call__(im)
|
| 364 |
+
tf.saved_model.save(tfm,
|
| 365 |
+
f,
|
| 366 |
+
options=tf.saved_model.SaveOptions(experimental_custom_gradients=False) if check_version(
|
| 367 |
+
tf.__version__, '2.6') else tf.saved_model.SaveOptions())
|
| 368 |
+
return f, keras_model
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
@try_export
|
| 372 |
+
def export_pb(keras_model, file, prefix=colorstr('TensorFlow GraphDef:')):
|
| 373 |
+
# YOLO TensorFlow GraphDef *.pb export https://github.com/leimao/Frozen_Graph_TensorFlow
|
| 374 |
+
import tensorflow as tf
|
| 375 |
+
from tensorflow.python.framework.convert_to_constants import convert_variables_to_constants_v2
|
| 376 |
+
|
| 377 |
+
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
| 378 |
+
f = file.with_suffix('.pb')
|
| 379 |
+
|
| 380 |
+
m = tf.function(lambda x: keras_model(x)) # full model
|
| 381 |
+
m = m.get_concrete_function(tf.TensorSpec(keras_model.inputs[0].shape, keras_model.inputs[0].dtype))
|
| 382 |
+
frozen_func = convert_variables_to_constants_v2(m)
|
| 383 |
+
frozen_func.graph.as_graph_def()
|
| 384 |
+
tf.io.write_graph(graph_or_graph_def=frozen_func.graph, logdir=str(f.parent), name=f.name, as_text=False)
|
| 385 |
+
return f, None
|
| 386 |
+
|
| 387 |
+
|
| 388 |
+
@try_export
|
| 389 |
+
def export_tflite(keras_model, im, file, int8, data, nms, agnostic_nms, prefix=colorstr('TensorFlow Lite:')):
|
| 390 |
+
# YOLOv5 TensorFlow Lite export
|
| 391 |
+
import tensorflow as tf
|
| 392 |
+
|
| 393 |
+
LOGGER.info(f'\n{prefix} starting export with tensorflow {tf.__version__}...')
|
| 394 |
+
batch_size, ch, *imgsz = list(im.shape) # BCHW
|
| 395 |
+
f = str(file).replace('.pt', '-fp16.tflite')
|
| 396 |
+
|
| 397 |
+
converter = tf.lite.TFLiteConverter.from_keras_model(keras_model)
|
| 398 |
+
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS]
|
| 399 |
+
converter.target_spec.supported_types = [tf.float16]
|
| 400 |
+
converter.optimizations = [tf.lite.Optimize.DEFAULT]
|
| 401 |
+
if int8:
|
| 402 |
+
from models.tf import representative_dataset_gen
|
| 403 |
+
dataset = LoadImages(check_dataset(check_yaml(data))['train'], img_size=imgsz, auto=False)
|
| 404 |
+
converter.representative_dataset = lambda: representative_dataset_gen(dataset, ncalib=100)
|
| 405 |
+
converter.target_spec.supported_ops = [tf.lite.OpsSet.TFLITE_BUILTINS_INT8]
|
| 406 |
+
converter.target_spec.supported_types = []
|
| 407 |
+
converter.inference_input_type = tf.uint8 # or tf.int8
|
| 408 |
+
converter.inference_output_type = tf.uint8 # or tf.int8
|
| 409 |
+
converter.experimental_new_quantizer = True
|
| 410 |
+
f = str(file).replace('.pt', '-int8.tflite')
|
| 411 |
+
if nms or agnostic_nms:
|
| 412 |
+
converter.target_spec.supported_ops.append(tf.lite.OpsSet.SELECT_TF_OPS)
|
| 413 |
+
|
| 414 |
+
tflite_model = converter.convert()
|
| 415 |
+
open(f, "wb").write(tflite_model)
|
| 416 |
+
return f, None
|
| 417 |
+
|
| 418 |
+
|
| 419 |
+
@try_export
|
| 420 |
+
def export_edgetpu(file, prefix=colorstr('Edge TPU:')):
|
| 421 |
+
# YOLO Edge TPU export https://coral.ai/docs/edgetpu/models-intro/
|
| 422 |
+
cmd = 'edgetpu_compiler --version'
|
| 423 |
+
help_url = 'https://coral.ai/docs/edgetpu/compiler/'
|
| 424 |
+
assert platform.system() == 'Linux', f'export only supported on Linux. See {help_url}'
|
| 425 |
+
if subprocess.run(f'{cmd} >/dev/null', shell=True).returncode != 0:
|
| 426 |
+
LOGGER.info(f'\n{prefix} export requires Edge TPU compiler. Attempting install from {help_url}')
|
| 427 |
+
sudo = subprocess.run('sudo --version >/dev/null', shell=True).returncode == 0 # sudo installed on system
|
| 428 |
+
for c in (
|
| 429 |
+
'curl https://packages.cloud.google.com/apt/doc/apt-key.gpg | sudo apt-key add -',
|
| 430 |
+
'echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" | sudo tee /etc/apt/sources.list.d/coral-edgetpu.list',
|
| 431 |
+
'sudo apt-get update', 'sudo apt-get install edgetpu-compiler'):
|
| 432 |
+
subprocess.run(c if sudo else c.replace('sudo ', ''), shell=True, check=True)
|
| 433 |
+
ver = subprocess.run(cmd, shell=True, capture_output=True, check=True).stdout.decode().split()[-1]
|
| 434 |
+
|
| 435 |
+
LOGGER.info(f'\n{prefix} starting export with Edge TPU compiler {ver}...')
|
| 436 |
+
f = str(file).replace('.pt', '-int8_edgetpu.tflite') # Edge TPU model
|
| 437 |
+
f_tfl = str(file).replace('.pt', '-int8.tflite') # TFLite model
|
| 438 |
+
|
| 439 |
+
cmd = f"edgetpu_compiler -s -d -k 10 --out_dir {file.parent} {f_tfl}"
|
| 440 |
+
subprocess.run(cmd.split(), check=True)
|
| 441 |
+
return f, None
|
| 442 |
+
|
| 443 |
+
|
| 444 |
+
@try_export
|
| 445 |
+
def export_tfjs(file, prefix=colorstr('TensorFlow.js:')):
|
| 446 |
+
# YOLO TensorFlow.js export
|
| 447 |
+
check_requirements('tensorflowjs')
|
| 448 |
+
import tensorflowjs as tfjs
|
| 449 |
+
|
| 450 |
+
LOGGER.info(f'\n{prefix} starting export with tensorflowjs {tfjs.__version__}...')
|
| 451 |
+
f = str(file).replace('.pt', '_web_model') # js dir
|
| 452 |
+
f_pb = file.with_suffix('.pb') # *.pb path
|
| 453 |
+
f_json = f'{f}/model.json' # *.json path
|
| 454 |
+
|
| 455 |
+
cmd = f'tensorflowjs_converter --input_format=tf_frozen_model ' \
|
| 456 |
+
f'--output_node_names=Identity,Identity_1,Identity_2,Identity_3 {f_pb} {f}'
|
| 457 |
+
subprocess.run(cmd.split())
|
| 458 |
+
|
| 459 |
+
json = Path(f_json).read_text()
|
| 460 |
+
with open(f_json, 'w') as j: # sort JSON Identity_* in ascending order
|
| 461 |
+
subst = re.sub(
|
| 462 |
+
r'{"outputs": {"Identity.?.?": {"name": "Identity.?.?"}, '
|
| 463 |
+
r'"Identity.?.?": {"name": "Identity.?.?"}, '
|
| 464 |
+
r'"Identity.?.?": {"name": "Identity.?.?"}, '
|
| 465 |
+
r'"Identity.?.?": {"name": "Identity.?.?"}}}', r'{"outputs": {"Identity": {"name": "Identity"}, '
|
| 466 |
+
r'"Identity_1": {"name": "Identity_1"}, '
|
| 467 |
+
r'"Identity_2": {"name": "Identity_2"}, '
|
| 468 |
+
r'"Identity_3": {"name": "Identity_3"}}}', json)
|
| 469 |
+
j.write(subst)
|
| 470 |
+
return f, None
|
| 471 |
+
|
| 472 |
+
|
| 473 |
+
def add_tflite_metadata(file, metadata, num_outputs):
|
| 474 |
+
# Add metadata to *.tflite models per https://www.tensorflow.org/lite/models/convert/metadata
|
| 475 |
+
with contextlib.suppress(ImportError):
|
| 476 |
+
# check_requirements('tflite_support')
|
| 477 |
+
from tflite_support import flatbuffers
|
| 478 |
+
from tflite_support import metadata as _metadata
|
| 479 |
+
from tflite_support import metadata_schema_py_generated as _metadata_fb
|
| 480 |
+
|
| 481 |
+
tmp_file = Path('/tmp/meta.txt')
|
| 482 |
+
with open(tmp_file, 'w') as meta_f:
|
| 483 |
+
meta_f.write(str(metadata))
|
| 484 |
+
|
| 485 |
+
model_meta = _metadata_fb.ModelMetadataT()
|
| 486 |
+
label_file = _metadata_fb.AssociatedFileT()
|
| 487 |
+
label_file.name = tmp_file.name
|
| 488 |
+
model_meta.associatedFiles = [label_file]
|
| 489 |
+
|
| 490 |
+
subgraph = _metadata_fb.SubGraphMetadataT()
|
| 491 |
+
subgraph.inputTensorMetadata = [_metadata_fb.TensorMetadataT()]
|
| 492 |
+
subgraph.outputTensorMetadata = [_metadata_fb.TensorMetadataT()] * num_outputs
|
| 493 |
+
model_meta.subgraphMetadata = [subgraph]
|
| 494 |
+
|
| 495 |
+
b = flatbuffers.Builder(0)
|
| 496 |
+
b.Finish(model_meta.Pack(b), _metadata.MetadataPopulator.METADATA_FILE_IDENTIFIER)
|
| 497 |
+
metadata_buf = b.Output()
|
| 498 |
+
|
| 499 |
+
populator = _metadata.MetadataPopulator.with_model_file(file)
|
| 500 |
+
populator.load_metadata_buffer(metadata_buf)
|
| 501 |
+
populator.load_associated_files([str(tmp_file)])
|
| 502 |
+
populator.populate()
|
| 503 |
+
tmp_file.unlink()
|
| 504 |
+
|
| 505 |
+
|
| 506 |
+
@smart_inference_mode()
|
| 507 |
+
def run(
|
| 508 |
+
data=ROOT / 'data/coco.yaml', # 'dataset.yaml path'
|
| 509 |
+
weights=ROOT / 'yolo.pt', # weights path
|
| 510 |
+
imgsz=(640, 640), # image (height, width)
|
| 511 |
+
batch_size=1, # batch size
|
| 512 |
+
device='cpu', # cuda device, i.e. 0 or 0,1,2,3 or cpu
|
| 513 |
+
include=('torchscript', 'onnx'), # include formats
|
| 514 |
+
half=False, # FP16 half-precision export
|
| 515 |
+
inplace=False, # set YOLO Detect() inplace=True
|
| 516 |
+
keras=False, # use Keras
|
| 517 |
+
optimize=False, # TorchScript: optimize for mobile
|
| 518 |
+
int8=False, # CoreML/TF INT8 quantization
|
| 519 |
+
dynamic=False, # ONNX/TF/TensorRT: dynamic axes
|
| 520 |
+
simplify=False, # ONNX: simplify model
|
| 521 |
+
opset=12, # ONNX: opset version
|
| 522 |
+
verbose=False, # TensorRT: verbose log
|
| 523 |
+
workspace=4, # TensorRT: workspace size (GB)
|
| 524 |
+
nms=False, # TF: add NMS to model
|
| 525 |
+
agnostic_nms=False, # TF: add agnostic NMS to model
|
| 526 |
+
topk_per_class=100, # TF.js NMS: topk per class to keep
|
| 527 |
+
topk_all=100, # TF.js NMS: topk for all classes to keep
|
| 528 |
+
iou_thres=0.45, # TF.js NMS: IoU threshold
|
| 529 |
+
conf_thres=0.25, # TF.js NMS: confidence threshold
|
| 530 |
+
):
|
| 531 |
+
t = time.time()
|
| 532 |
+
include = [x.lower() for x in include] # to lowercase
|
| 533 |
+
fmts = tuple(export_formats()['Argument'][1:]) # --include arguments
|
| 534 |
+
flags = [x in include for x in fmts]
|
| 535 |
+
assert sum(flags) == len(include), f'ERROR: Invalid --include {include}, valid --include arguments are {fmts}'
|
| 536 |
+
jit, onnx, onnx_end2end, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle = flags # export booleans
|
| 537 |
+
file = Path(url2file(weights) if str(weights).startswith(('http:/', 'https:/')) else weights) # PyTorch weights
|
| 538 |
+
|
| 539 |
+
# Load PyTorch model
|
| 540 |
+
device = select_device(device)
|
| 541 |
+
if half:
|
| 542 |
+
assert device.type != 'cpu' or coreml, '--half only compatible with GPU export, i.e. use --device 0'
|
| 543 |
+
assert not dynamic, '--half not compatible with --dynamic, i.e. use either --half or --dynamic but not both'
|
| 544 |
+
model = attempt_load(weights, device=device, inplace=True, fuse=True) # load FP32 model
|
| 545 |
+
|
| 546 |
+
# Checks
|
| 547 |
+
imgsz *= 2 if len(imgsz) == 1 else 1 # expand
|
| 548 |
+
if optimize:
|
| 549 |
+
assert device.type == 'cpu', '--optimize not compatible with cuda devices, i.e. use --device cpu'
|
| 550 |
+
|
| 551 |
+
# Input
|
| 552 |
+
gs = int(max(model.stride)) # grid size (max stride)
|
| 553 |
+
imgsz = [check_img_size(x, gs) for x in imgsz] # verify img_size are gs-multiples
|
| 554 |
+
im = torch.zeros(batch_size, 3, *imgsz).to(device) # image size(1,3,320,192) BCHW iDetection
|
| 555 |
+
|
| 556 |
+
# Update model
|
| 557 |
+
model.eval()
|
| 558 |
+
for k, m in model.named_modules():
|
| 559 |
+
if isinstance(m, (Detect, DDetect, DualDetect, DualDDetect, IDualDDetect)):
|
| 560 |
+
m.inplace = inplace
|
| 561 |
+
m.dynamic = dynamic
|
| 562 |
+
m.export = True
|
| 563 |
+
|
| 564 |
+
for _ in range(2):
|
| 565 |
+
y = model(im) # dry runs
|
| 566 |
+
if half and not coreml:
|
| 567 |
+
im, model = im.half(), model.half() # to FP16
|
| 568 |
+
shape = tuple((y[0] if isinstance(y, (tuple, list)) else y).shape) # model output shape
|
| 569 |
+
metadata = {'stride': int(max(model.stride)), 'names': model.names} # model metadata
|
| 570 |
+
LOGGER.info(f"\n{colorstr('PyTorch:')} starting from {file} with output shape {shape} ({file_size(file):.1f} MB)")
|
| 571 |
+
|
| 572 |
+
# Exports
|
| 573 |
+
f = [''] * len(fmts) # exported filenames
|
| 574 |
+
warnings.filterwarnings(action='ignore', category=torch.jit.TracerWarning) # suppress TracerWarning
|
| 575 |
+
if jit: # TorchScript
|
| 576 |
+
f[0], _ = export_torchscript(model, im, file, optimize)
|
| 577 |
+
if engine: # TensorRT required before ONNX
|
| 578 |
+
f[1], _ = export_engine(model, im, file, half, dynamic, simplify, workspace, verbose)
|
| 579 |
+
if onnx or xml: # OpenVINO requires ONNX
|
| 580 |
+
f[2], _ = export_onnx(model, im, file, opset, dynamic, simplify)
|
| 581 |
+
if onnx_end2end:
|
| 582 |
+
if isinstance(model, DetectionModel):
|
| 583 |
+
labels = model.names
|
| 584 |
+
f[2], _ = export_onnx_end2end(model, im, file, simplify, topk_all, iou_thres, conf_thres, device, len(labels))
|
| 585 |
+
else:
|
| 586 |
+
raise RuntimeError("The model is not a DetectionModel.")
|
| 587 |
+
if xml: # OpenVINO
|
| 588 |
+
f[3], _ = export_openvino(file, metadata, half)
|
| 589 |
+
if coreml: # CoreML
|
| 590 |
+
f[4], _ = export_coreml(model, im, file, int8, half)
|
| 591 |
+
if any((saved_model, pb, tflite, edgetpu, tfjs)): # TensorFlow formats
|
| 592 |
+
assert not tflite or not tfjs, 'TFLite and TF.js models must be exported separately, please pass only one type.'
|
| 593 |
+
assert not isinstance(model, ClassificationModel), 'ClassificationModel export to TF formats not yet supported.'
|
| 594 |
+
f[5], s_model = export_saved_model(model.cpu(),
|
| 595 |
+
im,
|
| 596 |
+
file,
|
| 597 |
+
dynamic,
|
| 598 |
+
tf_nms=nms or agnostic_nms or tfjs,
|
| 599 |
+
agnostic_nms=agnostic_nms or tfjs,
|
| 600 |
+
topk_per_class=topk_per_class,
|
| 601 |
+
topk_all=topk_all,
|
| 602 |
+
iou_thres=iou_thres,
|
| 603 |
+
conf_thres=conf_thres,
|
| 604 |
+
keras=keras)
|
| 605 |
+
if pb or tfjs: # pb prerequisite to tfjs
|
| 606 |
+
f[6], _ = export_pb(s_model, file)
|
| 607 |
+
if tflite or edgetpu:
|
| 608 |
+
f[7], _ = export_tflite(s_model, im, file, int8 or edgetpu, data=data, nms=nms, agnostic_nms=agnostic_nms)
|
| 609 |
+
if edgetpu:
|
| 610 |
+
f[8], _ = export_edgetpu(file)
|
| 611 |
+
add_tflite_metadata(f[8] or f[7], metadata, num_outputs=len(s_model.outputs))
|
| 612 |
+
if tfjs:
|
| 613 |
+
f[9], _ = export_tfjs(file)
|
| 614 |
+
if paddle: # PaddlePaddle
|
| 615 |
+
f[10], _ = export_paddle(model, im, file, metadata)
|
| 616 |
+
|
| 617 |
+
# Finish
|
| 618 |
+
f = [str(x) for x in f if x] # filter out '' and None
|
| 619 |
+
if any(f):
|
| 620 |
+
cls, det, seg = (isinstance(model, x) for x in (ClassificationModel, DetectionModel, SegmentationModel)) # type
|
| 621 |
+
dir = Path('segment' if seg else 'classify' if cls else '')
|
| 622 |
+
h = '--half' if half else '' # --half FP16 inference arg
|
| 623 |
+
s = "# WARNING ⚠️ ClassificationModel not yet supported for PyTorch Hub AutoShape inference" if cls else \
|
| 624 |
+
"# WARNING ⚠️ SegmentationModel not yet supported for PyTorch Hub AutoShape inference" if seg else ''
|
| 625 |
+
if onnx_end2end:
|
| 626 |
+
LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
|
| 627 |
+
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
|
| 628 |
+
f"\nVisualize: https://netron.app")
|
| 629 |
+
else:
|
| 630 |
+
LOGGER.info(f'\nExport complete ({time.time() - t:.1f}s)'
|
| 631 |
+
f"\nResults saved to {colorstr('bold', file.parent.resolve())}"
|
| 632 |
+
f"\nDetect: python {dir / ('detect.py' if det else 'predict.py')} --weights {f[-1]} {h}"
|
| 633 |
+
f"\nValidate: python {dir / 'val.py'} --weights {f[-1]} {h}"
|
| 634 |
+
f"\nPyTorch Hub: model = torch.hub.load('ultralytics/yolov5', 'custom', '{f[-1]}') {s}"
|
| 635 |
+
f"\nVisualize: https://netron.app")
|
| 636 |
+
return f # return list of exported files/dirs
|
| 637 |
+
|
| 638 |
+
|
| 639 |
+
def parse_opt():
|
| 640 |
+
parser = argparse.ArgumentParser()
|
| 641 |
+
parser.add_argument('--data', type=str, default=ROOT / 'data/coco.yaml', help='dataset.yaml path')
|
| 642 |
+
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolo.pt', help='model.pt path(s)')
|
| 643 |
+
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640, 640], help='image (h, w)')
|
| 644 |
+
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
| 645 |
+
parser.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
| 646 |
+
parser.add_argument('--half', action='store_true', help='FP16 half-precision export')
|
| 647 |
+
parser.add_argument('--inplace', action='store_true', help='set YOLO Detect() inplace=True')
|
| 648 |
+
parser.add_argument('--keras', action='store_true', help='TF: use Keras')
|
| 649 |
+
parser.add_argument('--optimize', action='store_true', help='TorchScript: optimize for mobile')
|
| 650 |
+
parser.add_argument('--int8', action='store_true', help='CoreML/TF INT8 quantization')
|
| 651 |
+
parser.add_argument('--dynamic', action='store_true', help='ONNX/TF/TensorRT: dynamic axes')
|
| 652 |
+
parser.add_argument('--simplify', action='store_true', help='ONNX: simplify model')
|
| 653 |
+
parser.add_argument('--opset', type=int, default=12, help='ONNX: opset version')
|
| 654 |
+
parser.add_argument('--verbose', action='store_true', help='TensorRT: verbose log')
|
| 655 |
+
parser.add_argument('--workspace', type=int, default=4, help='TensorRT: workspace size (GB)')
|
| 656 |
+
parser.add_argument('--nms', action='store_true', help='TF: add NMS to model')
|
| 657 |
+
parser.add_argument('--agnostic-nms', action='store_true', help='TF: add agnostic NMS to model')
|
| 658 |
+
parser.add_argument('--topk-per-class', type=int, default=100, help='TF.js NMS: topk per class to keep')
|
| 659 |
+
parser.add_argument('--topk-all', type=int, default=100, help='ONNX END2END/TF.js NMS: topk for all classes to keep')
|
| 660 |
+
parser.add_argument('--iou-thres', type=float, default=0.45, help='ONNX END2END/TF.js NMS: IoU threshold')
|
| 661 |
+
parser.add_argument('--conf-thres', type=float, default=0.25, help='ONNX END2END/TF.js NMS: confidence threshold')
|
| 662 |
+
parser.add_argument(
|
| 663 |
+
'--include',
|
| 664 |
+
nargs='+',
|
| 665 |
+
default=['torchscript'],
|
| 666 |
+
help='torchscript, onnx, onnx_end2end, openvino, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle')
|
| 667 |
+
opt = parser.parse_args()
|
| 668 |
+
|
| 669 |
+
if 'onnx_end2end' in opt.include:
|
| 670 |
+
opt.simplify = True
|
| 671 |
+
opt.dynamic = True
|
| 672 |
+
opt.inplace = True
|
| 673 |
+
opt.half = False
|
| 674 |
+
|
| 675 |
+
print_args(vars(opt))
|
| 676 |
+
return opt
|
| 677 |
+
|
| 678 |
+
|
| 679 |
+
def main(opt):
|
| 680 |
+
for opt.weights in (opt.weights if isinstance(opt.weights, list) else [opt.weights]):
|
| 681 |
+
run(**vars(opt))
|
| 682 |
+
|
| 683 |
+
|
| 684 |
+
if __name__ == "__main__":
|
| 685 |
+
opt = parse_opt()
|
| 686 |
+
main(opt)
|
hubconf.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None):
|
| 5 |
+
"""Creates or loads a YOLO model
|
| 6 |
+
|
| 7 |
+
Arguments:
|
| 8 |
+
name (str): model name 'yolov3' or path 'path/to/best.pt'
|
| 9 |
+
pretrained (bool): load pretrained weights into the model
|
| 10 |
+
channels (int): number of input channels
|
| 11 |
+
classes (int): number of model classes
|
| 12 |
+
autoshape (bool): apply YOLO .autoshape() wrapper to model
|
| 13 |
+
verbose (bool): print all information to screen
|
| 14 |
+
device (str, torch.device, None): device to use for model parameters
|
| 15 |
+
|
| 16 |
+
Returns:
|
| 17 |
+
YOLO model
|
| 18 |
+
"""
|
| 19 |
+
from pathlib import Path
|
| 20 |
+
|
| 21 |
+
from models.common import AutoShape, DetectMultiBackend
|
| 22 |
+
from models.experimental import attempt_load
|
| 23 |
+
from models.yolo import ClassificationModel, DetectionModel, SegmentationModel
|
| 24 |
+
from utils.downloads import attempt_download
|
| 25 |
+
from utils.general import LOGGER, check_requirements, intersect_dicts, logging
|
| 26 |
+
from utils.torch_utils import select_device
|
| 27 |
+
|
| 28 |
+
if not verbose:
|
| 29 |
+
LOGGER.setLevel(logging.WARNING)
|
| 30 |
+
check_requirements(exclude=('opencv-python', 'tensorboard', 'thop'))
|
| 31 |
+
name = Path(name)
|
| 32 |
+
path = name.with_suffix('.pt') if name.suffix == '' and not name.is_dir() else name # checkpoint path
|
| 33 |
+
try:
|
| 34 |
+
device = select_device(device)
|
| 35 |
+
if pretrained and channels == 3 and classes == 80:
|
| 36 |
+
try:
|
| 37 |
+
model = DetectMultiBackend(path, device=device, fuse=autoshape) # detection model
|
| 38 |
+
if autoshape:
|
| 39 |
+
if model.pt and isinstance(model.model, ClassificationModel):
|
| 40 |
+
LOGGER.warning('WARNING ⚠️ YOLO ClassificationModel is not yet AutoShape compatible. '
|
| 41 |
+
'You must pass torch tensors in BCHW to this model, i.e. shape(1,3,224,224).')
|
| 42 |
+
elif model.pt and isinstance(model.model, SegmentationModel):
|
| 43 |
+
LOGGER.warning('WARNING ⚠️ YOLO SegmentationModel is not yet AutoShape compatible. '
|
| 44 |
+
'You will not be able to run inference with this model.')
|
| 45 |
+
else:
|
| 46 |
+
model = AutoShape(model) # for file/URI/PIL/cv2/np inputs and NMS
|
| 47 |
+
except Exception:
|
| 48 |
+
model = attempt_load(path, device=device, fuse=False) # arbitrary model
|
| 49 |
+
else:
|
| 50 |
+
cfg = list((Path(__file__).parent / 'models').rglob(f'{path.stem}.yaml'))[0] # model.yaml path
|
| 51 |
+
model = DetectionModel(cfg, channels, classes) # create model
|
| 52 |
+
if pretrained:
|
| 53 |
+
ckpt = torch.load(attempt_download(path), map_location=device) # load
|
| 54 |
+
csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32
|
| 55 |
+
csd = intersect_dicts(csd, model.state_dict(), exclude=['anchors']) # intersect
|
| 56 |
+
model.load_state_dict(csd, strict=False) # load
|
| 57 |
+
if len(ckpt['model'].names) == classes:
|
| 58 |
+
model.names = ckpt['model'].names # set class names attribute
|
| 59 |
+
if not verbose:
|
| 60 |
+
LOGGER.setLevel(logging.INFO) # reset to default
|
| 61 |
+
return model.to(device)
|
| 62 |
+
|
| 63 |
+
except Exception as e:
|
| 64 |
+
help_url = 'https://github.com/ultralytics/yolov5/issues/36'
|
| 65 |
+
s = f'{e}. Cache may be out of date, try `force_reload=True` or see {help_url} for help.'
|
| 66 |
+
raise Exception(s) from e
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def custom(path='path/to/model.pt', autoshape=True, _verbose=True, device=None):
|
| 70 |
+
# YOLO custom or local model
|
| 71 |
+
return _create(path, autoshape=autoshape, verbose=_verbose, device=device)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
if __name__ == '__main__':
|
| 75 |
+
import argparse
|
| 76 |
+
from pathlib import Path
|
| 77 |
+
|
| 78 |
+
import numpy as np
|
| 79 |
+
from PIL import Image
|
| 80 |
+
|
| 81 |
+
from utils.general import cv2, print_args
|
| 82 |
+
|
| 83 |
+
# Argparser
|
| 84 |
+
parser = argparse.ArgumentParser()
|
| 85 |
+
parser.add_argument('--model', type=str, default='yolo', help='model name')
|
| 86 |
+
opt = parser.parse_args()
|
| 87 |
+
print_args(vars(opt))
|
| 88 |
+
|
| 89 |
+
# Model
|
| 90 |
+
model = _create(name=opt.model, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True)
|
| 91 |
+
# model = custom(path='path/to/model.pt') # custom
|
| 92 |
+
|
| 93 |
+
# Images
|
| 94 |
+
imgs = [
|
| 95 |
+
'data/images/zidane.jpg', # filename
|
| 96 |
+
Path('data/images/zidane.jpg'), # Path
|
| 97 |
+
'https://ultralytics.com/images/zidane.jpg', # URI
|
| 98 |
+
cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV
|
| 99 |
+
Image.open('data/images/bus.jpg'), # PIL
|
| 100 |
+
np.zeros((320, 640, 3))] # numpy
|
| 101 |
+
|
| 102 |
+
# Inference
|
| 103 |
+
results = model(imgs, size=320) # batched inference
|
| 104 |
+
|
| 105 |
+
# Results
|
| 106 |
+
results.print()
|
| 107 |
+
results.save()
|
models/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
# init
|
models/attention/blocks.py
ADDED
|
@@ -0,0 +1,631 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Shuffle
|
| 2 |
+
# CBAM
|
| 3 |
+
# -- GAM ECA SE SK LSK
|
| 4 |
+
from models.common import *
|
| 5 |
+
|
| 6 |
+
class RepNCBAM(nn.Module):
|
| 7 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
| 8 |
+
super().__init__()
|
| 9 |
+
c_ = int(c2 * e) # hidden channels
|
| 10 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
| 11 |
+
self.cv2 = Conv(c1, c_, 1, 1)
|
| 12 |
+
self.cv3 = Conv(2 * c_, c2, 1)
|
| 13 |
+
self.m = nn.Sequential(*(CBAMBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
| 14 |
+
|
| 15 |
+
def forward(self, x):
|
| 16 |
+
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
|
| 17 |
+
|
| 18 |
+
class RepNSA(nn.Module):
|
| 19 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=16, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
| 20 |
+
super().__init__()
|
| 21 |
+
c_ = int(c2 * e) # hidden channels
|
| 22 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
| 23 |
+
self.cv2 = Conv(c1, c_, 1, 1)
|
| 24 |
+
self.cv3 = Conv(2 * c_, c2, 1)
|
| 25 |
+
self.m = nn.Sequential(*(SABottleneck(c_, c_, 1, shortcut, g=g) for _ in range(n)))
|
| 26 |
+
|
| 27 |
+
def forward(self, x):
|
| 28 |
+
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
|
| 29 |
+
|
| 30 |
+
class RepNLSK(nn.Module):
|
| 31 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
| 32 |
+
super().__init__()
|
| 33 |
+
c_ = int(c2 * e) # hidden channels
|
| 34 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
| 35 |
+
self.cv2 = Conv(c1, c_, 1, 1)
|
| 36 |
+
self.cv3 = Conv(2 * c_, c2, 1)
|
| 37 |
+
self.m = nn.Sequential(*(LSKBottleneck(c_, c_, 1, shortcut, g=g) for _ in range(n)))
|
| 38 |
+
|
| 39 |
+
def forward(self, x):
|
| 40 |
+
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
|
| 41 |
+
|
| 42 |
+
class RepNECA(nn.Module):
|
| 43 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
| 44 |
+
super().__init__()
|
| 45 |
+
c_ = int(c2 * e) # hidden channels
|
| 46 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
| 47 |
+
self.cv2 = Conv(c1, c_, 1, 1)
|
| 48 |
+
self.cv3 = Conv(2 * c_, c2, 1)
|
| 49 |
+
self.m = nn.Sequential(*(ECABottleneck(c_, c_, shortcut, g=g) for _ in range(n)))
|
| 50 |
+
|
| 51 |
+
def forward(self, x):
|
| 52 |
+
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
|
| 53 |
+
|
| 54 |
+
# ----------------------- Attention Mechanism ---------------------------
|
| 55 |
+
|
| 56 |
+
## CBAM ATTENTION
|
| 57 |
+
class ChannelAttention(nn.Module):
|
| 58 |
+
|
| 59 |
+
def __init__(self, in_planes, ratio=16):
|
| 60 |
+
super().__init__()
|
| 61 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
| 62 |
+
self.max_pool = nn.AdaptiveMaxPool2d(1)
|
| 63 |
+
self.f1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)
|
| 64 |
+
self.act = nn.SiLU()
|
| 65 |
+
|
| 66 |
+
self.f2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)
|
| 67 |
+
self.sigmoid = nn.Sigmoid()
|
| 68 |
+
|
| 69 |
+
def forward(self, x):
|
| 70 |
+
avg_out = self.f2(self.act(self.f1(self.avg_pool(x))))
|
| 71 |
+
max_out = self.f2(self.act(self.f1(self.max_pool(x))))
|
| 72 |
+
out = self.sigmoid(avg_out + max_out)
|
| 73 |
+
return out
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
class SpatialAttention(nn.Module):
|
| 77 |
+
|
| 78 |
+
def __init__(self, kernel_size=3):
|
| 79 |
+
super().__init__()
|
| 80 |
+
assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
|
| 81 |
+
padding = 3 if kernel_size == 7 else 1
|
| 82 |
+
self.conv = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
|
| 83 |
+
self.sigmoid = nn.Sigmoid()
|
| 84 |
+
|
| 85 |
+
def forward(self, x):
|
| 86 |
+
# 1*h*w
|
| 87 |
+
avg_out = torch.mean(x, dim=1, keepdim=True)
|
| 88 |
+
max_out, _ = torch.max(x, dim=1, keepdim=True)
|
| 89 |
+
x = torch.cat([avg_out, max_out], dim=1)
|
| 90 |
+
#2*h*w
|
| 91 |
+
x = self.conv(x)
|
| 92 |
+
#1*h*w
|
| 93 |
+
return self.sigmoid(x)
|
| 94 |
+
|
| 95 |
+
class CBAMBottleneck(nn.Module):
|
| 96 |
+
def __init__(self,
|
| 97 |
+
c1,
|
| 98 |
+
c2,
|
| 99 |
+
shortcut=True,
|
| 100 |
+
g=1,
|
| 101 |
+
e=0.5,
|
| 102 |
+
ratio=16,
|
| 103 |
+
kernel_size=3): # ch_in, ch_out, shortcut, groups, expansion
|
| 104 |
+
super().__init__()
|
| 105 |
+
c_ = int(c2 * e) # hidden channels
|
| 106 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
| 107 |
+
self.cv2 = Conv(c_, c2, 3, 1, g=g)
|
| 108 |
+
self.add = shortcut and c1 == c2
|
| 109 |
+
self.channel_attention = ChannelAttention(c2, ratio)
|
| 110 |
+
self.spatial_attention = SpatialAttention(kernel_size)
|
| 111 |
+
|
| 112 |
+
def forward(self, x):
|
| 113 |
+
x1 = self.cv2(self.cv1(x))
|
| 114 |
+
out = self.channel_attention(x1) * x1
|
| 115 |
+
# print('outchannels:{}'.format(out.shape))
|
| 116 |
+
out = self.spatial_attention(out) * out
|
| 117 |
+
return x + out if self.add else out
|
| 118 |
+
|
| 119 |
+
class CBAMC4(nn.Module):
|
| 120 |
+
def __init__(self, c1, c2, c3, c4, c5=1):
|
| 121 |
+
super(CBAMC4, self).__init__()
|
| 122 |
+
self.c = c3 // 2
|
| 123 |
+
self.cv1 = Conv(c1, c3, 1, 1)
|
| 124 |
+
self.cv2 = nn.Sequential(RepNCSP(c3 // 2, c4, c5), Conv(c4, c4, 3, 1))
|
| 125 |
+
self.cv3 = nn.Sequential(RepNCSP(c4, c4, c5), Conv(c4, c4, 3, 1))
|
| 126 |
+
self.cv4 = Conv(c3 + (2 * c4), c2, 1, 1)
|
| 127 |
+
self.channel_attention = ChannelAttention(c2)
|
| 128 |
+
self.spatial_attention = SpatialAttention(kernel_size=3) # Specify kernel_size here
|
| 129 |
+
|
| 130 |
+
def forward(self, x):
|
| 131 |
+
y = list(self.cv1(x).chunk(2, 1))
|
| 132 |
+
y.extend((m(y[-1])) for m in [self.cv2, self.cv3])
|
| 133 |
+
y = torch.cat(y, 1)
|
| 134 |
+
|
| 135 |
+
# Apply channel attention
|
| 136 |
+
y = y * self.channel_attention(y)
|
| 137 |
+
|
| 138 |
+
# Apply spatial attention
|
| 139 |
+
y = y * self.spatial_attention(y)
|
| 140 |
+
|
| 141 |
+
return self.cv4(y)
|
| 142 |
+
|
| 143 |
+
def forward_split(self, x):
|
| 144 |
+
y = list(self.cv1(x).split((self.c, self.c), 1))
|
| 145 |
+
y.extend(m(y[-1]) for m in [self.cv2, self.cv3])
|
| 146 |
+
y = torch.cat(y, 1)
|
| 147 |
+
|
| 148 |
+
# Apply channel attention
|
| 149 |
+
y = y * self.channel_attention(y)
|
| 150 |
+
|
| 151 |
+
# Apply spatial attention
|
| 152 |
+
y = y * self.spatial_attention(y)
|
| 153 |
+
|
| 154 |
+
return self.cv4(y)
|
| 155 |
+
|
| 156 |
+
class RepNCBAMELAN4(RepNCSPELAN4):
|
| 157 |
+
# C3 module with CBAMBottleneck()
|
| 158 |
+
def __init__(self, c1, c2, c3, c4, c5=1):
|
| 159 |
+
super().__init__(c1, c2, c3, c4, c5)
|
| 160 |
+
self.cv2 = nn.Sequential(RepNCBAM(c3//2, c4, c5), Conv(c4, c4, 3, 1))
|
| 161 |
+
self.cv3 = nn.Sequential(RepNCBAM(c4, c4, c5), Conv(c4, c4, 3, 1))
|
| 162 |
+
|
| 163 |
+
# c_ = int(c2 * e) # hidden channels
|
| 164 |
+
# self.m = nn.Sequential(*(RepCBAM(c_, c_, shortcut) for _ in range(n)))
|
| 165 |
+
|
| 166 |
+
## GAM ATTETION
|
| 167 |
+
class GAMAttention(nn.Module):
|
| 168 |
+
#https://paperswithcode.com/paper/global-attention-mechanism-retain-information
|
| 169 |
+
def __init__(self, c1, c2, group=True,rate=4):
|
| 170 |
+
super(GAMAttention, self).__init__()
|
| 171 |
+
|
| 172 |
+
self.channel_attention = nn.Sequential(
|
| 173 |
+
nn.Linear(c1, int(c1 / rate)),
|
| 174 |
+
nn.ReLU(inplace=True),
|
| 175 |
+
nn.Linear(int(c1 / rate), c1)
|
| 176 |
+
)
|
| 177 |
+
self.spatial_attention = nn.Sequential(
|
| 178 |
+
nn.Conv2d(c1, c1//rate, kernel_size=7, padding=3,groups=rate)if group else nn.Conv2d(c1, int(c1 / rate), kernel_size=7, padding=3),
|
| 179 |
+
nn.BatchNorm2d(int(c1 /rate)),
|
| 180 |
+
nn.ReLU(inplace=True),
|
| 181 |
+
nn.Conv2d(c1//rate, c2, kernel_size=7, padding=3,groups=rate) if group else nn.Conv2d(int(c1 / rate), c2, kernel_size=7, padding=3),
|
| 182 |
+
nn.BatchNorm2d(c2)
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
def forward(self, x):
|
| 186 |
+
b, c, h, w = x.shape
|
| 187 |
+
x_permute = x.permute(0, 2, 3, 1).view(b, -1, c)
|
| 188 |
+
x_att_permute = self.channel_attention(x_permute).view(b, h, w, c)
|
| 189 |
+
x_channel_att = x_att_permute.permute(0, 3, 1, 2)
|
| 190 |
+
x = x * x_channel_att
|
| 191 |
+
|
| 192 |
+
x_spatial_att = self.spatial_attention(x).sigmoid()
|
| 193 |
+
x_spatial_att=channel_shuffle(x_spatial_att,4) #last shuffle
|
| 194 |
+
out = x * x_spatial_att
|
| 195 |
+
return out
|
| 196 |
+
|
| 197 |
+
def channel_shuffle(x, groups=2):
|
| 198 |
+
B, C, H, W = x.size()
|
| 199 |
+
out = x.view(B, groups, C // groups, H, W).permute(0, 2, 1, 3, 4).contiguous()
|
| 200 |
+
out=out.view(B, C, H, W)
|
| 201 |
+
return out
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
## SK ATTENTION
|
| 205 |
+
|
| 206 |
+
class SKAttention(nn.Module):
|
| 207 |
+
|
| 208 |
+
def __init__(self, channel=512,out_channel=512,kernels=[1,3,5,7],reduction=16,group=1,L=32):
|
| 209 |
+
super().__init__()
|
| 210 |
+
self.d=max(L,channel//reduction)
|
| 211 |
+
self.convs=nn.ModuleList([])
|
| 212 |
+
for k in kernels:
|
| 213 |
+
self.convs.append(
|
| 214 |
+
nn.Sequential(OrderedDict([
|
| 215 |
+
('conv',nn.Conv2d(channel,channel,kernel_size=k,padding=k//2,groups=group)),
|
| 216 |
+
('bn',nn.BatchNorm2d(channel)),
|
| 217 |
+
('relu',nn.ReLU())
|
| 218 |
+
]))
|
| 219 |
+
)
|
| 220 |
+
self.fc=nn.Linear(channel,self.d)
|
| 221 |
+
self.fcs=nn.ModuleList([])
|
| 222 |
+
for i in range(len(kernels)):
|
| 223 |
+
self.fcs.append(nn.Linear(self.d,channel))
|
| 224 |
+
self.softmax=nn.Softmax(dim=0)
|
| 225 |
+
|
| 226 |
+
def forward(self, x):
|
| 227 |
+
bs, c, _, _ = x.size()
|
| 228 |
+
conv_outs=[]
|
| 229 |
+
### split
|
| 230 |
+
for conv in self.convs:
|
| 231 |
+
conv_outs.append(conv(x))
|
| 232 |
+
feats=torch.stack(conv_outs,0)#k,bs,channel,h,w
|
| 233 |
+
|
| 234 |
+
### fuse
|
| 235 |
+
U=sum(conv_outs) #bs,c,h,w
|
| 236 |
+
|
| 237 |
+
### reduction channel
|
| 238 |
+
S=U.mean(-1).mean(-1) #bs,c
|
| 239 |
+
Z=self.fc(S) #bs,d
|
| 240 |
+
|
| 241 |
+
### calculate attention weight
|
| 242 |
+
weights=[]
|
| 243 |
+
for fc in self.fcs:
|
| 244 |
+
weight=fc(Z)
|
| 245 |
+
weights.append(weight.view(bs,c,1,1)) #bs,channel
|
| 246 |
+
attention_weughts=torch.stack(weights,0)#k,bs,channel,1,1
|
| 247 |
+
attention_weughts=self.softmax(attention_weughts)#k,bs,channel,1,1
|
| 248 |
+
|
| 249 |
+
### fuse
|
| 250 |
+
V=(attention_weughts*feats).sum(0)
|
| 251 |
+
return V
|
| 252 |
+
|
| 253 |
+
## SHUFFLE ATTENTION
|
| 254 |
+
from torch.nn.parameter import Parameter
|
| 255 |
+
from torch.nn import init
|
| 256 |
+
|
| 257 |
+
class sa_layer(nn.Module):
|
| 258 |
+
"""Constructs a Channel Spatial Group module.
|
| 259 |
+
|
| 260 |
+
Args:
|
| 261 |
+
k_size: Adaptive selection of kernel size
|
| 262 |
+
"""
|
| 263 |
+
|
| 264 |
+
def __init__(self, channel, groups=16):
|
| 265 |
+
super(sa_layer, self).__init__()
|
| 266 |
+
self.groups = groups
|
| 267 |
+
self.channel = channel
|
| 268 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
| 269 |
+
self.gn = nn.GroupNorm(self.channel // (2 * self.groups), self.channel // (2 * self.groups))
|
| 270 |
+
self.cweight = Parameter(torch.zeros(1, self.channel // (2 * self.groups), 1, 1))
|
| 271 |
+
self.cbias = Parameter(torch.ones(1, self.channel // (2 * self.groups), 1, 1))
|
| 272 |
+
self.sweight = Parameter(torch.zeros(1, self.channel // (2 * self.groups), 1, 1))
|
| 273 |
+
self.sbias = Parameter(torch.ones(1, self.channel // (2 * self.groups), 1, 1))
|
| 274 |
+
|
| 275 |
+
self.sigmoid = nn.Sigmoid()
|
| 276 |
+
self.gn = nn.GroupNorm(self.channel // (2 * self.groups), self.channel // (2 * self.groups))
|
| 277 |
+
|
| 278 |
+
@staticmethod
|
| 279 |
+
def channel_shuffle(x, groups):
|
| 280 |
+
b, c, h, w = x.shape
|
| 281 |
+
|
| 282 |
+
x = x.reshape(b, groups, -1, h, w)
|
| 283 |
+
x = x.permute(0, 2, 1, 3, 4)
|
| 284 |
+
|
| 285 |
+
# flatten
|
| 286 |
+
x = x.reshape(b, -1, h, w)
|
| 287 |
+
|
| 288 |
+
return x
|
| 289 |
+
|
| 290 |
+
def forward(self, x):
|
| 291 |
+
b, c, h, w = x.shape
|
| 292 |
+
# group into subfeatures
|
| 293 |
+
x = x.reshape(b * self.groups, -1, h, w)
|
| 294 |
+
# channel_split
|
| 295 |
+
x_0, x_1 = x.chunk(2, dim=1)
|
| 296 |
+
# channel attention
|
| 297 |
+
xn = self.avg_pool(x_0)
|
| 298 |
+
xn = self.cweight * xn + self.cbias
|
| 299 |
+
xn = x_0 * self.sigmoid(xn)
|
| 300 |
+
# spatial attention
|
| 301 |
+
xs = self.gn(x_1)
|
| 302 |
+
xs = self.sweight * xs + self.sbias
|
| 303 |
+
xs = x_1 * self.sigmoid(xs)
|
| 304 |
+
|
| 305 |
+
# concatenate along channel axis
|
| 306 |
+
out = torch.cat([xn, xs], dim=1)
|
| 307 |
+
out = out.reshape(b, -1, h, w)
|
| 308 |
+
|
| 309 |
+
out = self.channel_shuffle(out, 2)
|
| 310 |
+
return out
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
class SABottleneck(nn.Module):
|
| 314 |
+
# expansion = 4
|
| 315 |
+
def __init__(self, c1, c2, s=1, shortcut=True, k=(1, 3), e=0.5, g=1):
|
| 316 |
+
super(SABottleneck, self).__init__()
|
| 317 |
+
c_ = c2 // 2
|
| 318 |
+
self.shortcut = shortcut
|
| 319 |
+
|
| 320 |
+
self.conv1 = Conv(c1, c_, k[0], s)
|
| 321 |
+
self.conv2 = Conv(c_, c2, k[1], s, g=g)
|
| 322 |
+
self.add = shortcut and c1 == c2
|
| 323 |
+
self.sa = sa_layer(c2, g)
|
| 324 |
+
|
| 325 |
+
def forward(self, x):
|
| 326 |
+
x1 = self.conv2(self.conv1(x))
|
| 327 |
+
y = self.sa(x1)
|
| 328 |
+
out = y
|
| 329 |
+
|
| 330 |
+
return x + out if self.add else out
|
| 331 |
+
|
| 332 |
+
class RepNSAELAN4(RepNCSPELAN4):
|
| 333 |
+
def __init__(self, c1, c2, c3, c4, c5=1):
|
| 334 |
+
super().__init__(c1, c2, c3, c4, c5)
|
| 335 |
+
self.cv2 = nn.Sequential(RepNSA(c3//2, c4, c5), Conv(c4, c4, 3, 1))
|
| 336 |
+
self.cv3 = nn.Sequential(RepNSA(c4, c4, c5), Conv(c4, c4, 3, 1))
|
| 337 |
+
|
| 338 |
+
## ECA
|
| 339 |
+
class EfficientChannelAttention(nn.Module): # Efficient Channel Attention module
|
| 340 |
+
def __init__(self, c, b=1, gamma=2):
|
| 341 |
+
super(EfficientChannelAttention, self).__init__()
|
| 342 |
+
t = int(abs((math.log(c, 2) + b) / gamma))
|
| 343 |
+
k = t if t % 2 else t + 1
|
| 344 |
+
|
| 345 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
| 346 |
+
self.conv1 = nn.Conv1d(1, 1, kernel_size=k, padding=int(k/2), bias=False)
|
| 347 |
+
self.sigmoid = nn.Sigmoid()
|
| 348 |
+
|
| 349 |
+
def forward(self, x):
|
| 350 |
+
out = self.avg_pool(x)
|
| 351 |
+
out = self.conv1(out.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)
|
| 352 |
+
out = self.sigmoid(out)
|
| 353 |
+
return out * x
|
| 354 |
+
|
| 355 |
+
class ECABottleneck(nn.Module):
|
| 356 |
+
# Standard bottleneck
|
| 357 |
+
def __init__(self,
|
| 358 |
+
c1,
|
| 359 |
+
c2,
|
| 360 |
+
shortcut=True,
|
| 361 |
+
g=1,
|
| 362 |
+
e=0.5,
|
| 363 |
+
ratio=16,
|
| 364 |
+
k_size=3): # ch_in, ch_out, shortcut, groups, expansion
|
| 365 |
+
super().__init__()
|
| 366 |
+
c_ = int(c2 * e) # hidden channels
|
| 367 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
| 368 |
+
self.cv2 = Conv(c_, c2, 3, 1, g=g)
|
| 369 |
+
self.add = shortcut and c1 == c2
|
| 370 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
| 371 |
+
self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False)
|
| 372 |
+
self.sigmoid = nn.Sigmoid()
|
| 373 |
+
|
| 374 |
+
def forward(self, x):
|
| 375 |
+
x1 = self.cv2(self.cv1(x))
|
| 376 |
+
y = self.avg_pool(x1)
|
| 377 |
+
y = self.conv(y.squeeze(-1).transpose(-1, -2)).transpose(-1, -2).unsqueeze(-1)
|
| 378 |
+
y = self.sigmoid(y)
|
| 379 |
+
out = x1 * y.expand_as(x1)
|
| 380 |
+
|
| 381 |
+
return x + out if self.add else out
|
| 382 |
+
|
| 383 |
+
class RepNECALAN4(RepNCSPELAN4):
|
| 384 |
+
def __init__(self, c1, c2, c3, c4, c5=1):
|
| 385 |
+
super().__init__(c1, c2, c3, c4, c5)
|
| 386 |
+
self.cv2 = nn.Sequential(RepNECA(c3//2, c4, c5), Conv(c4, c4, 3, 1))
|
| 387 |
+
self.cv3 = nn.Sequential(RepNECA(c4, c4, c5), Conv(c4, c4, 3, 1))
|
| 388 |
+
|
| 389 |
+
## LSK Attention
|
| 390 |
+
class LSKblock(nn.Module):
|
| 391 |
+
def __init__(self, c1):
|
| 392 |
+
super().__init__()
|
| 393 |
+
self.conv0 = nn.Conv2d(c1, c1, 5, padding=2, groups=c1)
|
| 394 |
+
self.conv_spatial = nn.Conv2d(c1, c1, 7, stride=1, padding=9, groups=c1, dilation=3)
|
| 395 |
+
self.conv1 = nn.Conv2d(c1, c1//2, 1)
|
| 396 |
+
self.conv2 = nn.Conv2d(c1, c1//2, 1)
|
| 397 |
+
# self.cv2 = nn.Sequential(RepNCSP(c3 // 2, c4, c5), Conv(c4, c4, 3, 1))
|
| 398 |
+
self.conv_squeeze = nn.Conv2d(2, 2, 7, padding=3)
|
| 399 |
+
self.conv = nn.Conv2d(c1//2, c1, 1)
|
| 400 |
+
|
| 401 |
+
def forward(self, x):
|
| 402 |
+
attn1 = self.conv0(x)
|
| 403 |
+
attn2 = self.conv_spatial(attn1)
|
| 404 |
+
|
| 405 |
+
attn1 = self.conv1(attn1)
|
| 406 |
+
attn2 = self.conv2(attn2)
|
| 407 |
+
|
| 408 |
+
attn = torch.cat([attn1, attn2], dim=1)
|
| 409 |
+
avg_attn = torch.mean(attn, dim=1, keepdim=True)
|
| 410 |
+
max_attn, _ = torch.max(attn, dim=1, keepdim=True)
|
| 411 |
+
agg = torch.cat([avg_attn, max_attn], dim=1)
|
| 412 |
+
sig = self.conv_squeeze(agg).sigmoid()
|
| 413 |
+
attn = attn1 * sig[:,0,:,:].unsqueeze(1) + attn2 * sig[:,1,:,:].unsqueeze(1)
|
| 414 |
+
attn = self.conv(attn)
|
| 415 |
+
return x * attn
|
| 416 |
+
|
| 417 |
+
|
| 418 |
+
|
| 419 |
+
# class LSKAttention(nn.Module):
|
| 420 |
+
# def __init__(self, c1, c2, shortcut = True):
|
| 421 |
+
# super().__init__()
|
| 422 |
+
|
| 423 |
+
# self.conv1 = Conv(c1, c1, 1)
|
| 424 |
+
# self.spatial_gating_unit = LSKblock(c1)
|
| 425 |
+
# self.conv2 = Conv(c1, c2, 1)
|
| 426 |
+
# self.add = shortcut and c1 == c2
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
# def forward(self, x):
|
| 430 |
+
# x1 = self.conv1(x)
|
| 431 |
+
# x = self.spatial_gating_unit(x)
|
| 432 |
+
# x = self.proj_2(x)
|
| 433 |
+
# x = x + shorcut
|
| 434 |
+
# return x
|
| 435 |
+
|
| 436 |
+
class LSKBottleneck(nn.Module):
|
| 437 |
+
# expansion = 4
|
| 438 |
+
def __init__(self, c1, c2, s=1, shortcut=True, g=1):
|
| 439 |
+
super(LSKBottleneck, self).__init__()
|
| 440 |
+
c_ = c2 // 2
|
| 441 |
+
self.shortcut = shortcut
|
| 442 |
+
self.add = shortcut and c1 == c2
|
| 443 |
+
self.conv1 = Conv(c1, c_, 1)
|
| 444 |
+
self.conv2 = Conv(c_, c2, 3, s, g= g)
|
| 445 |
+
self.lsk = LSKblock(c2)
|
| 446 |
+
|
| 447 |
+
def forward(self, x):
|
| 448 |
+
x1 = self.conv2(self.conv1(x))
|
| 449 |
+
y = self.lsk(x1)
|
| 450 |
+
out = y
|
| 451 |
+
|
| 452 |
+
return x + out if self.add else out
|
| 453 |
+
|
| 454 |
+
|
| 455 |
+
class RepNLSKELAN4(RepNCSPELAN4):
|
| 456 |
+
def __init__(self, c1, c2, c3, c4, c5=1):
|
| 457 |
+
super().__init__(c1, c2, c3, c4, c5)
|
| 458 |
+
self.cv2 = nn.Sequential(RepNLSK(c3//2, c4, c5), Conv(c4, c4, 3, 1))
|
| 459 |
+
self.cv3 = nn.Sequential(RepNLSK(c4, c4, c5), Conv(c4, c4, 3, 1))
|
| 460 |
+
|
| 461 |
+
## SE Attention
|
| 462 |
+
class SEBottleneck(nn.Module):
|
| 463 |
+
# Standard bottleneck
|
| 464 |
+
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, ratio=16): # ch_in, ch_out, shortcut, groups, expansion
|
| 465 |
+
super().__init__()
|
| 466 |
+
c_ = int(c2 * e) # hidden channels
|
| 467 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
| 468 |
+
self.cv2 = Conv(c_, c2, 3, 1, g=g)
|
| 469 |
+
self.add = shortcut and c1 == c2
|
| 470 |
+
# self.se=SE(c1,c2,ratio)
|
| 471 |
+
self.avgpool = nn.AdaptiveAvgPool2d(1)
|
| 472 |
+
self.l1 = nn.Linear(c1, c1 // ratio, bias=False)
|
| 473 |
+
self.relu = nn.ReLU(inplace=True)
|
| 474 |
+
self.l2 = nn.Linear(c1 // ratio, c1, bias=False)
|
| 475 |
+
self.sig = nn.Sigmoid()
|
| 476 |
+
|
| 477 |
+
def forward(self, x):
|
| 478 |
+
x1 = self.cv2(self.cv1(x))
|
| 479 |
+
b, c, _, _ = x.size()
|
| 480 |
+
y = self.avgpool(x1).view(b, c)
|
| 481 |
+
y = self.l1(y)
|
| 482 |
+
y = self.relu(y)
|
| 483 |
+
y = self.l2(y)
|
| 484 |
+
y = self.sig(y)
|
| 485 |
+
y = y.view(b, c, 1, 1)
|
| 486 |
+
out = x1 * y.expand_as(x1)
|
| 487 |
+
|
| 488 |
+
# out=self.se(x1)*x1
|
| 489 |
+
return x + out if self.add else out
|
| 490 |
+
|
| 491 |
+
## SOCA Attention
|
| 492 |
+
from torch.autograd import Function
|
| 493 |
+
|
| 494 |
+
class Covpool(Function):
|
| 495 |
+
@staticmethod
|
| 496 |
+
def forward(ctx, input):
|
| 497 |
+
x = input
|
| 498 |
+
batchSize = x.data.shape[0]
|
| 499 |
+
dim = x.data.shape[1]
|
| 500 |
+
h = x.data.shape[2]
|
| 501 |
+
w = x.data.shape[3]
|
| 502 |
+
M = h*w
|
| 503 |
+
x = x.reshape(batchSize,dim,M)
|
| 504 |
+
I_hat = (-1./M/M)*torch.ones(M,M,device = x.device) + (1./M)*torch.eye(M,M,device = x.device)
|
| 505 |
+
I_hat = I_hat.view(1,M,M).repeat(batchSize,1,1).type(x.dtype)
|
| 506 |
+
y = x.bmm(I_hat).bmm(x.transpose(1,2))
|
| 507 |
+
ctx.save_for_backward(input,I_hat)
|
| 508 |
+
return y
|
| 509 |
+
@staticmethod
|
| 510 |
+
def backward(ctx, grad_output):
|
| 511 |
+
input,I_hat = ctx.saved_tensors
|
| 512 |
+
x = input
|
| 513 |
+
batchSize = x.data.shape[0]
|
| 514 |
+
dim = x.data.shape[1]
|
| 515 |
+
h = x.data.shape[2]
|
| 516 |
+
w = x.data.shape[3]
|
| 517 |
+
M = h*w
|
| 518 |
+
x = x.reshape(batchSize,dim,M)
|
| 519 |
+
grad_input = grad_output + grad_output.transpose(1,2)
|
| 520 |
+
grad_input = grad_input.bmm(x).bmm(I_hat)
|
| 521 |
+
grad_input = grad_input.reshape(batchSize,dim,h,w)
|
| 522 |
+
return grad_input
|
| 523 |
+
|
| 524 |
+
class Sqrtm(Function):
|
| 525 |
+
@staticmethod
|
| 526 |
+
def forward(ctx, input, iterN):
|
| 527 |
+
x = input
|
| 528 |
+
batchSize = x.data.shape[0]
|
| 529 |
+
dim = x.data.shape[1]
|
| 530 |
+
dtype = x.dtype
|
| 531 |
+
I3 = 3.0*torch.eye(dim,dim,device = x.device).view(1, dim, dim).repeat(batchSize,1,1).type(dtype)
|
| 532 |
+
normA = (1.0/3.0)*x.mul(I3).sum(dim=1).sum(dim=1)
|
| 533 |
+
A = x.div(normA.view(batchSize,1,1).expand_as(x))
|
| 534 |
+
Y = torch.zeros(batchSize, iterN, dim, dim, requires_grad = False, device = x.device)
|
| 535 |
+
Z = torch.eye(dim,dim,device = x.device).view(1,dim,dim).repeat(batchSize,iterN,1,1)
|
| 536 |
+
if iterN < 2:
|
| 537 |
+
ZY = 0.5*(I3 - A)
|
| 538 |
+
Y[:,0,:,:] = A.bmm(ZY)
|
| 539 |
+
else:
|
| 540 |
+
ZY = 0.5*(I3 - A)
|
| 541 |
+
Y[:,0,:,:] = A.bmm(ZY)
|
| 542 |
+
Z[:,0,:,:] = ZY
|
| 543 |
+
for i in range(1, iterN-1):
|
| 544 |
+
ZY = 0.5*(I3 - Z[:,i-1,:,:].bmm(Y[:,i-1,:,:]))
|
| 545 |
+
Y[:,i,:,:] = Y[:,i-1,:,:].bmm(ZY)
|
| 546 |
+
Z[:,i,:,:] = ZY.bmm(Z[:,i-1,:,:])
|
| 547 |
+
ZY = 0.5*Y[:,iterN-2,:,:].bmm(I3 - Z[:,iterN-2,:,:].bmm(Y[:,iterN-2,:,:]))
|
| 548 |
+
y = ZY*torch.sqrt(normA).view(batchSize, 1, 1).expand_as(x)
|
| 549 |
+
ctx.save_for_backward(input, A, ZY, normA, Y, Z)
|
| 550 |
+
ctx.iterN = iterN
|
| 551 |
+
return y
|
| 552 |
+
@staticmethod
|
| 553 |
+
def backward(ctx, grad_output):
|
| 554 |
+
input, A, ZY, normA, Y, Z = ctx.saved_tensors
|
| 555 |
+
iterN = ctx.iterN
|
| 556 |
+
x = input
|
| 557 |
+
batchSize = x.data.shape[0]
|
| 558 |
+
dim = x.data.shape[1]
|
| 559 |
+
dtype = x.dtype
|
| 560 |
+
der_postCom = grad_output*torch.sqrt(normA).view(batchSize, 1, 1).expand_as(x)
|
| 561 |
+
der_postComAux = (grad_output*ZY).sum(dim=1).sum(dim=1).div(2*torch.sqrt(normA))
|
| 562 |
+
I3 = 3.0*torch.eye(dim,dim,device = x.device).view(1, dim, dim).repeat(batchSize,1,1).type(dtype)
|
| 563 |
+
if iterN < 2:
|
| 564 |
+
der_NSiter = 0.5*(der_postCom.bmm(I3 - A) - A.bmm(der_sacleTrace))
|
| 565 |
+
else:
|
| 566 |
+
dldY = 0.5*(der_postCom.bmm(I3 - Y[:,iterN-2,:,:].bmm(Z[:,iterN-2,:,:])) -
|
| 567 |
+
Z[:,iterN-2,:,:].bmm(Y[:,iterN-2,:,:]).bmm(der_postCom))
|
| 568 |
+
dldZ = -0.5*Y[:,iterN-2,:,:].bmm(der_postCom).bmm(Y[:,iterN-2,:,:])
|
| 569 |
+
for i in range(iterN-3, -1, -1):
|
| 570 |
+
YZ = I3 - Y[:,i,:,:].bmm(Z[:,i,:,:])
|
| 571 |
+
ZY = Z[:,i,:,:].bmm(Y[:,i,:,:])
|
| 572 |
+
dldY_ = 0.5*(dldY.bmm(YZ) -
|
| 573 |
+
Z[:,i,:,:].bmm(dldZ).bmm(Z[:,i,:,:]) -
|
| 574 |
+
ZY.bmm(dldY))
|
| 575 |
+
dldZ_ = 0.5*(YZ.bmm(dldZ) -
|
| 576 |
+
Y[:,i,:,:].bmm(dldY).bmm(Y[:,i,:,:]) -
|
| 577 |
+
dldZ.bmm(ZY))
|
| 578 |
+
dldY = dldY_
|
| 579 |
+
dldZ = dldZ_
|
| 580 |
+
der_NSiter = 0.5*(dldY.bmm(I3 - A) - dldZ - A.bmm(dldY))
|
| 581 |
+
grad_input = der_NSiter.div(normA.view(batchSize,1,1).expand_as(x))
|
| 582 |
+
grad_aux = der_NSiter.mul(x).sum(dim=1).sum(dim=1)
|
| 583 |
+
for i in range(batchSize):
|
| 584 |
+
grad_input[i,:,:] += (der_postComAux[i] \
|
| 585 |
+
- grad_aux[i] / (normA[i] * normA[i])) \
|
| 586 |
+
*torch.ones(dim,device = x.device).diag()
|
| 587 |
+
return grad_input, None
|
| 588 |
+
|
| 589 |
+
def CovpoolLayer(var):
|
| 590 |
+
return Covpool.apply(var)
|
| 591 |
+
|
| 592 |
+
def SqrtmLayer(var, iterN):
|
| 593 |
+
return Sqrtm.apply(var, iterN)
|
| 594 |
+
|
| 595 |
+
class SOCA(nn.Module):
|
| 596 |
+
# Second-order Channel Attention
|
| 597 |
+
def __init__(self, c1, c2, reduction=8):
|
| 598 |
+
super(SOCA, self).__init__()
|
| 599 |
+
self.max_pool = nn.MaxPool2d(kernel_size=2)
|
| 600 |
+
|
| 601 |
+
self.conv_du = nn.Sequential(
|
| 602 |
+
nn.Conv2d(c1, c1 // reduction, 1, padding=0, bias=True),
|
| 603 |
+
nn.SiLU(), # SiLU activation
|
| 604 |
+
nn.Conv2d(c1 // reduction, c1, 1, padding=0, bias=True),
|
| 605 |
+
nn.Sigmoid()
|
| 606 |
+
)
|
| 607 |
+
|
| 608 |
+
def forward(self, x):
|
| 609 |
+
batch_size, C, h, w = x.shape # x: NxCxHxW
|
| 610 |
+
N = int(h * w)
|
| 611 |
+
min_h = min(h, w)
|
| 612 |
+
h1 = 1000
|
| 613 |
+
w1 = 1000
|
| 614 |
+
if h < h1 and w < w1:
|
| 615 |
+
x_sub = x
|
| 616 |
+
elif h < h1 and w > w1:
|
| 617 |
+
W = (w - w1) // 2
|
| 618 |
+
x_sub = x[:, :, :, W:(W + w1)]
|
| 619 |
+
elif w < w1 and h > h1:
|
| 620 |
+
H = (h - h1) // 2
|
| 621 |
+
x_sub = x[:, :, H:H + h1, :]
|
| 622 |
+
else:
|
| 623 |
+
H = (h - h1) // 2
|
| 624 |
+
W = (w - w1) // 2
|
| 625 |
+
x_sub = x[:, :, H:(H + h1), W:(W + w1)]
|
| 626 |
+
cov_mat = CovpoolLayer(x_sub) # Global Covariance pooling layer
|
| 627 |
+
cov_mat_sqrt = SqrtmLayer(cov_mat, 5) # Matrix square root layer (including pre-norm, Newton-Schulz iter. and post-com. with 5 iterations)
|
| 628 |
+
cov_mat_sum = torch.mean(cov_mat_sqrt, 1)
|
| 629 |
+
cov_mat_sum = cov_mat_sum.view(batch_size, C, 1, 1)
|
| 630 |
+
y_cov = self.conv_du(cov_mat_sum)
|
| 631 |
+
return y_cov * x
|
models/common.py
ADDED
|
@@ -0,0 +1,1360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import ast
|
| 2 |
+
import contextlib
|
| 3 |
+
import json
|
| 4 |
+
import math
|
| 5 |
+
import platform
|
| 6 |
+
import warnings
|
| 7 |
+
import zipfile
|
| 8 |
+
from collections import OrderedDict, namedtuple
|
| 9 |
+
from copy import copy
|
| 10 |
+
from pathlib import Path
|
| 11 |
+
from urllib.parse import urlparse
|
| 12 |
+
|
| 13 |
+
from typing import Optional
|
| 14 |
+
|
| 15 |
+
import cv2
|
| 16 |
+
import numpy as np
|
| 17 |
+
import pandas as pd
|
| 18 |
+
import requests
|
| 19 |
+
import torch
|
| 20 |
+
import torch.nn as nn
|
| 21 |
+
from IPython.display import display
|
| 22 |
+
from PIL import Image
|
| 23 |
+
from torch.cuda import amp
|
| 24 |
+
|
| 25 |
+
from utils import TryExcept
|
| 26 |
+
from utils.dataloaders import exif_transpose, letterbox
|
| 27 |
+
from utils.general import (LOGGER, ROOT, Profile, check_requirements, check_suffix, check_version, colorstr,
|
| 28 |
+
increment_path, is_notebook, make_divisible, non_max_suppression, scale_boxes,
|
| 29 |
+
xywh2xyxy, xyxy2xywh, yaml_load)
|
| 30 |
+
from utils.plots import Annotator, colors, save_one_box
|
| 31 |
+
from utils.torch_utils import copy_attr, smart_inference_mode
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def autopad(k, p=None, d=1): # kernel, padding, dilation
|
| 35 |
+
# Pad to 'same' shape outputs
|
| 36 |
+
if d > 1:
|
| 37 |
+
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
|
| 38 |
+
if p is None:
|
| 39 |
+
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
|
| 40 |
+
return p
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
class Conv(nn.Module):
|
| 44 |
+
# Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)
|
| 45 |
+
default_act = nn.SiLU() # default activation
|
| 46 |
+
|
| 47 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
|
| 48 |
+
super().__init__()
|
| 49 |
+
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
|
| 50 |
+
self.bn = nn.BatchNorm2d(c2)
|
| 51 |
+
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
|
| 52 |
+
|
| 53 |
+
def forward(self, x):
|
| 54 |
+
return self.act(self.bn(self.conv(x)))
|
| 55 |
+
|
| 56 |
+
def forward_fuse(self, x):
|
| 57 |
+
return self.act(self.conv(x))
|
| 58 |
+
|
| 59 |
+
class Convb(nn.Module):
|
| 60 |
+
# Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)
|
| 61 |
+
default_act = nn.SiLU() # default activation
|
| 62 |
+
|
| 63 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
|
| 64 |
+
super().__init__()
|
| 65 |
+
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=True)
|
| 66 |
+
self.bn = nn.BatchNorm2d(c2)
|
| 67 |
+
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
|
| 68 |
+
|
| 69 |
+
def forward(self, x):
|
| 70 |
+
return self.act(self.bn(self.conv(x)))
|
| 71 |
+
|
| 72 |
+
def forward_fuse(self, x):
|
| 73 |
+
return self.act(self.conv(x))
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
class AConv(nn.Module):
|
| 77 |
+
def __init__(self, c1, c2): # ch_in, ch_out, shortcut, kernels, groups, expand
|
| 78 |
+
super().__init__()
|
| 79 |
+
self.cv1 = Conv(c1, c2, 3, 2, 1)
|
| 80 |
+
|
| 81 |
+
def forward(self, x):
|
| 82 |
+
x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
|
| 83 |
+
return self.cv1(x)
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
class ADown(nn.Module):
|
| 87 |
+
def __init__(self, c1, c2): # ch_in, ch_out, shortcut, kernels, groups, expand
|
| 88 |
+
super().__init__()
|
| 89 |
+
self.c = c2 // 2
|
| 90 |
+
self.cv1 = Conv(c1 // 2, self.c, 3, 2, 1)
|
| 91 |
+
self.cv2 = Conv(c1 // 2, self.c, 1, 1, 0)
|
| 92 |
+
|
| 93 |
+
def forward(self, x):
|
| 94 |
+
x = torch.nn.functional.avg_pool2d(x, 2, 1, 0, False, True)
|
| 95 |
+
x1,x2 = x.chunk(2, 1)
|
| 96 |
+
x1 = self.cv1(x1)
|
| 97 |
+
x2 = torch.nn.functional.max_pool2d(x2, 3, 2, 1)
|
| 98 |
+
x2 = self.cv2(x2)
|
| 99 |
+
return torch.cat((x1, x2), 1)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
class RepConvN(nn.Module):
|
| 103 |
+
"""RepConv is a basic rep-style block, including training and deploy status
|
| 104 |
+
This code is based on https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py
|
| 105 |
+
"""
|
| 106 |
+
default_act = nn.SiLU() # default activation
|
| 107 |
+
|
| 108 |
+
def __init__(self, c1, c2, k=3, s=1, p=1, g=1, d=1, act=True, bn=False, deploy=False):
|
| 109 |
+
super().__init__()
|
| 110 |
+
assert k == 3 and p == 1
|
| 111 |
+
self.g = g
|
| 112 |
+
self.c1 = c1
|
| 113 |
+
self.c2 = c2
|
| 114 |
+
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
|
| 115 |
+
|
| 116 |
+
self.bn = None
|
| 117 |
+
self.conv1 = Conv(c1, c2, k, s, p=p, g=g, act=False)
|
| 118 |
+
self.conv2 = Conv(c1, c2, 1, s, p=(p - k // 2), g=g, act=False)
|
| 119 |
+
|
| 120 |
+
def forward_fuse(self, x):
|
| 121 |
+
"""Forward process"""
|
| 122 |
+
return self.act(self.conv(x))
|
| 123 |
+
|
| 124 |
+
def forward(self, x):
|
| 125 |
+
"""Forward process"""
|
| 126 |
+
id_out = 0 if self.bn is None else self.bn(x)
|
| 127 |
+
return self.act(self.conv1(x) + self.conv2(x) + id_out)
|
| 128 |
+
|
| 129 |
+
def get_equivalent_kernel_bias(self):
|
| 130 |
+
kernel3x3, bias3x3 = self._fuse_bn_tensor(self.conv1)
|
| 131 |
+
kernel1x1, bias1x1 = self._fuse_bn_tensor(self.conv2)
|
| 132 |
+
kernelid, biasid = self._fuse_bn_tensor(self.bn)
|
| 133 |
+
return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
|
| 134 |
+
|
| 135 |
+
def _avg_to_3x3_tensor(self, avgp):
|
| 136 |
+
channels = self.c1
|
| 137 |
+
groups = self.g
|
| 138 |
+
kernel_size = avgp.kernel_size
|
| 139 |
+
input_dim = channels // groups
|
| 140 |
+
k = torch.zeros((channels, input_dim, kernel_size, kernel_size))
|
| 141 |
+
k[np.arange(channels), np.tile(np.arange(input_dim), groups), :, :] = 1.0 / kernel_size ** 2
|
| 142 |
+
return k
|
| 143 |
+
|
| 144 |
+
def _pad_1x1_to_3x3_tensor(self, kernel1x1):
|
| 145 |
+
if kernel1x1 is None:
|
| 146 |
+
return 0
|
| 147 |
+
else:
|
| 148 |
+
return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])
|
| 149 |
+
|
| 150 |
+
def _fuse_bn_tensor(self, branch):
|
| 151 |
+
if branch is None:
|
| 152 |
+
return 0, 0
|
| 153 |
+
if isinstance(branch, Conv):
|
| 154 |
+
kernel = branch.conv.weight
|
| 155 |
+
running_mean = branch.bn.running_mean
|
| 156 |
+
running_var = branch.bn.running_var
|
| 157 |
+
gamma = branch.bn.weight
|
| 158 |
+
beta = branch.bn.bias
|
| 159 |
+
eps = branch.bn.eps
|
| 160 |
+
elif isinstance(branch, nn.BatchNorm2d):
|
| 161 |
+
if not hasattr(self, 'id_tensor'):
|
| 162 |
+
input_dim = self.c1 // self.g
|
| 163 |
+
kernel_value = np.zeros((self.c1, input_dim, 3, 3), dtype=np.float32)
|
| 164 |
+
for i in range(self.c1):
|
| 165 |
+
kernel_value[i, i % input_dim, 1, 1] = 1
|
| 166 |
+
self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
|
| 167 |
+
kernel = self.id_tensor
|
| 168 |
+
running_mean = branch.running_mean
|
| 169 |
+
running_var = branch.running_var
|
| 170 |
+
gamma = branch.weight
|
| 171 |
+
beta = branch.bias
|
| 172 |
+
eps = branch.eps
|
| 173 |
+
std = (running_var + eps).sqrt()
|
| 174 |
+
t = (gamma / std).reshape(-1, 1, 1, 1)
|
| 175 |
+
return kernel * t, beta - running_mean * gamma / std
|
| 176 |
+
|
| 177 |
+
def fuse_convs(self):
|
| 178 |
+
if hasattr(self, 'conv'):
|
| 179 |
+
return
|
| 180 |
+
kernel, bias = self.get_equivalent_kernel_bias()
|
| 181 |
+
self.conv = nn.Conv2d(in_channels=self.conv1.conv.in_channels,
|
| 182 |
+
out_channels=self.conv1.conv.out_channels,
|
| 183 |
+
kernel_size=self.conv1.conv.kernel_size,
|
| 184 |
+
stride=self.conv1.conv.stride,
|
| 185 |
+
padding=self.conv1.conv.padding,
|
| 186 |
+
dilation=self.conv1.conv.dilation,
|
| 187 |
+
groups=self.conv1.conv.groups,
|
| 188 |
+
bias=True).requires_grad_(False)
|
| 189 |
+
self.conv.weight.data = kernel
|
| 190 |
+
self.conv.bias.data = bias
|
| 191 |
+
for para in self.parameters():
|
| 192 |
+
para.detach_()
|
| 193 |
+
self.__delattr__('conv1')
|
| 194 |
+
self.__delattr__('conv2')
|
| 195 |
+
if hasattr(self, 'nm'):
|
| 196 |
+
self.__delattr__('nm')
|
| 197 |
+
if hasattr(self, 'bn'):
|
| 198 |
+
self.__delattr__('bn')
|
| 199 |
+
if hasattr(self, 'id_tensor'):
|
| 200 |
+
self.__delattr__('id_tensor')
|
| 201 |
+
|
| 202 |
+
|
| 203 |
+
class SP(nn.Module):
|
| 204 |
+
def __init__(self, k=3, s=1):
|
| 205 |
+
super(SP, self).__init__()
|
| 206 |
+
self.m = nn.MaxPool2d(kernel_size=k, stride=s, padding=k // 2)
|
| 207 |
+
|
| 208 |
+
def forward(self, x):
|
| 209 |
+
return self.m(x)
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
class MP(nn.Module):
|
| 213 |
+
# Max pooling
|
| 214 |
+
def __init__(self, k=2):
|
| 215 |
+
super(MP, self).__init__()
|
| 216 |
+
self.m = nn.MaxPool2d(kernel_size=k, stride=k)
|
| 217 |
+
|
| 218 |
+
def forward(self, x):
|
| 219 |
+
return self.m(x)
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
class ConvTranspose(nn.Module):
|
| 223 |
+
# Convolution transpose 2d layer
|
| 224 |
+
default_act = nn.SiLU() # default activation
|
| 225 |
+
|
| 226 |
+
def __init__(self, c1, c2, k=2, s=2, p=0, bn=True, act=True):
|
| 227 |
+
super().__init__()
|
| 228 |
+
self.conv_transpose = nn.ConvTranspose2d(c1, c2, k, s, p, bias=not bn)
|
| 229 |
+
self.bn = nn.BatchNorm2d(c2) if bn else nn.Identity()
|
| 230 |
+
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
|
| 231 |
+
|
| 232 |
+
def forward(self, x):
|
| 233 |
+
return self.act(self.bn(self.conv_transpose(x)))
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
class DWConv(Conv):
|
| 237 |
+
# Depth-wise convolution
|
| 238 |
+
def __init__(self, c1, c2, k=1, s=1, d=1, act=True): # ch_in, ch_out, kernel, stride, dilation, activation
|
| 239 |
+
super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)
|
| 240 |
+
|
| 241 |
+
|
| 242 |
+
class DWConvTranspose2d(nn.ConvTranspose2d):
|
| 243 |
+
# Depth-wise transpose convolution
|
| 244 |
+
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0): # ch_in, ch_out, kernel, stride, padding, padding_out
|
| 245 |
+
super().__init__(c1, c2, k, s, p1, p2, groups=math.gcd(c1, c2))
|
| 246 |
+
|
| 247 |
+
class DWConvTranspose(nn.Module):
|
| 248 |
+
# Convolution transpose 2d layer
|
| 249 |
+
default_act = nn.SiLU() # default activation
|
| 250 |
+
|
| 251 |
+
def __init__(self, c1, c2, k=2, s=2, p=0, bn=True, act=True):
|
| 252 |
+
super().__init__()
|
| 253 |
+
self.dwconv_transpose = DWConvTranspose2d(c1, c2, k, s, p)
|
| 254 |
+
self.bn = nn.BatchNorm2d(c2) if bn else nn.Identity()
|
| 255 |
+
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
|
| 256 |
+
|
| 257 |
+
def forward(self, x):
|
| 258 |
+
return self.act(self.bn(self.dwconv_transpose(x)))
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
class DFL(nn.Module):
|
| 262 |
+
# DFL module
|
| 263 |
+
def __init__(self, c1=17):
|
| 264 |
+
super().__init__()
|
| 265 |
+
self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)
|
| 266 |
+
self.conv.weight.data[:] = nn.Parameter(torch.arange(c1, dtype=torch.float).view(1, c1, 1, 1)) # / 120.0
|
| 267 |
+
self.c1 = c1
|
| 268 |
+
# self.bn = nn.BatchNorm2d(4)
|
| 269 |
+
|
| 270 |
+
def forward(self, x):
|
| 271 |
+
b, c, a = x.shape # batch, channels, anchors
|
| 272 |
+
return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)
|
| 273 |
+
# return self.conv(x.view(b, self.c1, 4, a).softmax(1)).view(b, 4, a)
|
| 274 |
+
|
| 275 |
+
|
| 276 |
+
class BottleneckBase(nn.Module):
|
| 277 |
+
# Standard bottleneck
|
| 278 |
+
def __init__(self, c1, c2, shortcut=True, g=1, k=(1, 3), e=0.5): # ch_in, ch_out, shortcut, kernels, groups, expand
|
| 279 |
+
super().__init__()
|
| 280 |
+
c_ = int(c2 * e) # hidden channels
|
| 281 |
+
self.cv1 = Conv(c1, c_, k[0], 1)
|
| 282 |
+
self.cv2 = Conv(c_, c2, k[1], 1, g=g)
|
| 283 |
+
self.add = shortcut and c1 == c2
|
| 284 |
+
|
| 285 |
+
def forward(self, x):
|
| 286 |
+
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
class RBottleneckBase(nn.Module):
|
| 290 |
+
# Standard bottleneck
|
| 291 |
+
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 1), e=0.5): # ch_in, ch_out, shortcut, kernels, groups, expand
|
| 292 |
+
super().__init__()
|
| 293 |
+
c_ = int(c2 * e) # hidden channels
|
| 294 |
+
self.cv1 = Conv(c1, c_, k[0], 1)
|
| 295 |
+
self.cv2 = Conv(c_, c2, k[1], 1, g=g)
|
| 296 |
+
self.add = shortcut and c1 == c2
|
| 297 |
+
|
| 298 |
+
def forward(self, x):
|
| 299 |
+
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
| 300 |
+
|
| 301 |
+
|
| 302 |
+
class RepNRBottleneckBase(nn.Module):
|
| 303 |
+
# Standard bottleneck
|
| 304 |
+
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 1), e=0.5): # ch_in, ch_out, shortcut, kernels, groups, expand
|
| 305 |
+
super().__init__()
|
| 306 |
+
c_ = int(c2 * e) # hidden channels
|
| 307 |
+
self.cv1 = RepConvN(c1, c_, k[0], 1)
|
| 308 |
+
self.cv2 = Conv(c_, c2, k[1], 1, g=g)
|
| 309 |
+
self.add = shortcut and c1 == c2
|
| 310 |
+
|
| 311 |
+
def forward(self, x):
|
| 312 |
+
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
| 313 |
+
|
| 314 |
+
|
| 315 |
+
class Bottleneck(nn.Module):
|
| 316 |
+
# Standard bottleneck
|
| 317 |
+
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5): # ch_in, ch_out, shortcut, kernels, groups, expand
|
| 318 |
+
super().__init__()
|
| 319 |
+
c_ = int(c2 * e) # hidden channels
|
| 320 |
+
self.cv1 = Conv(c1, c_, k[0], 1)
|
| 321 |
+
self.cv2 = Conv(c_, c2, k[1], 1, g=g)
|
| 322 |
+
self.add = shortcut and c1 == c2
|
| 323 |
+
|
| 324 |
+
def forward(self, x):
|
| 325 |
+
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
| 326 |
+
|
| 327 |
+
|
| 328 |
+
class RepNBottleneck(nn.Module):
|
| 329 |
+
# Standard bottleneck
|
| 330 |
+
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5): # ch_in, ch_out, shortcut, kernels, groups, expand
|
| 331 |
+
super().__init__()
|
| 332 |
+
c_ = int(c2 * e) # hidden channels
|
| 333 |
+
self.cv1 = RepConvN(c1, c_, k[0], 1)
|
| 334 |
+
self.cv2 = Conv(c_, c2, k[1], 1, g=g)
|
| 335 |
+
self.add = shortcut and c1 == c2
|
| 336 |
+
|
| 337 |
+
def forward(self, x):
|
| 338 |
+
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
class Res(nn.Module):
|
| 342 |
+
# ResNet bottleneck
|
| 343 |
+
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
|
| 344 |
+
super(Res, self).__init__()
|
| 345 |
+
c_ = int(c2 * e) # hidden channels
|
| 346 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
| 347 |
+
self.cv2 = Conv(c_, c_, 3, 1, g=g)
|
| 348 |
+
self.cv3 = Conv(c_, c2, 1, 1)
|
| 349 |
+
self.add = shortcut and c1 == c2
|
| 350 |
+
|
| 351 |
+
def forward(self, x):
|
| 352 |
+
return x + self.cv3(self.cv2(self.cv1(x))) if self.add else self.cv3(self.cv2(self.cv1(x)))
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
class RepNRes(nn.Module):
|
| 356 |
+
# ResNet bottleneck
|
| 357 |
+
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5): # ch_in, ch_out, shortcut, groups, expansion
|
| 358 |
+
super(RepNRes, self).__init__()
|
| 359 |
+
c_ = int(c2 * e) # hidden channels
|
| 360 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
| 361 |
+
self.cv2 = RepConvN(c_, c_, 3, 1, g=g)
|
| 362 |
+
self.cv3 = Conv(c_, c2, 1, 1)
|
| 363 |
+
self.add = shortcut and c1 == c2
|
| 364 |
+
|
| 365 |
+
def forward(self, x):
|
| 366 |
+
return x + self.cv3(self.cv2(self.cv1(x))) if self.add else self.cv3(self.cv2(self.cv1(x)))
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
class BottleneckCSP(nn.Module):
|
| 370 |
+
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
| 371 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
| 372 |
+
super().__init__()
|
| 373 |
+
c_ = int(c2 * e) # hidden channels
|
| 374 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
| 375 |
+
self.cv2 = nn.Conv2d(c1, c_, 1, 1, bias=False)
|
| 376 |
+
self.cv3 = nn.Conv2d(c_, c_, 1, 1, bias=False)
|
| 377 |
+
self.cv4 = Conv(2 * c_, c2, 1, 1)
|
| 378 |
+
self.bn = nn.BatchNorm2d(2 * c_) # applied to cat(cv2, cv3)
|
| 379 |
+
self.act = nn.SiLU()
|
| 380 |
+
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
| 381 |
+
|
| 382 |
+
def forward(self, x):
|
| 383 |
+
y1 = self.cv3(self.m(self.cv1(x)))
|
| 384 |
+
y2 = self.cv2(x)
|
| 385 |
+
return self.cv4(self.act(self.bn(torch.cat((y1, y2), 1))))
|
| 386 |
+
|
| 387 |
+
|
| 388 |
+
class CSP(nn.Module):
|
| 389 |
+
# CSP Bottleneck with 3 convolutions
|
| 390 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
| 391 |
+
super().__init__()
|
| 392 |
+
c_ = int(c2 * e) # hidden channels
|
| 393 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
| 394 |
+
self.cv2 = Conv(c1, c_, 1, 1)
|
| 395 |
+
self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
|
| 396 |
+
self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
| 397 |
+
|
| 398 |
+
def forward(self, x):
|
| 399 |
+
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
|
| 400 |
+
|
| 401 |
+
|
| 402 |
+
class RepNCSP(nn.Module):
|
| 403 |
+
# CSP Bottleneck with 3 convolutions
|
| 404 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
| 405 |
+
super().__init__()
|
| 406 |
+
c_ = int(c2 * e) # hidden channels
|
| 407 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
| 408 |
+
self.cv2 = Conv(c1, c_, 1, 1)
|
| 409 |
+
self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
|
| 410 |
+
self.m = nn.Sequential(*(RepNBottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
| 411 |
+
|
| 412 |
+
def forward(self, x):
|
| 413 |
+
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
|
| 414 |
+
|
| 415 |
+
|
| 416 |
+
class CSPBase(nn.Module):
|
| 417 |
+
# CSP Bottleneck with 3 convolutions
|
| 418 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
| 419 |
+
super().__init__()
|
| 420 |
+
c_ = int(c2 * e) # hidden channels
|
| 421 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
| 422 |
+
self.cv2 = Conv(c1, c_, 1, 1)
|
| 423 |
+
self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
|
| 424 |
+
self.m = nn.Sequential(*(BottleneckBase(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
| 425 |
+
|
| 426 |
+
def forward(self, x):
|
| 427 |
+
return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
|
| 428 |
+
|
| 429 |
+
|
| 430 |
+
class SPP(nn.Module):
|
| 431 |
+
# Spatial Pyramid Pooling (SPP) layer https://arxiv.org/abs/1406.4729
|
| 432 |
+
def __init__(self, c1, c2, k=(5, 9, 13)):
|
| 433 |
+
super().__init__()
|
| 434 |
+
c_ = c1 // 2 # hidden channels
|
| 435 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
| 436 |
+
self.cv2 = Conv(c_ * (len(k) + 1), c2, 1, 1)
|
| 437 |
+
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
|
| 438 |
+
|
| 439 |
+
def forward(self, x):
|
| 440 |
+
x = self.cv1(x)
|
| 441 |
+
with warnings.catch_warnings():
|
| 442 |
+
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
|
| 443 |
+
return self.cv2(torch.cat([x] + [m(x) for m in self.m], 1))
|
| 444 |
+
|
| 445 |
+
|
| 446 |
+
class ASPP(torch.nn.Module):
|
| 447 |
+
|
| 448 |
+
def __init__(self, in_channels, out_channels):
|
| 449 |
+
super().__init__()
|
| 450 |
+
kernel_sizes = [1, 3, 3, 1]
|
| 451 |
+
dilations = [1, 3, 6, 1]
|
| 452 |
+
paddings = [0, 3, 6, 0]
|
| 453 |
+
self.aspp = torch.nn.ModuleList()
|
| 454 |
+
for aspp_idx in range(len(kernel_sizes)):
|
| 455 |
+
conv = torch.nn.Conv2d(
|
| 456 |
+
in_channels,
|
| 457 |
+
out_channels,
|
| 458 |
+
kernel_size=kernel_sizes[aspp_idx],
|
| 459 |
+
stride=1,
|
| 460 |
+
dilation=dilations[aspp_idx],
|
| 461 |
+
padding=paddings[aspp_idx],
|
| 462 |
+
bias=True)
|
| 463 |
+
self.aspp.append(conv)
|
| 464 |
+
self.gap = torch.nn.AdaptiveAvgPool2d(1)
|
| 465 |
+
self.aspp_num = len(kernel_sizes)
|
| 466 |
+
for m in self.modules():
|
| 467 |
+
if isinstance(m, torch.nn.Conv2d):
|
| 468 |
+
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
| 469 |
+
m.weight.data.normal_(0, math.sqrt(2. / n))
|
| 470 |
+
m.bias.data.fill_(0)
|
| 471 |
+
|
| 472 |
+
def forward(self, x):
|
| 473 |
+
avg_x = self.gap(x)
|
| 474 |
+
out = []
|
| 475 |
+
for aspp_idx in range(self.aspp_num):
|
| 476 |
+
inp = avg_x if (aspp_idx == self.aspp_num - 1) else x
|
| 477 |
+
out.append(F.relu_(self.aspp[aspp_idx](inp)))
|
| 478 |
+
out[-1] = out[-1].expand_as(out[-2])
|
| 479 |
+
out = torch.cat(out, dim=1)
|
| 480 |
+
return out
|
| 481 |
+
|
| 482 |
+
|
| 483 |
+
class SPPCSPC(nn.Module):
|
| 484 |
+
# CSP SPP https://github.com/WongKinYiu/CrossStagePartialNetworks
|
| 485 |
+
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):
|
| 486 |
+
super(SPPCSPC, self).__init__()
|
| 487 |
+
c_ = int(2 * c2 * e) # hidden channels
|
| 488 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
| 489 |
+
self.cv2 = Conv(c1, c_, 1, 1)
|
| 490 |
+
self.cv3 = Conv(c_, c_, 3, 1)
|
| 491 |
+
self.cv4 = Conv(c_, c_, 1, 1)
|
| 492 |
+
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
|
| 493 |
+
self.cv5 = Conv(4 * c_, c_, 1, 1)
|
| 494 |
+
self.cv6 = Conv(c_, c_, 3, 1)
|
| 495 |
+
self.cv7 = Conv(2 * c_, c2, 1, 1)
|
| 496 |
+
|
| 497 |
+
def forward(self, x):
|
| 498 |
+
x1 = self.cv4(self.cv3(self.cv1(x)))
|
| 499 |
+
y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1)))
|
| 500 |
+
y2 = self.cv2(x)
|
| 501 |
+
return self.cv7(torch.cat((y1, y2), dim=1))
|
| 502 |
+
|
| 503 |
+
|
| 504 |
+
class SPPF(nn.Module):
|
| 505 |
+
# Spatial Pyramid Pooling - Fast (SPPF) layer by Glenn Jocher
|
| 506 |
+
def __init__(self, c1, c2, k=5): # equivalent to SPP(k=(5, 9, 13))
|
| 507 |
+
super().__init__()
|
| 508 |
+
c_ = c1 // 2 # hidden channels
|
| 509 |
+
self.cv1 = Conv(c1, c_, 1, 1)
|
| 510 |
+
self.cv2 = Conv(c_ * 4, c2, 1, 1)
|
| 511 |
+
self.m = nn.MaxPool2d(kernel_size=k, stride=1, padding=k // 2)
|
| 512 |
+
# self.m = SoftPool2d(kernel_size=k, stride=1, padding=k // 2)
|
| 513 |
+
|
| 514 |
+
def forward(self, x):
|
| 515 |
+
x = self.cv1(x)
|
| 516 |
+
with warnings.catch_warnings():
|
| 517 |
+
warnings.simplefilter('ignore') # suppress torch 1.9.0 max_pool2d() warning
|
| 518 |
+
y1 = self.m(x)
|
| 519 |
+
y2 = self.m(y1)
|
| 520 |
+
return self.cv2(torch.cat((x, y1, y2, self.m(y2)), 1))
|
| 521 |
+
|
| 522 |
+
|
| 523 |
+
import torch.nn.functional as F
|
| 524 |
+
from torch.nn.modules.utils import _pair
|
| 525 |
+
|
| 526 |
+
|
| 527 |
+
class ReOrg(nn.Module):
|
| 528 |
+
# yolo
|
| 529 |
+
def __init__(self):
|
| 530 |
+
super(ReOrg, self).__init__()
|
| 531 |
+
|
| 532 |
+
def forward(self, x): # x(b,c,w,h) -> y(b,4c,w/2,h/2)
|
| 533 |
+
return torch.cat([x[..., ::2, ::2], x[..., 1::2, ::2], x[..., ::2, 1::2], x[..., 1::2, 1::2]], 1)
|
| 534 |
+
|
| 535 |
+
|
| 536 |
+
class Contract(nn.Module):
|
| 537 |
+
# Contract width-height into channels, i.e. x(1,64,80,80) to x(1,256,40,40)
|
| 538 |
+
def __init__(self, gain=2):
|
| 539 |
+
super().__init__()
|
| 540 |
+
self.gain = gain
|
| 541 |
+
|
| 542 |
+
def forward(self, x):
|
| 543 |
+
b, c, h, w = x.size() # assert (h / s == 0) and (W / s == 0), 'Indivisible gain'
|
| 544 |
+
s = self.gain
|
| 545 |
+
x = x.view(b, c, h // s, s, w // s, s) # x(1,64,40,2,40,2)
|
| 546 |
+
x = x.permute(0, 3, 5, 1, 2, 4).contiguous() # x(1,2,2,64,40,40)
|
| 547 |
+
return x.view(b, c * s * s, h // s, w // s) # x(1,256,40,40)
|
| 548 |
+
|
| 549 |
+
|
| 550 |
+
class Expand(nn.Module):
|
| 551 |
+
# Expand channels into width-height, i.e. x(1,64,80,80) to x(1,16,160,160)
|
| 552 |
+
def __init__(self, gain=2):
|
| 553 |
+
super().__init__()
|
| 554 |
+
self.gain = gain
|
| 555 |
+
|
| 556 |
+
def forward(self, x):
|
| 557 |
+
b, c, h, w = x.size() # assert C / s ** 2 == 0, 'Indivisible gain'
|
| 558 |
+
s = self.gain
|
| 559 |
+
x = x.view(b, s, s, c // s ** 2, h, w) # x(1,2,2,16,80,80)
|
| 560 |
+
x = x.permute(0, 3, 4, 1, 5, 2).contiguous() # x(1,16,80,2,80,2)
|
| 561 |
+
return x.view(b, c // s ** 2, h * s, w * s) # x(1,16,160,160)
|
| 562 |
+
|
| 563 |
+
|
| 564 |
+
class Concat(nn.Module):
|
| 565 |
+
# Concatenate a list of tensors along dimension
|
| 566 |
+
def __init__(self, dimension=1):
|
| 567 |
+
super().__init__()
|
| 568 |
+
self.d = dimension
|
| 569 |
+
|
| 570 |
+
def forward(self, x):
|
| 571 |
+
return torch.cat(x, self.d)
|
| 572 |
+
|
| 573 |
+
|
| 574 |
+
class Shortcut(nn.Module):
|
| 575 |
+
def __init__(self, dimension=0):
|
| 576 |
+
super(Shortcut, self).__init__()
|
| 577 |
+
self.d = dimension
|
| 578 |
+
|
| 579 |
+
def forward(self, x):
|
| 580 |
+
return x[0]+x[1]
|
| 581 |
+
|
| 582 |
+
|
| 583 |
+
class Silence(nn.Module):
|
| 584 |
+
def __init__(self):
|
| 585 |
+
super(Silence, self).__init__()
|
| 586 |
+
def forward(self, x):
|
| 587 |
+
return x
|
| 588 |
+
|
| 589 |
+
|
| 590 |
+
##### GELAN #####
|
| 591 |
+
|
| 592 |
+
class SPPELAN(nn.Module):
|
| 593 |
+
# spp-elan
|
| 594 |
+
def __init__(self, c1, c2, c3): # ch_in, ch_out, number, shortcut, groups, expansion
|
| 595 |
+
super().__init__()
|
| 596 |
+
self.c = c3
|
| 597 |
+
self.cv1 = Conv(c1, c3, 1, 1)
|
| 598 |
+
self.cv2 = SP(5)
|
| 599 |
+
self.cv3 = SP(5)
|
| 600 |
+
self.cv4 = SP(5)
|
| 601 |
+
self.cv5 = Conv(4*c3, c2, 1, 1)
|
| 602 |
+
|
| 603 |
+
def forward(self, x):
|
| 604 |
+
y = [self.cv1(x)]
|
| 605 |
+
y.extend(m(y[-1]) for m in [self.cv2, self.cv3, self.cv4])
|
| 606 |
+
return self.cv5(torch.cat(y, 1))
|
| 607 |
+
|
| 608 |
+
|
| 609 |
+
class RepNCSPELAN4(nn.Module):
|
| 610 |
+
# csp-elan
|
| 611 |
+
def __init__(self, c1, c2, c3, c4, c5=1): # ch_in, ch_out, number, shortcut, groups, expansion
|
| 612 |
+
super().__init__()
|
| 613 |
+
self.c = c3//2
|
| 614 |
+
self.cv1 = Conv(c1, c3, 1, 1)
|
| 615 |
+
self.cv2 = nn.Sequential(RepNCSP(c3//2, c4, c5), Conv(c4, c4, 3, 1))
|
| 616 |
+
self.cv3 = nn.Sequential(RepNCSP(c4, c4, c5), Conv(c4, c4, 3, 1))
|
| 617 |
+
self.cv4 = Conv(c3+(2*c4), c2, 1, 1)
|
| 618 |
+
|
| 619 |
+
def forward(self, x):
|
| 620 |
+
y = list(self.cv1(x).chunk(2, 1))
|
| 621 |
+
y.extend((m(y[-1])) for m in [self.cv2, self.cv3])
|
| 622 |
+
return self.cv4(torch.cat(y, 1))
|
| 623 |
+
|
| 624 |
+
def forward_split(self, x):
|
| 625 |
+
y = list(self.cv1(x).split((self.c, self.c), 1))
|
| 626 |
+
y.extend(m(y[-1]) for m in [self.cv2, self.cv3])
|
| 627 |
+
return self.cv4(torch.cat(y, 1))
|
| 628 |
+
|
| 629 |
+
#################
|
| 630 |
+
|
| 631 |
+
|
| 632 |
+
##### YOLOR #####
|
| 633 |
+
|
| 634 |
+
class ImplicitA(nn.Module):
|
| 635 |
+
def __init__(self, channel):
|
| 636 |
+
super(ImplicitA, self).__init__()
|
| 637 |
+
self.channel = channel
|
| 638 |
+
self.implicit = nn.Parameter(torch.zeros(1, channel, 1, 1))
|
| 639 |
+
nn.init.normal_(self.implicit, std=.02)
|
| 640 |
+
|
| 641 |
+
def forward(self, x):
|
| 642 |
+
return self.implicit + x
|
| 643 |
+
|
| 644 |
+
|
| 645 |
+
class ImplicitM(nn.Module):
|
| 646 |
+
def __init__(self, channel):
|
| 647 |
+
super(ImplicitM, self).__init__()
|
| 648 |
+
self.channel = channel
|
| 649 |
+
self.implicit = nn.Parameter(torch.ones(1, channel, 1, 1))
|
| 650 |
+
nn.init.normal_(self.implicit, mean=1., std=.02)
|
| 651 |
+
|
| 652 |
+
def forward(self, x):
|
| 653 |
+
return self.implicit * x
|
| 654 |
+
|
| 655 |
+
#################
|
| 656 |
+
|
| 657 |
+
|
| 658 |
+
##### CBNet #####
|
| 659 |
+
|
| 660 |
+
class CBLinear(nn.Module):
|
| 661 |
+
def __init__(self, c1, c2s, k=1, s=1, p=None, g=1): # ch_in, ch_outs, kernel, stride, padding, groups
|
| 662 |
+
super(CBLinear, self).__init__()
|
| 663 |
+
self.c2s = c2s
|
| 664 |
+
self.conv = nn.Conv2d(c1, sum(c2s), k, s, autopad(k, p), groups=g, bias=True)
|
| 665 |
+
|
| 666 |
+
def forward(self, x):
|
| 667 |
+
outs = self.conv(x).split(self.c2s, dim=1)
|
| 668 |
+
return outs
|
| 669 |
+
|
| 670 |
+
class CBFuse(nn.Module):
|
| 671 |
+
def __init__(self, idx):
|
| 672 |
+
super(CBFuse, self).__init__()
|
| 673 |
+
self.idx = idx
|
| 674 |
+
|
| 675 |
+
def forward(self, xs):
|
| 676 |
+
target_size = xs[-1].shape[2:]
|
| 677 |
+
res = [F.interpolate(x[self.idx[i]], size=target_size, mode='nearest') for i, x in enumerate(xs[:-1])]
|
| 678 |
+
out = torch.sum(torch.stack(res + xs[-1:]), dim=0)
|
| 679 |
+
return out
|
| 680 |
+
|
| 681 |
+
#################
|
| 682 |
+
|
| 683 |
+
|
| 684 |
+
class DetectMultiBackend(nn.Module):
|
| 685 |
+
# YOLO MultiBackend class for python inference on various backends
|
| 686 |
+
def __init__(self, weights='yolo.pt', device=torch.device('cpu'), dnn=False, data=None, fp16=False, fuse=True):
|
| 687 |
+
# Usage:
|
| 688 |
+
# PyTorch: weights = *.pt
|
| 689 |
+
# TorchScript: *.torchscript
|
| 690 |
+
# ONNX Runtime: *.onnx
|
| 691 |
+
# ONNX OpenCV DNN: *.onnx --dnn
|
| 692 |
+
# OpenVINO: *_openvino_model
|
| 693 |
+
# CoreML: *.mlmodel
|
| 694 |
+
# TensorRT: *.engine
|
| 695 |
+
# TensorFlow SavedModel: *_saved_model
|
| 696 |
+
# TensorFlow GraphDef: *.pb
|
| 697 |
+
# TensorFlow Lite: *.tflite
|
| 698 |
+
# TensorFlow Edge TPU: *_edgetpu.tflite
|
| 699 |
+
# PaddlePaddle: *_paddle_model
|
| 700 |
+
from models.experimental import attempt_download, attempt_load # scoped to avoid circular import
|
| 701 |
+
|
| 702 |
+
super().__init__()
|
| 703 |
+
w = str(weights[0] if isinstance(weights, list) else weights)
|
| 704 |
+
pt, jit, onnx, onnx_end2end, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle, triton = self._model_type(w)
|
| 705 |
+
fp16 &= pt or jit or onnx or engine # FP16
|
| 706 |
+
nhwc = coreml or saved_model or pb or tflite or edgetpu # BHWC formats (vs torch BCWH)
|
| 707 |
+
stride = 32 # default stride
|
| 708 |
+
cuda = torch.cuda.is_available() and device.type != 'cpu' # use CUDA
|
| 709 |
+
if not (pt or triton):
|
| 710 |
+
w = attempt_download(w) # download if not local
|
| 711 |
+
|
| 712 |
+
if pt: # PyTorch
|
| 713 |
+
model = attempt_load(weights if isinstance(weights, list) else w, device=device, inplace=True, fuse=fuse)
|
| 714 |
+
stride = max(int(model.stride.max()), 32) # model stride
|
| 715 |
+
names = model.module.names if hasattr(model, 'module') else model.names # get class names
|
| 716 |
+
model.half() if fp16 else model.float()
|
| 717 |
+
self.model = model # explicitly assign for to(), cpu(), cuda(), half()
|
| 718 |
+
elif jit: # TorchScript
|
| 719 |
+
LOGGER.info(f'Loading {w} for TorchScript inference...')
|
| 720 |
+
extra_files = {'config.txt': ''} # model metadata
|
| 721 |
+
model = torch.jit.load(w, _extra_files=extra_files, map_location=device)
|
| 722 |
+
model.half() if fp16 else model.float()
|
| 723 |
+
if extra_files['config.txt']: # load metadata dict
|
| 724 |
+
d = json.loads(extra_files['config.txt'],
|
| 725 |
+
object_hook=lambda d: {int(k) if k.isdigit() else k: v
|
| 726 |
+
for k, v in d.items()})
|
| 727 |
+
stride, names = int(d['stride']), d['names']
|
| 728 |
+
elif dnn: # ONNX OpenCV DNN
|
| 729 |
+
LOGGER.info(f'Loading {w} for ONNX OpenCV DNN inference...')
|
| 730 |
+
check_requirements('opencv-python>=4.5.4')
|
| 731 |
+
net = cv2.dnn.readNetFromONNX(w)
|
| 732 |
+
elif onnx: # ONNX Runtime
|
| 733 |
+
LOGGER.info(f'Loading {w} for ONNX Runtime inference...')
|
| 734 |
+
check_requirements(('onnx', 'onnxruntime-gpu' if cuda else 'onnxruntime'))
|
| 735 |
+
import onnxruntime
|
| 736 |
+
providers = ['CUDAExecutionProvider', 'CPUExecutionProvider'] if cuda else ['CPUExecutionProvider']
|
| 737 |
+
session = onnxruntime.InferenceSession(w, providers=providers)
|
| 738 |
+
output_names = [x.name for x in session.get_outputs()]
|
| 739 |
+
meta = session.get_modelmeta().custom_metadata_map # metadata
|
| 740 |
+
if 'stride' in meta:
|
| 741 |
+
stride, names = int(meta['stride']), eval(meta['names'])
|
| 742 |
+
elif xml: # OpenVINO
|
| 743 |
+
LOGGER.info(f'Loading {w} for OpenVINO inference...')
|
| 744 |
+
check_requirements('openvino') # requires openvino-dev: https://pypi.org/project/openvino-dev/
|
| 745 |
+
from openvino.runtime import Core, Layout, get_batch
|
| 746 |
+
ie = Core()
|
| 747 |
+
if not Path(w).is_file(): # if not *.xml
|
| 748 |
+
w = next(Path(w).glob('*.xml')) # get *.xml file from *_openvino_model dir
|
| 749 |
+
network = ie.read_model(model=w, weights=Path(w).with_suffix('.bin'))
|
| 750 |
+
if network.get_parameters()[0].get_layout().empty:
|
| 751 |
+
network.get_parameters()[0].set_layout(Layout("NCHW"))
|
| 752 |
+
batch_dim = get_batch(network)
|
| 753 |
+
if batch_dim.is_static:
|
| 754 |
+
batch_size = batch_dim.get_length()
|
| 755 |
+
executable_network = ie.compile_model(network, device_name="CPU") # device_name="MYRIAD" for Intel NCS2
|
| 756 |
+
stride, names = self._load_metadata(Path(w).with_suffix('.yaml')) # load metadata
|
| 757 |
+
elif engine: # TensorRT
|
| 758 |
+
LOGGER.info(f'Loading {w} for TensorRT inference...')
|
| 759 |
+
import tensorrt as trt # https://developer.nvidia.com/nvidia-tensorrt-download
|
| 760 |
+
check_version(trt.__version__, '7.0.0', hard=True) # require tensorrt>=7.0.0
|
| 761 |
+
if device.type == 'cpu':
|
| 762 |
+
device = torch.device('cuda:0')
|
| 763 |
+
Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
|
| 764 |
+
logger = trt.Logger(trt.Logger.INFO)
|
| 765 |
+
with open(w, 'rb') as f, trt.Runtime(logger) as runtime:
|
| 766 |
+
model = runtime.deserialize_cuda_engine(f.read())
|
| 767 |
+
context = model.create_execution_context()
|
| 768 |
+
bindings = OrderedDict()
|
| 769 |
+
output_names = []
|
| 770 |
+
fp16 = False # default updated below
|
| 771 |
+
dynamic = False
|
| 772 |
+
for i in range(model.num_bindings):
|
| 773 |
+
name = model.get_binding_name(i)
|
| 774 |
+
dtype = trt.nptype(model.get_binding_dtype(i))
|
| 775 |
+
if model.binding_is_input(i):
|
| 776 |
+
if -1 in tuple(model.get_binding_shape(i)): # dynamic
|
| 777 |
+
dynamic = True
|
| 778 |
+
context.set_binding_shape(i, tuple(model.get_profile_shape(0, i)[2]))
|
| 779 |
+
if dtype == np.float16:
|
| 780 |
+
fp16 = True
|
| 781 |
+
else: # output
|
| 782 |
+
output_names.append(name)
|
| 783 |
+
shape = tuple(context.get_binding_shape(i))
|
| 784 |
+
im = torch.from_numpy(np.empty(shape, dtype=dtype)).to(device)
|
| 785 |
+
bindings[name] = Binding(name, dtype, shape, im, int(im.data_ptr()))
|
| 786 |
+
binding_addrs = OrderedDict((n, d.ptr) for n, d in bindings.items())
|
| 787 |
+
batch_size = bindings['images'].shape[0] # if dynamic, this is instead max batch size
|
| 788 |
+
elif coreml: # CoreML
|
| 789 |
+
LOGGER.info(f'Loading {w} for CoreML inference...')
|
| 790 |
+
import coremltools as ct
|
| 791 |
+
model = ct.models.MLModel(w)
|
| 792 |
+
elif saved_model: # TF SavedModel
|
| 793 |
+
LOGGER.info(f'Loading {w} for TensorFlow SavedModel inference...')
|
| 794 |
+
import tensorflow as tf
|
| 795 |
+
keras = False # assume TF1 saved_model
|
| 796 |
+
model = tf.keras.models.load_model(w) if keras else tf.saved_model.load(w)
|
| 797 |
+
elif pb: # GraphDef https://www.tensorflow.org/guide/migrate#a_graphpb_or_graphpbtxt
|
| 798 |
+
LOGGER.info(f'Loading {w} for TensorFlow GraphDef inference...')
|
| 799 |
+
import tensorflow as tf
|
| 800 |
+
|
| 801 |
+
def wrap_frozen_graph(gd, inputs, outputs):
|
| 802 |
+
x = tf.compat.v1.wrap_function(lambda: tf.compat.v1.import_graph_def(gd, name=""), []) # wrapped
|
| 803 |
+
ge = x.graph.as_graph_element
|
| 804 |
+
return x.prune(tf.nest.map_structure(ge, inputs), tf.nest.map_structure(ge, outputs))
|
| 805 |
+
|
| 806 |
+
def gd_outputs(gd):
|
| 807 |
+
name_list, input_list = [], []
|
| 808 |
+
for node in gd.node: # tensorflow.core.framework.node_def_pb2.NodeDef
|
| 809 |
+
name_list.append(node.name)
|
| 810 |
+
input_list.extend(node.input)
|
| 811 |
+
return sorted(f'{x}:0' for x in list(set(name_list) - set(input_list)) if not x.startswith('NoOp'))
|
| 812 |
+
|
| 813 |
+
gd = tf.Graph().as_graph_def() # TF GraphDef
|
| 814 |
+
with open(w, 'rb') as f:
|
| 815 |
+
gd.ParseFromString(f.read())
|
| 816 |
+
frozen_func = wrap_frozen_graph(gd, inputs="x:0", outputs=gd_outputs(gd))
|
| 817 |
+
elif tflite or edgetpu: # https://www.tensorflow.org/lite/guide/python#install_tensorflow_lite_for_python
|
| 818 |
+
try: # https://coral.ai/docs/edgetpu/tflite-python/#update-existing-tf-lite-code-for-the-edge-tpu
|
| 819 |
+
from tflite_runtime.interpreter import Interpreter, load_delegate
|
| 820 |
+
except ImportError:
|
| 821 |
+
import tensorflow as tf
|
| 822 |
+
Interpreter, load_delegate = tf.lite.Interpreter, tf.lite.experimental.load_delegate,
|
| 823 |
+
if edgetpu: # TF Edge TPU https://coral.ai/software/#edgetpu-runtime
|
| 824 |
+
LOGGER.info(f'Loading {w} for TensorFlow Lite Edge TPU inference...')
|
| 825 |
+
delegate = {
|
| 826 |
+
'Linux': 'libedgetpu.so.1',
|
| 827 |
+
'Darwin': 'libedgetpu.1.dylib',
|
| 828 |
+
'Windows': 'edgetpu.dll'}[platform.system()]
|
| 829 |
+
interpreter = Interpreter(model_path=w, experimental_delegates=[load_delegate(delegate)])
|
| 830 |
+
else: # TFLite
|
| 831 |
+
LOGGER.info(f'Loading {w} for TensorFlow Lite inference...')
|
| 832 |
+
interpreter = Interpreter(model_path=w) # load TFLite model
|
| 833 |
+
interpreter.allocate_tensors() # allocate
|
| 834 |
+
input_details = interpreter.get_input_details() # inputs
|
| 835 |
+
output_details = interpreter.get_output_details() # outputs
|
| 836 |
+
# load metadata
|
| 837 |
+
with contextlib.suppress(zipfile.BadZipFile):
|
| 838 |
+
with zipfile.ZipFile(w, "r") as model:
|
| 839 |
+
meta_file = model.namelist()[0]
|
| 840 |
+
meta = ast.literal_eval(model.read(meta_file).decode("utf-8"))
|
| 841 |
+
stride, names = int(meta['stride']), meta['names']
|
| 842 |
+
elif tfjs: # TF.js
|
| 843 |
+
raise NotImplementedError('ERROR: YOLO TF.js inference is not supported')
|
| 844 |
+
elif paddle: # PaddlePaddle
|
| 845 |
+
LOGGER.info(f'Loading {w} for PaddlePaddle inference...')
|
| 846 |
+
check_requirements('paddlepaddle-gpu' if cuda else 'paddlepaddle')
|
| 847 |
+
import paddle.inference as pdi
|
| 848 |
+
if not Path(w).is_file(): # if not *.pdmodel
|
| 849 |
+
w = next(Path(w).rglob('*.pdmodel')) # get *.pdmodel file from *_paddle_model dir
|
| 850 |
+
weights = Path(w).with_suffix('.pdiparams')
|
| 851 |
+
config = pdi.Config(str(w), str(weights))
|
| 852 |
+
if cuda:
|
| 853 |
+
config.enable_use_gpu(memory_pool_init_size_mb=2048, device_id=0)
|
| 854 |
+
predictor = pdi.create_predictor(config)
|
| 855 |
+
input_handle = predictor.get_input_handle(predictor.get_input_names()[0])
|
| 856 |
+
output_names = predictor.get_output_names()
|
| 857 |
+
elif triton: # NVIDIA Triton Inference Server
|
| 858 |
+
LOGGER.info(f'Using {w} as Triton Inference Server...')
|
| 859 |
+
check_requirements('tritonclient[all]')
|
| 860 |
+
from utils.triton import TritonRemoteModel
|
| 861 |
+
model = TritonRemoteModel(url=w)
|
| 862 |
+
nhwc = model.runtime.startswith("tensorflow")
|
| 863 |
+
else:
|
| 864 |
+
raise NotImplementedError(f'ERROR: {w} is not a supported format')
|
| 865 |
+
|
| 866 |
+
# class names
|
| 867 |
+
if 'names' not in locals():
|
| 868 |
+
names = yaml_load(data)['names'] if data else {i: f'class{i}' for i in range(999)}
|
| 869 |
+
if names[0] == 'n01440764' and len(names) == 1000: # ImageNet
|
| 870 |
+
names = yaml_load(ROOT / 'data/ImageNet.yaml')['names'] # human-readable names
|
| 871 |
+
|
| 872 |
+
self.__dict__.update(locals()) # assign all variables to self
|
| 873 |
+
|
| 874 |
+
def forward(self, im, augment=False, visualize=False):
|
| 875 |
+
# YOLO MultiBackend inference
|
| 876 |
+
b, ch, h, w = im.shape # batch, channel, height, width
|
| 877 |
+
if self.fp16 and im.dtype != torch.float16:
|
| 878 |
+
im = im.half() # to FP16
|
| 879 |
+
if self.nhwc:
|
| 880 |
+
im = im.permute(0, 2, 3, 1) # torch BCHW to numpy BHWC shape(1,320,192,3)
|
| 881 |
+
|
| 882 |
+
if self.pt: # PyTorch
|
| 883 |
+
y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)
|
| 884 |
+
elif self.jit: # TorchScript
|
| 885 |
+
y = self.model(im)
|
| 886 |
+
elif self.dnn: # ONNX OpenCV DNN
|
| 887 |
+
im = im.cpu().numpy() # torch to numpy
|
| 888 |
+
self.net.setInput(im)
|
| 889 |
+
y = self.net.forward()
|
| 890 |
+
elif self.onnx: # ONNX Runtime
|
| 891 |
+
im = im.cpu().numpy() # torch to numpy
|
| 892 |
+
y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
|
| 893 |
+
elif self.xml: # OpenVINO
|
| 894 |
+
im = im.cpu().numpy() # FP32
|
| 895 |
+
y = list(self.executable_network([im]).values())
|
| 896 |
+
elif self.engine: # TensorRT
|
| 897 |
+
if self.dynamic and im.shape != self.bindings['images'].shape:
|
| 898 |
+
i = self.model.get_binding_index('images')
|
| 899 |
+
self.context.set_binding_shape(i, im.shape) # reshape if dynamic
|
| 900 |
+
self.bindings['images'] = self.bindings['images']._replace(shape=im.shape)
|
| 901 |
+
for name in self.output_names:
|
| 902 |
+
i = self.model.get_binding_index(name)
|
| 903 |
+
self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))
|
| 904 |
+
s = self.bindings['images'].shape
|
| 905 |
+
assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
|
| 906 |
+
self.binding_addrs['images'] = int(im.data_ptr())
|
| 907 |
+
self.context.execute_v2(list(self.binding_addrs.values()))
|
| 908 |
+
y = [self.bindings[x].data for x in sorted(self.output_names)]
|
| 909 |
+
elif self.coreml: # CoreML
|
| 910 |
+
im = im.cpu().numpy()
|
| 911 |
+
im = Image.fromarray((im[0] * 255).astype('uint8'))
|
| 912 |
+
# im = im.resize((192, 320), Image.ANTIALIAS)
|
| 913 |
+
y = self.model.predict({'image': im}) # coordinates are xywh normalized
|
| 914 |
+
if 'confidence' in y:
|
| 915 |
+
box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
|
| 916 |
+
conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float)
|
| 917 |
+
y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
|
| 918 |
+
else:
|
| 919 |
+
y = list(reversed(y.values())) # reversed for segmentation models (pred, proto)
|
| 920 |
+
elif self.paddle: # PaddlePaddle
|
| 921 |
+
im = im.cpu().numpy().astype(np.float32)
|
| 922 |
+
self.input_handle.copy_from_cpu(im)
|
| 923 |
+
self.predictor.run()
|
| 924 |
+
y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
|
| 925 |
+
elif self.triton: # NVIDIA Triton Inference Server
|
| 926 |
+
y = self.model(im)
|
| 927 |
+
else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
|
| 928 |
+
im = im.cpu().numpy()
|
| 929 |
+
if self.saved_model: # SavedModel
|
| 930 |
+
y = self.model(im, training=False) if self.keras else self.model(im)
|
| 931 |
+
elif self.pb: # GraphDef
|
| 932 |
+
y = self.frozen_func(x=self.tf.constant(im))
|
| 933 |
+
else: # Lite or Edge TPU
|
| 934 |
+
input = self.input_details[0]
|
| 935 |
+
int8 = input['dtype'] == np.uint8 # is TFLite quantized uint8 model
|
| 936 |
+
if int8:
|
| 937 |
+
scale, zero_point = input['quantization']
|
| 938 |
+
im = (im / scale + zero_point).astype(np.uint8) # de-scale
|
| 939 |
+
self.interpreter.set_tensor(input['index'], im)
|
| 940 |
+
self.interpreter.invoke()
|
| 941 |
+
y = []
|
| 942 |
+
for output in self.output_details:
|
| 943 |
+
x = self.interpreter.get_tensor(output['index'])
|
| 944 |
+
if int8:
|
| 945 |
+
scale, zero_point = output['quantization']
|
| 946 |
+
x = (x.astype(np.float32) - zero_point) * scale # re-scale
|
| 947 |
+
y.append(x)
|
| 948 |
+
y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]
|
| 949 |
+
y[0][..., :4] *= [w, h, w, h] # xywh normalized to pixels
|
| 950 |
+
|
| 951 |
+
if isinstance(y, (list, tuple)):
|
| 952 |
+
return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
|
| 953 |
+
else:
|
| 954 |
+
return self.from_numpy(y)
|
| 955 |
+
|
| 956 |
+
def from_numpy(self, x):
|
| 957 |
+
return torch.from_numpy(x).to(self.device) if isinstance(x, np.ndarray) else x
|
| 958 |
+
|
| 959 |
+
def warmup(self, imgsz=(1, 3, 640, 640)):
|
| 960 |
+
# Warmup model by running inference once
|
| 961 |
+
warmup_types = self.pt, self.jit, self.onnx, self.engine, self.saved_model, self.pb, self.triton
|
| 962 |
+
if any(warmup_types) and (self.device.type != 'cpu' or self.triton):
|
| 963 |
+
im = torch.empty(*imgsz, dtype=torch.half if self.fp16 else torch.float, device=self.device) # input
|
| 964 |
+
for _ in range(2 if self.jit else 1): #
|
| 965 |
+
self.forward(im) # warmup
|
| 966 |
+
|
| 967 |
+
@staticmethod
|
| 968 |
+
def _model_type(p='path/to/model.pt'):
|
| 969 |
+
# Return model type from model path, i.e. path='path/to/model.onnx' -> type=onnx
|
| 970 |
+
# types = [pt, jit, onnx, xml, engine, coreml, saved_model, pb, tflite, edgetpu, tfjs, paddle]
|
| 971 |
+
from export import export_formats
|
| 972 |
+
from utils.downloads import is_url
|
| 973 |
+
sf = list(export_formats().Suffix) # export suffixes
|
| 974 |
+
if not is_url(p, check=False):
|
| 975 |
+
check_suffix(p, sf) # checks
|
| 976 |
+
url = urlparse(p) # if url may be Triton inference server
|
| 977 |
+
types = [s in Path(p).name for s in sf]
|
| 978 |
+
types[8] &= not types[9] # tflite &= not edgetpu
|
| 979 |
+
triton = not any(types) and all([any(s in url.scheme for s in ["http", "grpc"]), url.netloc])
|
| 980 |
+
return types + [triton]
|
| 981 |
+
|
| 982 |
+
@staticmethod
|
| 983 |
+
def _load_metadata(f=Path('path/to/meta.yaml')):
|
| 984 |
+
# Load metadata from meta.yaml if it exists
|
| 985 |
+
if f.exists():
|
| 986 |
+
d = yaml_load(f)
|
| 987 |
+
return d['stride'], d['names'] # assign stride, names
|
| 988 |
+
return None, None
|
| 989 |
+
|
| 990 |
+
|
| 991 |
+
class AutoShape(nn.Module):
|
| 992 |
+
# YOLO input-robust model wrapper for passing cv2/np/PIL/torch inputs. Includes preprocessing, inference and NMS
|
| 993 |
+
conf = 0.25 # NMS confidence threshold
|
| 994 |
+
iou = 0.45 # NMS IoU threshold
|
| 995 |
+
agnostic = False # NMS class-agnostic
|
| 996 |
+
multi_label = False # NMS multiple labels per box
|
| 997 |
+
classes = None # (optional list) filter by class, i.e. = [0, 15, 16] for COCO persons, cats and dogs
|
| 998 |
+
max_det = 1000 # maximum number of detections per image
|
| 999 |
+
amp = False # Automatic Mixed Precision (AMP) inference
|
| 1000 |
+
|
| 1001 |
+
def __init__(self, model, verbose=True):
|
| 1002 |
+
super().__init__()
|
| 1003 |
+
if verbose:
|
| 1004 |
+
LOGGER.info('Adding AutoShape... ')
|
| 1005 |
+
copy_attr(self, model, include=('yaml', 'nc', 'hyp', 'names', 'stride', 'abc'), exclude=()) # copy attributes
|
| 1006 |
+
self.dmb = isinstance(model, DetectMultiBackend) # DetectMultiBackend() instance
|
| 1007 |
+
self.pt = not self.dmb or model.pt # PyTorch model
|
| 1008 |
+
self.model = model.eval()
|
| 1009 |
+
if self.pt:
|
| 1010 |
+
m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
|
| 1011 |
+
m.inplace = False # Detect.inplace=False for safe multithread inference
|
| 1012 |
+
m.export = True # do not output loss values
|
| 1013 |
+
|
| 1014 |
+
def _apply(self, fn):
|
| 1015 |
+
# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
|
| 1016 |
+
self = super()._apply(fn)
|
| 1017 |
+
from models.yolo import Detect, Segment
|
| 1018 |
+
if self.pt:
|
| 1019 |
+
m = self.model.model.model[-1] if self.dmb else self.model.model[-1] # Detect()
|
| 1020 |
+
if isinstance(m, (Detect, Segment)):
|
| 1021 |
+
for k in 'stride', 'anchor_grid', 'stride_grid', 'grid':
|
| 1022 |
+
x = getattr(m, k)
|
| 1023 |
+
setattr(m, k, list(map(fn, x))) if isinstance(x, (list, tuple)) else setattr(m, k, fn(x))
|
| 1024 |
+
return self
|
| 1025 |
+
|
| 1026 |
+
@smart_inference_mode()
|
| 1027 |
+
def forward(self, ims, size=640, augment=False, profile=False):
|
| 1028 |
+
# Inference from various sources. For size(height=640, width=1280), RGB images example inputs are:
|
| 1029 |
+
# file: ims = 'data/images/zidane.jpg' # str or PosixPath
|
| 1030 |
+
# URI: = 'https://ultralytics.com/images/zidane.jpg'
|
| 1031 |
+
# OpenCV: = cv2.imread('image.jpg')[:,:,::-1] # HWC BGR to RGB x(640,1280,3)
|
| 1032 |
+
# PIL: = Image.open('image.jpg') or ImageGrab.grab() # HWC x(640,1280,3)
|
| 1033 |
+
# numpy: = np.zeros((640,1280,3)) # HWC
|
| 1034 |
+
# torch: = torch.zeros(16,3,320,640) # BCHW (scaled to size=640, 0-1 values)
|
| 1035 |
+
# multiple: = [Image.open('image1.jpg'), Image.open('image2.jpg'), ...] # list of images
|
| 1036 |
+
|
| 1037 |
+
dt = (Profile(), Profile(), Profile())
|
| 1038 |
+
with dt[0]:
|
| 1039 |
+
if isinstance(size, int): # expand
|
| 1040 |
+
size = (size, size)
|
| 1041 |
+
p = next(self.model.parameters()) if self.pt else torch.empty(1, device=self.model.device) # param
|
| 1042 |
+
autocast = self.amp and (p.device.type != 'cpu') # Automatic Mixed Precision (AMP) inference
|
| 1043 |
+
if isinstance(ims, torch.Tensor): # torch
|
| 1044 |
+
with amp.autocast(autocast):
|
| 1045 |
+
return self.model(ims.to(p.device).type_as(p), augment=augment) # inference
|
| 1046 |
+
|
| 1047 |
+
# Pre-process
|
| 1048 |
+
n, ims = (len(ims), list(ims)) if isinstance(ims, (list, tuple)) else (1, [ims]) # number, list of images
|
| 1049 |
+
shape0, shape1, files = [], [], [] # image and inference shapes, filenames
|
| 1050 |
+
for i, im in enumerate(ims):
|
| 1051 |
+
f = f'image{i}' # filename
|
| 1052 |
+
if isinstance(im, (str, Path)): # filename or uri
|
| 1053 |
+
im, f = Image.open(requests.get(im, stream=True).raw if str(im).startswith('http') else im), im
|
| 1054 |
+
im = np.asarray(exif_transpose(im))
|
| 1055 |
+
elif isinstance(im, Image.Image): # PIL Image
|
| 1056 |
+
im, f = np.asarray(exif_transpose(im)), getattr(im, 'filename', f) or f
|
| 1057 |
+
files.append(Path(f).with_suffix('.jpg').name)
|
| 1058 |
+
if im.shape[0] < 5: # image in CHW
|
| 1059 |
+
im = im.transpose((1, 2, 0)) # reverse dataloader .transpose(2, 0, 1)
|
| 1060 |
+
im = im[..., :3] if im.ndim == 3 else cv2.cvtColor(im, cv2.COLOR_GRAY2BGR) # enforce 3ch input
|
| 1061 |
+
s = im.shape[:2] # HWC
|
| 1062 |
+
shape0.append(s) # image shape
|
| 1063 |
+
g = max(size) / max(s) # gain
|
| 1064 |
+
shape1.append([int(y * g) for y in s])
|
| 1065 |
+
ims[i] = im if im.data.contiguous else np.ascontiguousarray(im) # update
|
| 1066 |
+
shape1 = [make_divisible(x, self.stride) for x in np.array(shape1).max(0)] # inf shape
|
| 1067 |
+
x = [letterbox(im, shape1, auto=False)[0] for im in ims] # pad
|
| 1068 |
+
x = np.ascontiguousarray(np.array(x).transpose((0, 3, 1, 2))) # stack and BHWC to BCHW
|
| 1069 |
+
x = torch.from_numpy(x).to(p.device).type_as(p) / 255 # uint8 to fp16/32
|
| 1070 |
+
|
| 1071 |
+
with amp.autocast(autocast):
|
| 1072 |
+
# Inference
|
| 1073 |
+
with dt[1]:
|
| 1074 |
+
y = self.model(x, augment=augment) # forward
|
| 1075 |
+
|
| 1076 |
+
# Post-process
|
| 1077 |
+
with dt[2]:
|
| 1078 |
+
y = non_max_suppression(y if self.dmb else y[0],
|
| 1079 |
+
self.conf,
|
| 1080 |
+
self.iou,
|
| 1081 |
+
self.classes,
|
| 1082 |
+
self.agnostic,
|
| 1083 |
+
self.multi_label,
|
| 1084 |
+
max_det=self.max_det) # NMS
|
| 1085 |
+
for i in range(n):
|
| 1086 |
+
scale_boxes(shape1, y[i][:, :4], shape0[i])
|
| 1087 |
+
|
| 1088 |
+
return Detections(ims, y, files, dt, self.names, x.shape)
|
| 1089 |
+
|
| 1090 |
+
|
| 1091 |
+
class Detections:
|
| 1092 |
+
# YOLO detections class for inference results
|
| 1093 |
+
def __init__(self, ims, pred, files, times=(0, 0, 0), names=None, shape=None):
|
| 1094 |
+
super().__init__()
|
| 1095 |
+
d = pred[0].device # device
|
| 1096 |
+
gn = [torch.tensor([*(im.shape[i] for i in [1, 0, 1, 0]), 1, 1], device=d) for im in ims] # normalizations
|
| 1097 |
+
self.ims = ims # list of images as numpy arrays
|
| 1098 |
+
self.pred = pred # list of tensors pred[0] = (xyxy, conf, cls)
|
| 1099 |
+
self.names = names # class names
|
| 1100 |
+
self.files = files # image filenames
|
| 1101 |
+
self.times = times # profiling times
|
| 1102 |
+
self.xyxy = pred # xyxy pixels
|
| 1103 |
+
self.xywh = [xyxy2xywh(x) for x in pred] # xywh pixels
|
| 1104 |
+
self.xyxyn = [x / g for x, g in zip(self.xyxy, gn)] # xyxy normalized
|
| 1105 |
+
self.xywhn = [x / g for x, g in zip(self.xywh, gn)] # xywh normalized
|
| 1106 |
+
self.n = len(self.pred) # number of images (batch size)
|
| 1107 |
+
self.t = tuple(x.t / self.n * 1E3 for x in times) # timestamps (ms)
|
| 1108 |
+
self.s = tuple(shape) # inference BCHW shape
|
| 1109 |
+
|
| 1110 |
+
def _run(self, pprint=False, show=False, save=False, crop=False, render=False, labels=True, save_dir=Path('')):
|
| 1111 |
+
s, crops = '', []
|
| 1112 |
+
for i, (im, pred) in enumerate(zip(self.ims, self.pred)):
|
| 1113 |
+
s += f'\nimage {i + 1}/{len(self.pred)}: {im.shape[0]}x{im.shape[1]} ' # string
|
| 1114 |
+
if pred.shape[0]:
|
| 1115 |
+
for c in pred[:, -1].unique():
|
| 1116 |
+
n = (pred[:, -1] == c).sum() # detections per class
|
| 1117 |
+
s += f"{n} {self.names[int(c)]}{'s' * (n > 1)}, " # add to string
|
| 1118 |
+
s = s.rstrip(', ')
|
| 1119 |
+
if show or save or render or crop:
|
| 1120 |
+
annotator = Annotator(im, example=str(self.names))
|
| 1121 |
+
for *box, conf, cls in reversed(pred): # xyxy, confidence, class
|
| 1122 |
+
label = f'{self.names[int(cls)]} {conf:.2f}'
|
| 1123 |
+
if crop:
|
| 1124 |
+
file = save_dir / 'crops' / self.names[int(cls)] / self.files[i] if save else None
|
| 1125 |
+
crops.append({
|
| 1126 |
+
'box': box,
|
| 1127 |
+
'conf': conf,
|
| 1128 |
+
'cls': cls,
|
| 1129 |
+
'label': label,
|
| 1130 |
+
'im': save_one_box(box, im, file=file, save=save)})
|
| 1131 |
+
else: # all others
|
| 1132 |
+
annotator.box_label(box, label if labels else '', color=colors(cls))
|
| 1133 |
+
im = annotator.im
|
| 1134 |
+
else:
|
| 1135 |
+
s += '(no detections)'
|
| 1136 |
+
|
| 1137 |
+
im = Image.fromarray(im.astype(np.uint8)) if isinstance(im, np.ndarray) else im # from np
|
| 1138 |
+
if show:
|
| 1139 |
+
display(im) if is_notebook() else im.show(self.files[i])
|
| 1140 |
+
if save:
|
| 1141 |
+
f = self.files[i]
|
| 1142 |
+
im.save(save_dir / f) # save
|
| 1143 |
+
if i == self.n - 1:
|
| 1144 |
+
LOGGER.info(f"Saved {self.n} image{'s' * (self.n > 1)} to {colorstr('bold', save_dir)}")
|
| 1145 |
+
if render:
|
| 1146 |
+
self.ims[i] = np.asarray(im)
|
| 1147 |
+
if pprint:
|
| 1148 |
+
s = s.lstrip('\n')
|
| 1149 |
+
return f'{s}\nSpeed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {self.s}' % self.t
|
| 1150 |
+
if crop:
|
| 1151 |
+
if save:
|
| 1152 |
+
LOGGER.info(f'Saved results to {save_dir}\n')
|
| 1153 |
+
return crops
|
| 1154 |
+
|
| 1155 |
+
@TryExcept('Showing images is not supported in this environment')
|
| 1156 |
+
def show(self, labels=True):
|
| 1157 |
+
self._run(show=True, labels=labels) # show results
|
| 1158 |
+
|
| 1159 |
+
def save(self, labels=True, save_dir='runs/detect/exp', exist_ok=False):
|
| 1160 |
+
save_dir = increment_path(save_dir, exist_ok, mkdir=True) # increment save_dir
|
| 1161 |
+
self._run(save=True, labels=labels, save_dir=save_dir) # save results
|
| 1162 |
+
|
| 1163 |
+
def crop(self, save=True, save_dir='runs/detect/exp', exist_ok=False):
|
| 1164 |
+
save_dir = increment_path(save_dir, exist_ok, mkdir=True) if save else None
|
| 1165 |
+
return self._run(crop=True, save=save, save_dir=save_dir) # crop results
|
| 1166 |
+
|
| 1167 |
+
def render(self, labels=True):
|
| 1168 |
+
self._run(render=True, labels=labels) # render results
|
| 1169 |
+
return self.ims
|
| 1170 |
+
|
| 1171 |
+
def pandas(self):
|
| 1172 |
+
# return detections as pandas DataFrames, i.e. print(results.pandas().xyxy[0])
|
| 1173 |
+
new = copy(self) # return copy
|
| 1174 |
+
ca = 'xmin', 'ymin', 'xmax', 'ymax', 'confidence', 'class', 'name' # xyxy columns
|
| 1175 |
+
cb = 'xcenter', 'ycenter', 'width', 'height', 'confidence', 'class', 'name' # xywh columns
|
| 1176 |
+
for k, c in zip(['xyxy', 'xyxyn', 'xywh', 'xywhn'], [ca, ca, cb, cb]):
|
| 1177 |
+
a = [[x[:5] + [int(x[5]), self.names[int(x[5])]] for x in x.tolist()] for x in getattr(self, k)] # update
|
| 1178 |
+
setattr(new, k, [pd.DataFrame(x, columns=c) for x in a])
|
| 1179 |
+
return new
|
| 1180 |
+
|
| 1181 |
+
def tolist(self):
|
| 1182 |
+
# return a list of Detections objects, i.e. 'for result in results.tolist():'
|
| 1183 |
+
r = range(self.n) # iterable
|
| 1184 |
+
x = [Detections([self.ims[i]], [self.pred[i]], [self.files[i]], self.times, self.names, self.s) for i in r]
|
| 1185 |
+
# for d in x:
|
| 1186 |
+
# for k in ['ims', 'pred', 'xyxy', 'xyxyn', 'xywh', 'xywhn']:
|
| 1187 |
+
# setattr(d, k, getattr(d, k)[0]) # pop out of list
|
| 1188 |
+
return x
|
| 1189 |
+
|
| 1190 |
+
def print(self):
|
| 1191 |
+
LOGGER.info(self.__str__())
|
| 1192 |
+
|
| 1193 |
+
def __len__(self): # override len(results)
|
| 1194 |
+
return self.n
|
| 1195 |
+
|
| 1196 |
+
def __str__(self): # override print(results)
|
| 1197 |
+
return self._run(pprint=True) # print results
|
| 1198 |
+
|
| 1199 |
+
def __repr__(self):
|
| 1200 |
+
return f'YOLO {self.__class__} instance\n' + self.__str__()
|
| 1201 |
+
|
| 1202 |
+
|
| 1203 |
+
class Proto(nn.Module):
|
| 1204 |
+
# YOLO mask Proto module for segmentation models
|
| 1205 |
+
def __init__(self, c1, c_=256, c2=32): # ch_in, number of protos, number of masks
|
| 1206 |
+
super().__init__()
|
| 1207 |
+
self.cv1 = Conv(c1, c_, k=3)
|
| 1208 |
+
self.upsample = nn.Upsample(scale_factor=2, mode='nearest')
|
| 1209 |
+
self.cv2 = Conv(c_, c_, k=3)
|
| 1210 |
+
self.cv3 = Conv(c_, c2)
|
| 1211 |
+
|
| 1212 |
+
def forward(self, x):
|
| 1213 |
+
return self.cv3(self.cv2(self.upsample(self.cv1(x))))
|
| 1214 |
+
|
| 1215 |
+
|
| 1216 |
+
class UConv(nn.Module):
|
| 1217 |
+
def __init__(self, c1, c_=256, c2=256): # ch_in, number of protos, number of masks
|
| 1218 |
+
super().__init__()
|
| 1219 |
+
|
| 1220 |
+
self.cv1 = Conv(c1, c_, k=3)
|
| 1221 |
+
self.cv2 = nn.Conv2d(c_, c2, 1, 1)
|
| 1222 |
+
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
|
| 1223 |
+
|
| 1224 |
+
def forward(self, x):
|
| 1225 |
+
return self.up(self.cv2(self.cv1(x)))
|
| 1226 |
+
|
| 1227 |
+
|
| 1228 |
+
class Classify(nn.Module):
|
| 1229 |
+
# YOLO classification head, i.e. x(b,c1,20,20) to x(b,c2)
|
| 1230 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1): # ch_in, ch_out, kernel, stride, padding, groups
|
| 1231 |
+
super().__init__()
|
| 1232 |
+
c_ = 1280 # efficientnet_b0 size
|
| 1233 |
+
self.conv = Conv(c1, c_, k, s, autopad(k, p), g)
|
| 1234 |
+
self.pool = nn.AdaptiveAvgPool2d(1) # to x(b,c_,1,1)
|
| 1235 |
+
self.drop = nn.Dropout(p=0.0, inplace=True)
|
| 1236 |
+
self.linear = nn.Linear(c_, c2) # to x(b,c2)
|
| 1237 |
+
|
| 1238 |
+
def forward(self, x):
|
| 1239 |
+
if isinstance(x, list):
|
| 1240 |
+
x = torch.cat(x, 1)
|
| 1241 |
+
return self.linear(self.drop(self.pool(self.conv(x)).flatten(1)))
|
| 1242 |
+
|
| 1243 |
+
# -------------- Deformable Convolution --------------
|
| 1244 |
+
class DCNv2(nn.Module):
|
| 1245 |
+
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
|
| 1246 |
+
padding=1, dilation=1, groups=1, deformable_groups=1):
|
| 1247 |
+
super(DCNv2, self).__init__()
|
| 1248 |
+
|
| 1249 |
+
self.in_channels = in_channels
|
| 1250 |
+
self.out_channels = out_channels
|
| 1251 |
+
self.kernel_size = (kernel_size, kernel_size)
|
| 1252 |
+
self.stride = (stride, stride)
|
| 1253 |
+
self.padding = (padding, padding)
|
| 1254 |
+
self.dilation = (dilation, dilation)
|
| 1255 |
+
self.groups = groups
|
| 1256 |
+
self.deformable_groups = deformable_groups
|
| 1257 |
+
|
| 1258 |
+
self.weight = nn.Parameter(
|
| 1259 |
+
torch.empty(out_channels, in_channels, *self.kernel_size)
|
| 1260 |
+
)
|
| 1261 |
+
self.bias = nn.Parameter(torch.empty(out_channels))
|
| 1262 |
+
|
| 1263 |
+
out_channels_offset_mask = (self.deformable_groups * 3 *
|
| 1264 |
+
self.kernel_size[0] * self.kernel_size[1])
|
| 1265 |
+
self.conv_offset_mask = nn.Conv2d(
|
| 1266 |
+
self.in_channels,
|
| 1267 |
+
out_channels_offset_mask,
|
| 1268 |
+
kernel_size=self.kernel_size,
|
| 1269 |
+
stride=self.stride,
|
| 1270 |
+
padding=self.padding,
|
| 1271 |
+
bias=True,
|
| 1272 |
+
)
|
| 1273 |
+
self.bn = nn.BatchNorm2d(out_channels)
|
| 1274 |
+
self.act = Conv.default_act
|
| 1275 |
+
self.reset_parameters()
|
| 1276 |
+
|
| 1277 |
+
def forward(self, x):
|
| 1278 |
+
offset_mask = self.conv_offset_mask(x)
|
| 1279 |
+
o1, o2, mask = torch.chunk(offset_mask, 3, dim=1)
|
| 1280 |
+
offset = torch.cat((o1, o2), dim=1)
|
| 1281 |
+
mask = torch.sigmoid(mask)
|
| 1282 |
+
x = torch.ops.torchvision.deform_conv2d(
|
| 1283 |
+
x,
|
| 1284 |
+
self.weight,
|
| 1285 |
+
offset,
|
| 1286 |
+
mask,
|
| 1287 |
+
self.bias,
|
| 1288 |
+
self.stride[0], self.stride[1],
|
| 1289 |
+
self.padding[0], self.padding[1],
|
| 1290 |
+
self.dilation[0], self.dilation[1],
|
| 1291 |
+
self.groups,
|
| 1292 |
+
self.deformable_groups,
|
| 1293 |
+
True
|
| 1294 |
+
)
|
| 1295 |
+
x = self.bn(x)
|
| 1296 |
+
x = self.act(x)
|
| 1297 |
+
return x
|
| 1298 |
+
|
| 1299 |
+
def reset_parameters(self):
|
| 1300 |
+
n = self.in_channels
|
| 1301 |
+
for k in self.kernel_size:
|
| 1302 |
+
n *= k
|
| 1303 |
+
std = 1. / math.sqrt(n)
|
| 1304 |
+
self.weight.data.uniform_(-std, std)
|
| 1305 |
+
self.bias.data.zero_()
|
| 1306 |
+
self.conv_offset_mask.weight.data.zero_()
|
| 1307 |
+
self.conv_offset_mask.bias.data.zero_()
|
| 1308 |
+
|
| 1309 |
+
|
| 1310 |
+
|
| 1311 |
+
class Bottleneck_DCNv2(nn.Module):
|
| 1312 |
+
# Standard bottleneck with DCN
|
| 1313 |
+
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5): # ch_in, ch_out, shortcut, groups, kernels, expand
|
| 1314 |
+
super().__init__()
|
| 1315 |
+
c_ = int(c2 * e) # hidden channels
|
| 1316 |
+
if k[0] == 3:
|
| 1317 |
+
self.cv1 = DCNv2(c1, c_, k[0], 1)
|
| 1318 |
+
else:
|
| 1319 |
+
self.cv1 = Conv(c1, c_, k[0], 1)
|
| 1320 |
+
if k[1] == 3:
|
| 1321 |
+
self.cv2 = DCNv2(c_, c2, k[1], 1, groups=g)
|
| 1322 |
+
else:
|
| 1323 |
+
self.cv2 = Conv(c_, c2, k[1], 1, g=g)
|
| 1324 |
+
self.add = shortcut and c1 == c2
|
| 1325 |
+
|
| 1326 |
+
def forward(self, x):
|
| 1327 |
+
return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
|
| 1328 |
+
|
| 1329 |
+
class C2f_DCNv2(nn.Module):
|
| 1330 |
+
# CSP Bottleneck with 2 convolutions
|
| 1331 |
+
def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5): # ch_in, ch_out, number, shortcut, groups, expansion
|
| 1332 |
+
super().__init__()
|
| 1333 |
+
self.c = int(c2 * e) # hidden channels
|
| 1334 |
+
self.cv1 = Conv(c1, 2 * self.c, 1, 1)
|
| 1335 |
+
self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
|
| 1336 |
+
self.m = nn.ModuleList(Bottleneck_DCNv2(self.c, self.c, shortcut, g, k=(3, 3), e=0.5) for _ in range(n))
|
| 1337 |
+
|
| 1338 |
+
def forward(self, x):
|
| 1339 |
+
y = list(self.cv1(x).split((self.c, self.c), 1))
|
| 1340 |
+
y.extend(m(y[-1]) for m in self.m)
|
| 1341 |
+
return self.cv2(torch.cat(y, 1))
|
| 1342 |
+
|
| 1343 |
+
|
| 1344 |
+
class RepDCNv2Bottleneck(RepNBottleneck):
|
| 1345 |
+
# Standard bottleneck
|
| 1346 |
+
def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5): # ch_in, ch_out, shortcut, kernels, groups, expand
|
| 1347 |
+
super().__init__(c1, c1, shortcut, g, k, e)
|
| 1348 |
+
self.cv1 = Bottleneck_DCNv2(c1, c1, shortcut, g, k, e)
|
| 1349 |
+
|
| 1350 |
+
class RepDCNv2CSP(RepNCSP):
|
| 1351 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
|
| 1352 |
+
super().__init__(c1, c2, n, shortcut, g, e)
|
| 1353 |
+
c_ = int(c2 * e)
|
| 1354 |
+
self.m = nn.Sequential(*(RepDCNv2Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
|
| 1355 |
+
|
| 1356 |
+
class RepDCNv2LEAN4(RepNCSPELAN4):
|
| 1357 |
+
def __init__(self, c1, c2, c3, c4, c5=1):
|
| 1358 |
+
super().__init__(c1, c2, c3, c4, c5)
|
| 1359 |
+
self.cv2 = nn.Sequential(RepDCNv2CSP(c3//2, c4, c5), Conv(c4, c4, 3, 1))
|
| 1360 |
+
self.cv3 = nn.Sequential(RepDCNv2CSP(c4, c4, c5), Conv(c4, c4, 3, 1))
|
models/experimental.py
ADDED
|
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn as nn
|
| 6 |
+
|
| 7 |
+
from utils.downloads import attempt_download
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
class Sum(nn.Module):
|
| 11 |
+
# Weighted sum of 2 or more layers https://arxiv.org/abs/1911.09070
|
| 12 |
+
def __init__(self, n, weight=False): # n: number of inputs
|
| 13 |
+
super().__init__()
|
| 14 |
+
self.weight = weight # apply weights boolean
|
| 15 |
+
self.iter = range(n - 1) # iter object
|
| 16 |
+
if weight:
|
| 17 |
+
self.w = nn.Parameter(-torch.arange(1.0, n) / 2, requires_grad=True) # layer weights
|
| 18 |
+
|
| 19 |
+
def forward(self, x):
|
| 20 |
+
y = x[0] # no weight
|
| 21 |
+
if self.weight:
|
| 22 |
+
w = torch.sigmoid(self.w) * 2
|
| 23 |
+
for i in self.iter:
|
| 24 |
+
y = y + x[i + 1] * w[i]
|
| 25 |
+
else:
|
| 26 |
+
for i in self.iter:
|
| 27 |
+
y = y + x[i + 1]
|
| 28 |
+
return y
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
class MixConv2d(nn.Module):
|
| 32 |
+
# Mixed Depth-wise Conv https://arxiv.org/abs/1907.09595
|
| 33 |
+
def __init__(self, c1, c2, k=(1, 3), s=1, equal_ch=True): # ch_in, ch_out, kernel, stride, ch_strategy
|
| 34 |
+
super().__init__()
|
| 35 |
+
n = len(k) # number of convolutions
|
| 36 |
+
if equal_ch: # equal c_ per group
|
| 37 |
+
i = torch.linspace(0, n - 1E-6, c2).floor() # c2 indices
|
| 38 |
+
c_ = [(i == g).sum() for g in range(n)] # intermediate channels
|
| 39 |
+
else: # equal weight.numel() per group
|
| 40 |
+
b = [c2] + [0] * n
|
| 41 |
+
a = np.eye(n + 1, n, k=-1)
|
| 42 |
+
a -= np.roll(a, 1, axis=1)
|
| 43 |
+
a *= np.array(k) ** 2
|
| 44 |
+
a[0] = 1
|
| 45 |
+
c_ = np.linalg.lstsq(a, b, rcond=None)[0].round() # solve for equal weight indices, ax = b
|
| 46 |
+
|
| 47 |
+
self.m = nn.ModuleList([
|
| 48 |
+
nn.Conv2d(c1, int(c_), k, s, k // 2, groups=math.gcd(c1, int(c_)), bias=False) for k, c_ in zip(k, c_)])
|
| 49 |
+
self.bn = nn.BatchNorm2d(c2)
|
| 50 |
+
self.act = nn.SiLU()
|
| 51 |
+
|
| 52 |
+
def forward(self, x):
|
| 53 |
+
return self.act(self.bn(torch.cat([m(x) for m in self.m], 1)))
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
class Ensemble(nn.ModuleList):
|
| 57 |
+
# Ensemble of models
|
| 58 |
+
def __init__(self):
|
| 59 |
+
super().__init__()
|
| 60 |
+
|
| 61 |
+
def forward(self, x, augment=False, profile=False, visualize=False):
|
| 62 |
+
y = [module(x, augment, profile, visualize)[0] for module in self]
|
| 63 |
+
# y = torch.stack(y).max(0)[0] # max ensemble
|
| 64 |
+
# y = torch.stack(y).mean(0) # mean ensemble
|
| 65 |
+
y = torch.cat(y, 1) # nms ensemble
|
| 66 |
+
return y, None # inference, train output
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
class ORT_NMS(torch.autograd.Function):
|
| 70 |
+
'''ONNX-Runtime NMS operation'''
|
| 71 |
+
@staticmethod
|
| 72 |
+
def forward(ctx,
|
| 73 |
+
boxes,
|
| 74 |
+
scores,
|
| 75 |
+
max_output_boxes_per_class=torch.tensor([100]),
|
| 76 |
+
iou_threshold=torch.tensor([0.45]),
|
| 77 |
+
score_threshold=torch.tensor([0.25])):
|
| 78 |
+
device = boxes.device
|
| 79 |
+
batch = scores.shape[0]
|
| 80 |
+
num_det = random.randint(0, 100)
|
| 81 |
+
batches = torch.randint(0, batch, (num_det,)).sort()[0].to(device)
|
| 82 |
+
idxs = torch.arange(100, 100 + num_det).to(device)
|
| 83 |
+
zeros = torch.zeros((num_det,), dtype=torch.int64).to(device)
|
| 84 |
+
selected_indices = torch.cat([batches[None], zeros[None], idxs[None]], 0).T.contiguous()
|
| 85 |
+
selected_indices = selected_indices.to(torch.int64)
|
| 86 |
+
return selected_indices
|
| 87 |
+
|
| 88 |
+
@staticmethod
|
| 89 |
+
def symbolic(g, boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold):
|
| 90 |
+
return g.op("NonMaxSuppression", boxes, scores, max_output_boxes_per_class, iou_threshold, score_threshold)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
class TRT_NMS(torch.autograd.Function):
|
| 94 |
+
'''TensorRT NMS operation'''
|
| 95 |
+
@staticmethod
|
| 96 |
+
def forward(
|
| 97 |
+
ctx,
|
| 98 |
+
boxes,
|
| 99 |
+
scores,
|
| 100 |
+
background_class=-1,
|
| 101 |
+
box_coding=1,
|
| 102 |
+
iou_threshold=0.45,
|
| 103 |
+
max_output_boxes=100,
|
| 104 |
+
plugin_version="1",
|
| 105 |
+
score_activation=0,
|
| 106 |
+
score_threshold=0.25,
|
| 107 |
+
):
|
| 108 |
+
|
| 109 |
+
batch_size, num_boxes, num_classes = scores.shape
|
| 110 |
+
num_det = torch.randint(0, max_output_boxes, (batch_size, 1), dtype=torch.int32)
|
| 111 |
+
det_boxes = torch.randn(batch_size, max_output_boxes, 4)
|
| 112 |
+
det_scores = torch.randn(batch_size, max_output_boxes)
|
| 113 |
+
det_classes = torch.randint(0, num_classes, (batch_size, max_output_boxes), dtype=torch.int32)
|
| 114 |
+
return num_det, det_boxes, det_scores, det_classes
|
| 115 |
+
|
| 116 |
+
@staticmethod
|
| 117 |
+
def symbolic(g,
|
| 118 |
+
boxes,
|
| 119 |
+
scores,
|
| 120 |
+
background_class=-1,
|
| 121 |
+
box_coding=1,
|
| 122 |
+
iou_threshold=0.45,
|
| 123 |
+
max_output_boxes=100,
|
| 124 |
+
plugin_version="1",
|
| 125 |
+
score_activation=0,
|
| 126 |
+
score_threshold=0.25):
|
| 127 |
+
out = g.op("TRT::EfficientNMS_TRT",
|
| 128 |
+
boxes,
|
| 129 |
+
scores,
|
| 130 |
+
background_class_i=background_class,
|
| 131 |
+
box_coding_i=box_coding,
|
| 132 |
+
iou_threshold_f=iou_threshold,
|
| 133 |
+
max_output_boxes_i=max_output_boxes,
|
| 134 |
+
plugin_version_s=plugin_version,
|
| 135 |
+
score_activation_i=score_activation,
|
| 136 |
+
score_threshold_f=score_threshold,
|
| 137 |
+
outputs=4)
|
| 138 |
+
nums, boxes, scores, classes = out
|
| 139 |
+
return nums, boxes, scores, classes
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
class ONNX_ORT(nn.Module):
|
| 143 |
+
'''onnx module with ONNX-Runtime NMS operation.'''
|
| 144 |
+
def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=640, device=None, n_classes=80):
|
| 145 |
+
super().__init__()
|
| 146 |
+
self.device = device if device else torch.device("cpu")
|
| 147 |
+
self.max_obj = torch.tensor([max_obj]).to(device)
|
| 148 |
+
self.iou_threshold = torch.tensor([iou_thres]).to(device)
|
| 149 |
+
self.score_threshold = torch.tensor([score_thres]).to(device)
|
| 150 |
+
self.max_wh = max_wh # if max_wh != 0 : non-agnostic else : agnostic
|
| 151 |
+
self.convert_matrix = torch.tensor([[1, 0, 1, 0], [0, 1, 0, 1], [-0.5, 0, 0.5, 0], [0, -0.5, 0, 0.5]],
|
| 152 |
+
dtype=torch.float32,
|
| 153 |
+
device=self.device)
|
| 154 |
+
self.n_classes=n_classes
|
| 155 |
+
|
| 156 |
+
def forward(self, x):
|
| 157 |
+
## https://github.com/thaitc-hust/yolov9-tensorrt/blob/main/torch2onnx.py
|
| 158 |
+
## thanks https://github.com/thaitc-hust
|
| 159 |
+
if isinstance(x, list): ## yolov9-c.pt and yolov9-e.pt return list
|
| 160 |
+
x = x[1]
|
| 161 |
+
x = x.permute(0, 2, 1)
|
| 162 |
+
bboxes_x = x[..., 0:1]
|
| 163 |
+
bboxes_y = x[..., 1:2]
|
| 164 |
+
bboxes_w = x[..., 2:3]
|
| 165 |
+
bboxes_h = x[..., 3:4]
|
| 166 |
+
bboxes = torch.cat([bboxes_x, bboxes_y, bboxes_w, bboxes_h], dim = -1)
|
| 167 |
+
bboxes = bboxes.unsqueeze(2) # [n_batch, n_bboxes, 4] -> [n_batch, n_bboxes, 1, 4]
|
| 168 |
+
obj_conf = x[..., 4:]
|
| 169 |
+
scores = obj_conf
|
| 170 |
+
bboxes @= self.convert_matrix
|
| 171 |
+
max_score, category_id = scores.max(2, keepdim=True)
|
| 172 |
+
dis = category_id.float() * self.max_wh
|
| 173 |
+
nmsbox = bboxes + dis
|
| 174 |
+
max_score_tp = max_score.transpose(1, 2).contiguous()
|
| 175 |
+
selected_indices = ORT_NMS.apply(nmsbox, max_score_tp, self.max_obj, self.iou_threshold, self.score_threshold)
|
| 176 |
+
X, Y = selected_indices[:, 0], selected_indices[:, 2]
|
| 177 |
+
selected_boxes = bboxes[X, Y, :]
|
| 178 |
+
selected_categories = category_id[X, Y, :].float()
|
| 179 |
+
selected_scores = max_score[X, Y, :]
|
| 180 |
+
X = X.unsqueeze(1).float()
|
| 181 |
+
return torch.cat([X, selected_boxes, selected_categories, selected_scores], 1)
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
class ONNX_TRT(nn.Module):
|
| 185 |
+
'''onnx module with TensorRT NMS operation.'''
|
| 186 |
+
def __init__(self, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None ,device=None, n_classes=80):
|
| 187 |
+
super().__init__()
|
| 188 |
+
assert max_wh is None
|
| 189 |
+
self.device = device if device else torch.device('cpu')
|
| 190 |
+
self.background_class = -1,
|
| 191 |
+
self.box_coding = 1,
|
| 192 |
+
self.iou_threshold = iou_thres
|
| 193 |
+
self.max_obj = max_obj
|
| 194 |
+
self.plugin_version = '1'
|
| 195 |
+
self.score_activation = 0
|
| 196 |
+
self.score_threshold = score_thres
|
| 197 |
+
self.n_classes=n_classes
|
| 198 |
+
|
| 199 |
+
def forward(self, x):
|
| 200 |
+
## https://github.com/thaitc-hust/yolov9-tensorrt/blob/main/torch2onnx.py
|
| 201 |
+
## thanks https://github.com/thaitc-hust
|
| 202 |
+
if isinstance(x, list): ## yolov9-c.pt and yolov9-e.pt return list
|
| 203 |
+
x = x[1]
|
| 204 |
+
x = x.permute(0, 2, 1)
|
| 205 |
+
bboxes_x = x[..., 0:1]
|
| 206 |
+
bboxes_y = x[..., 1:2]
|
| 207 |
+
bboxes_w = x[..., 2:3]
|
| 208 |
+
bboxes_h = x[..., 3:4]
|
| 209 |
+
bboxes = torch.cat([bboxes_x, bboxes_y, bboxes_w, bboxes_h], dim = -1)
|
| 210 |
+
bboxes = bboxes.unsqueeze(2) # [n_batch, n_bboxes, 4] -> [n_batch, n_bboxes, 1, 4]
|
| 211 |
+
obj_conf = x[..., 4:]
|
| 212 |
+
scores = obj_conf
|
| 213 |
+
num_det, det_boxes, det_scores, det_classes = TRT_NMS.apply(bboxes, scores, self.background_class, self.box_coding,
|
| 214 |
+
self.iou_threshold, self.max_obj,
|
| 215 |
+
self.plugin_version, self.score_activation,
|
| 216 |
+
self.score_threshold)
|
| 217 |
+
return num_det, det_boxes, det_scores, det_classes
|
| 218 |
+
|
| 219 |
+
class End2End(nn.Module):
|
| 220 |
+
'''export onnx or tensorrt model with NMS operation.'''
|
| 221 |
+
def __init__(self, model, max_obj=100, iou_thres=0.45, score_thres=0.25, max_wh=None, device=None, n_classes=80):
|
| 222 |
+
super().__init__()
|
| 223 |
+
device = device if device else torch.device('cpu')
|
| 224 |
+
assert isinstance(max_wh,(int)) or max_wh is None
|
| 225 |
+
self.model = model.to(device)
|
| 226 |
+
self.model.model[-1].end2end = True
|
| 227 |
+
self.patch_model = ONNX_TRT if max_wh is None else ONNX_ORT
|
| 228 |
+
self.end2end = self.patch_model(max_obj, iou_thres, score_thres, max_wh, device, n_classes)
|
| 229 |
+
self.end2end.eval()
|
| 230 |
+
|
| 231 |
+
def forward(self, x):
|
| 232 |
+
x = self.model(x)
|
| 233 |
+
x = self.end2end(x)
|
| 234 |
+
return x
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
def attempt_load(weights, device=None, inplace=True, fuse=True):
|
| 238 |
+
# Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
|
| 239 |
+
from models.yolo import Detect, Model
|
| 240 |
+
|
| 241 |
+
model = Ensemble()
|
| 242 |
+
for w in weights if isinstance(weights, list) else [weights]:
|
| 243 |
+
ckpt = torch.load(attempt_download(w), map_location='cpu') # load
|
| 244 |
+
ckpt = (ckpt.get('ema') or ckpt['model']).to(device).float() # FP32 model
|
| 245 |
+
|
| 246 |
+
# Model compatibility updates
|
| 247 |
+
if not hasattr(ckpt, 'stride'):
|
| 248 |
+
ckpt.stride = torch.tensor([32.])
|
| 249 |
+
if hasattr(ckpt, 'names') and isinstance(ckpt.names, (list, tuple)):
|
| 250 |
+
ckpt.names = dict(enumerate(ckpt.names)) # convert to dict
|
| 251 |
+
|
| 252 |
+
model.append(ckpt.fuse().eval() if fuse and hasattr(ckpt, 'fuse') else ckpt.eval()) # model in eval mode
|
| 253 |
+
|
| 254 |
+
# Module compatibility updates
|
| 255 |
+
for m in model.modules():
|
| 256 |
+
t = type(m)
|
| 257 |
+
if t in (nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6, nn.SiLU, Detect, Model):
|
| 258 |
+
m.inplace = inplace # torch 1.7.0 compatibility
|
| 259 |
+
# if t is Detect and not isinstance(m.anchor_grid, list):
|
| 260 |
+
# delattr(m, 'anchor_grid')
|
| 261 |
+
# setattr(m, 'anchor_grid', [torch.zeros(1)] * m.nl)
|
| 262 |
+
elif t is nn.Upsample and not hasattr(m, 'recompute_scale_factor'):
|
| 263 |
+
m.recompute_scale_factor = None # torch 1.11.0 compatibility
|
| 264 |
+
|
| 265 |
+
# Return model
|
| 266 |
+
if len(model) == 1:
|
| 267 |
+
return model[-1]
|
| 268 |
+
|
| 269 |
+
# Return detection ensemble
|
| 270 |
+
print(f'Ensemble created with {weights}\n')
|
| 271 |
+
for k in 'names', 'nc', 'yaml':
|
| 272 |
+
setattr(model, k, getattr(model[0], k))
|
| 273 |
+
model.stride = model[torch.argmax(torch.tensor([m.stride.max() for m in model])).int()].stride # max stride
|
| 274 |
+
assert all(model[0].nc == m.nc for m in model), f'Models have different class counts: {[m.nc for m in model]}'
|
| 275 |
+
return model
|
models/tf.py
ADDED
|
@@ -0,0 +1,596 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import sys
|
| 3 |
+
from copy import deepcopy
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
|
| 6 |
+
FILE = Path(__file__).resolve()
|
| 7 |
+
ROOT = FILE.parents[1] # YOLO root directory
|
| 8 |
+
if str(ROOT) not in sys.path:
|
| 9 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
| 10 |
+
# ROOT = ROOT.relative_to(Path.cwd()) # relative
|
| 11 |
+
|
| 12 |
+
import numpy as np
|
| 13 |
+
import tensorflow as tf
|
| 14 |
+
import torch
|
| 15 |
+
import torch.nn as nn
|
| 16 |
+
from tensorflow import keras
|
| 17 |
+
|
| 18 |
+
from models.common import (C3, SPP, SPPF, Bottleneck, BottleneckCSP, C3x, Concat, Conv, CrossConv, DWConv,
|
| 19 |
+
DWConvTranspose2d, Focus, autopad)
|
| 20 |
+
from models.experimental import MixConv2d, attempt_load
|
| 21 |
+
from models.yolo import Detect, Segment
|
| 22 |
+
from utils.activations import SiLU
|
| 23 |
+
from utils.general import LOGGER, make_divisible, print_args
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
class TFBN(keras.layers.Layer):
|
| 27 |
+
# TensorFlow BatchNormalization wrapper
|
| 28 |
+
def __init__(self, w=None):
|
| 29 |
+
super().__init__()
|
| 30 |
+
self.bn = keras.layers.BatchNormalization(
|
| 31 |
+
beta_initializer=keras.initializers.Constant(w.bias.numpy()),
|
| 32 |
+
gamma_initializer=keras.initializers.Constant(w.weight.numpy()),
|
| 33 |
+
moving_mean_initializer=keras.initializers.Constant(w.running_mean.numpy()),
|
| 34 |
+
moving_variance_initializer=keras.initializers.Constant(w.running_var.numpy()),
|
| 35 |
+
epsilon=w.eps)
|
| 36 |
+
|
| 37 |
+
def call(self, inputs):
|
| 38 |
+
return self.bn(inputs)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class TFPad(keras.layers.Layer):
|
| 42 |
+
# Pad inputs in spatial dimensions 1 and 2
|
| 43 |
+
def __init__(self, pad):
|
| 44 |
+
super().__init__()
|
| 45 |
+
if isinstance(pad, int):
|
| 46 |
+
self.pad = tf.constant([[0, 0], [pad, pad], [pad, pad], [0, 0]])
|
| 47 |
+
else: # tuple/list
|
| 48 |
+
self.pad = tf.constant([[0, 0], [pad[0], pad[0]], [pad[1], pad[1]], [0, 0]])
|
| 49 |
+
|
| 50 |
+
def call(self, inputs):
|
| 51 |
+
return tf.pad(inputs, self.pad, mode='constant', constant_values=0)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
class TFConv(keras.layers.Layer):
|
| 55 |
+
# Standard convolution
|
| 56 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
|
| 57 |
+
# ch_in, ch_out, weights, kernel, stride, padding, groups
|
| 58 |
+
super().__init__()
|
| 59 |
+
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
|
| 60 |
+
# TensorFlow convolution padding is inconsistent with PyTorch (e.g. k=3 s=2 'SAME' padding)
|
| 61 |
+
# see https://stackoverflow.com/questions/52975843/comparing-conv2d-with-padding-between-tensorflow-and-pytorch
|
| 62 |
+
conv = keras.layers.Conv2D(
|
| 63 |
+
filters=c2,
|
| 64 |
+
kernel_size=k,
|
| 65 |
+
strides=s,
|
| 66 |
+
padding='SAME' if s == 1 else 'VALID',
|
| 67 |
+
use_bias=not hasattr(w, 'bn'),
|
| 68 |
+
kernel_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
|
| 69 |
+
bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
|
| 70 |
+
self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
|
| 71 |
+
self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
|
| 72 |
+
self.act = activations(w.act) if act else tf.identity
|
| 73 |
+
|
| 74 |
+
def call(self, inputs):
|
| 75 |
+
return self.act(self.bn(self.conv(inputs)))
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
class TFDWConv(keras.layers.Layer):
|
| 79 |
+
# Depthwise convolution
|
| 80 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, act=True, w=None):
|
| 81 |
+
# ch_in, ch_out, weights, kernel, stride, padding, groups
|
| 82 |
+
super().__init__()
|
| 83 |
+
assert c2 % c1 == 0, f'TFDWConv() output={c2} must be a multiple of input={c1} channels'
|
| 84 |
+
conv = keras.layers.DepthwiseConv2D(
|
| 85 |
+
kernel_size=k,
|
| 86 |
+
depth_multiplier=c2 // c1,
|
| 87 |
+
strides=s,
|
| 88 |
+
padding='SAME' if s == 1 else 'VALID',
|
| 89 |
+
use_bias=not hasattr(w, 'bn'),
|
| 90 |
+
depthwise_initializer=keras.initializers.Constant(w.conv.weight.permute(2, 3, 1, 0).numpy()),
|
| 91 |
+
bias_initializer='zeros' if hasattr(w, 'bn') else keras.initializers.Constant(w.conv.bias.numpy()))
|
| 92 |
+
self.conv = conv if s == 1 else keras.Sequential([TFPad(autopad(k, p)), conv])
|
| 93 |
+
self.bn = TFBN(w.bn) if hasattr(w, 'bn') else tf.identity
|
| 94 |
+
self.act = activations(w.act) if act else tf.identity
|
| 95 |
+
|
| 96 |
+
def call(self, inputs):
|
| 97 |
+
return self.act(self.bn(self.conv(inputs)))
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
class TFDWConvTranspose2d(keras.layers.Layer):
|
| 101 |
+
# Depthwise ConvTranspose2d
|
| 102 |
+
def __init__(self, c1, c2, k=1, s=1, p1=0, p2=0, w=None):
|
| 103 |
+
# ch_in, ch_out, weights, kernel, stride, padding, groups
|
| 104 |
+
super().__init__()
|
| 105 |
+
assert c1 == c2, f'TFDWConv() output={c2} must be equal to input={c1} channels'
|
| 106 |
+
assert k == 4 and p1 == 1, 'TFDWConv() only valid for k=4 and p1=1'
|
| 107 |
+
weight, bias = w.weight.permute(2, 3, 1, 0).numpy(), w.bias.numpy()
|
| 108 |
+
self.c1 = c1
|
| 109 |
+
self.conv = [
|
| 110 |
+
keras.layers.Conv2DTranspose(filters=1,
|
| 111 |
+
kernel_size=k,
|
| 112 |
+
strides=s,
|
| 113 |
+
padding='VALID',
|
| 114 |
+
output_padding=p2,
|
| 115 |
+
use_bias=True,
|
| 116 |
+
kernel_initializer=keras.initializers.Constant(weight[..., i:i + 1]),
|
| 117 |
+
bias_initializer=keras.initializers.Constant(bias[i])) for i in range(c1)]
|
| 118 |
+
|
| 119 |
+
def call(self, inputs):
|
| 120 |
+
return tf.concat([m(x) for m, x in zip(self.conv, tf.split(inputs, self.c1, 3))], 3)[:, 1:-1, 1:-1]
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
class TFFocus(keras.layers.Layer):
|
| 124 |
+
# Focus wh information into c-space
|
| 125 |
+
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True, w=None):
|
| 126 |
+
# ch_in, ch_out, kernel, stride, padding, groups
|
| 127 |
+
super().__init__()
|
| 128 |
+
self.conv = TFConv(c1 * 4, c2, k, s, p, g, act, w.conv)
|
| 129 |
+
|
| 130 |
+
def call(self, inputs): # x(b,w,h,c) -> y(b,w/2,h/2,4c)
|
| 131 |
+
# inputs = inputs / 255 # normalize 0-255 to 0-1
|
| 132 |
+
inputs = [inputs[:, ::2, ::2, :], inputs[:, 1::2, ::2, :], inputs[:, ::2, 1::2, :], inputs[:, 1::2, 1::2, :]]
|
| 133 |
+
return self.conv(tf.concat(inputs, 3))
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
class TFBottleneck(keras.layers.Layer):
|
| 137 |
+
# Standard bottleneck
|
| 138 |
+
def __init__(self, c1, c2, shortcut=True, g=1, e=0.5, w=None): # ch_in, ch_out, shortcut, groups, expansion
|
| 139 |
+
super().__init__()
|
| 140 |
+
c_ = int(c2 * e) # hidden channels
|
| 141 |
+
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
| 142 |
+
self.cv2 = TFConv(c_, c2, 3, 1, g=g, w=w.cv2)
|
| 143 |
+
self.add = shortcut and c1 == c2
|
| 144 |
+
|
| 145 |
+
def call(self, inputs):
|
| 146 |
+
return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
class TFCrossConv(keras.layers.Layer):
|
| 150 |
+
# Cross Convolution
|
| 151 |
+
def __init__(self, c1, c2, k=3, s=1, g=1, e=1.0, shortcut=False, w=None):
|
| 152 |
+
super().__init__()
|
| 153 |
+
c_ = int(c2 * e) # hidden channels
|
| 154 |
+
self.cv1 = TFConv(c1, c_, (1, k), (1, s), w=w.cv1)
|
| 155 |
+
self.cv2 = TFConv(c_, c2, (k, 1), (s, 1), g=g, w=w.cv2)
|
| 156 |
+
self.add = shortcut and c1 == c2
|
| 157 |
+
|
| 158 |
+
def call(self, inputs):
|
| 159 |
+
return inputs + self.cv2(self.cv1(inputs)) if self.add else self.cv2(self.cv1(inputs))
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
class TFConv2d(keras.layers.Layer):
|
| 163 |
+
# Substitution for PyTorch nn.Conv2D
|
| 164 |
+
def __init__(self, c1, c2, k, s=1, g=1, bias=True, w=None):
|
| 165 |
+
super().__init__()
|
| 166 |
+
assert g == 1, "TF v2.2 Conv2D does not support 'groups' argument"
|
| 167 |
+
self.conv = keras.layers.Conv2D(filters=c2,
|
| 168 |
+
kernel_size=k,
|
| 169 |
+
strides=s,
|
| 170 |
+
padding='VALID',
|
| 171 |
+
use_bias=bias,
|
| 172 |
+
kernel_initializer=keras.initializers.Constant(
|
| 173 |
+
w.weight.permute(2, 3, 1, 0).numpy()),
|
| 174 |
+
bias_initializer=keras.initializers.Constant(w.bias.numpy()) if bias else None)
|
| 175 |
+
|
| 176 |
+
def call(self, inputs):
|
| 177 |
+
return self.conv(inputs)
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
class TFBottleneckCSP(keras.layers.Layer):
|
| 181 |
+
# CSP Bottleneck https://github.com/WongKinYiu/CrossStagePartialNetworks
|
| 182 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
|
| 183 |
+
# ch_in, ch_out, number, shortcut, groups, expansion
|
| 184 |
+
super().__init__()
|
| 185 |
+
c_ = int(c2 * e) # hidden channels
|
| 186 |
+
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
| 187 |
+
self.cv2 = TFConv2d(c1, c_, 1, 1, bias=False, w=w.cv2)
|
| 188 |
+
self.cv3 = TFConv2d(c_, c_, 1, 1, bias=False, w=w.cv3)
|
| 189 |
+
self.cv4 = TFConv(2 * c_, c2, 1, 1, w=w.cv4)
|
| 190 |
+
self.bn = TFBN(w.bn)
|
| 191 |
+
self.act = lambda x: keras.activations.swish(x)
|
| 192 |
+
self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
|
| 193 |
+
|
| 194 |
+
def call(self, inputs):
|
| 195 |
+
y1 = self.cv3(self.m(self.cv1(inputs)))
|
| 196 |
+
y2 = self.cv2(inputs)
|
| 197 |
+
return self.cv4(self.act(self.bn(tf.concat((y1, y2), axis=3))))
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
class TFC3(keras.layers.Layer):
|
| 201 |
+
# CSP Bottleneck with 3 convolutions
|
| 202 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
|
| 203 |
+
# ch_in, ch_out, number, shortcut, groups, expansion
|
| 204 |
+
super().__init__()
|
| 205 |
+
c_ = int(c2 * e) # hidden channels
|
| 206 |
+
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
| 207 |
+
self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
|
| 208 |
+
self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
|
| 209 |
+
self.m = keras.Sequential([TFBottleneck(c_, c_, shortcut, g, e=1.0, w=w.m[j]) for j in range(n)])
|
| 210 |
+
|
| 211 |
+
def call(self, inputs):
|
| 212 |
+
return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
|
| 213 |
+
|
| 214 |
+
|
| 215 |
+
class TFC3x(keras.layers.Layer):
|
| 216 |
+
# 3 module with cross-convolutions
|
| 217 |
+
def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, w=None):
|
| 218 |
+
# ch_in, ch_out, number, shortcut, groups, expansion
|
| 219 |
+
super().__init__()
|
| 220 |
+
c_ = int(c2 * e) # hidden channels
|
| 221 |
+
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
| 222 |
+
self.cv2 = TFConv(c1, c_, 1, 1, w=w.cv2)
|
| 223 |
+
self.cv3 = TFConv(2 * c_, c2, 1, 1, w=w.cv3)
|
| 224 |
+
self.m = keras.Sequential([
|
| 225 |
+
TFCrossConv(c_, c_, k=3, s=1, g=g, e=1.0, shortcut=shortcut, w=w.m[j]) for j in range(n)])
|
| 226 |
+
|
| 227 |
+
def call(self, inputs):
|
| 228 |
+
return self.cv3(tf.concat((self.m(self.cv1(inputs)), self.cv2(inputs)), axis=3))
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
class TFSPP(keras.layers.Layer):
|
| 232 |
+
# Spatial pyramid pooling layer used in YOLOv3-SPP
|
| 233 |
+
def __init__(self, c1, c2, k=(5, 9, 13), w=None):
|
| 234 |
+
super().__init__()
|
| 235 |
+
c_ = c1 // 2 # hidden channels
|
| 236 |
+
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
| 237 |
+
self.cv2 = TFConv(c_ * (len(k) + 1), c2, 1, 1, w=w.cv2)
|
| 238 |
+
self.m = [keras.layers.MaxPool2D(pool_size=x, strides=1, padding='SAME') for x in k]
|
| 239 |
+
|
| 240 |
+
def call(self, inputs):
|
| 241 |
+
x = self.cv1(inputs)
|
| 242 |
+
return self.cv2(tf.concat([x] + [m(x) for m in self.m], 3))
|
| 243 |
+
|
| 244 |
+
|
| 245 |
+
class TFSPPF(keras.layers.Layer):
|
| 246 |
+
# Spatial pyramid pooling-Fast layer
|
| 247 |
+
def __init__(self, c1, c2, k=5, w=None):
|
| 248 |
+
super().__init__()
|
| 249 |
+
c_ = c1 // 2 # hidden channels
|
| 250 |
+
self.cv1 = TFConv(c1, c_, 1, 1, w=w.cv1)
|
| 251 |
+
self.cv2 = TFConv(c_ * 4, c2, 1, 1, w=w.cv2)
|
| 252 |
+
self.m = keras.layers.MaxPool2D(pool_size=k, strides=1, padding='SAME')
|
| 253 |
+
|
| 254 |
+
def call(self, inputs):
|
| 255 |
+
x = self.cv1(inputs)
|
| 256 |
+
y1 = self.m(x)
|
| 257 |
+
y2 = self.m(y1)
|
| 258 |
+
return self.cv2(tf.concat([x, y1, y2, self.m(y2)], 3))
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
class TFDetect(keras.layers.Layer):
|
| 262 |
+
# TF YOLO Detect layer
|
| 263 |
+
def __init__(self, nc=80, anchors=(), ch=(), imgsz=(640, 640), w=None): # detection layer
|
| 264 |
+
super().__init__()
|
| 265 |
+
self.stride = tf.convert_to_tensor(w.stride.numpy(), dtype=tf.float32)
|
| 266 |
+
self.nc = nc # number of classes
|
| 267 |
+
self.no = nc + 5 # number of outputs per anchor
|
| 268 |
+
self.nl = len(anchors) # number of detection layers
|
| 269 |
+
self.na = len(anchors[0]) // 2 # number of anchors
|
| 270 |
+
self.grid = [tf.zeros(1)] * self.nl # init grid
|
| 271 |
+
self.anchors = tf.convert_to_tensor(w.anchors.numpy(), dtype=tf.float32)
|
| 272 |
+
self.anchor_grid = tf.reshape(self.anchors * tf.reshape(self.stride, [self.nl, 1, 1]), [self.nl, 1, -1, 1, 2])
|
| 273 |
+
self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)]
|
| 274 |
+
self.training = False # set to False after building model
|
| 275 |
+
self.imgsz = imgsz
|
| 276 |
+
for i in range(self.nl):
|
| 277 |
+
ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
|
| 278 |
+
self.grid[i] = self._make_grid(nx, ny)
|
| 279 |
+
|
| 280 |
+
def call(self, inputs):
|
| 281 |
+
z = [] # inference output
|
| 282 |
+
x = []
|
| 283 |
+
for i in range(self.nl):
|
| 284 |
+
x.append(self.m[i](inputs[i]))
|
| 285 |
+
# x(bs,20,20,255) to x(bs,3,20,20,85)
|
| 286 |
+
ny, nx = self.imgsz[0] // self.stride[i], self.imgsz[1] // self.stride[i]
|
| 287 |
+
x[i] = tf.reshape(x[i], [-1, ny * nx, self.na, self.no])
|
| 288 |
+
|
| 289 |
+
if not self.training: # inference
|
| 290 |
+
y = x[i]
|
| 291 |
+
grid = tf.transpose(self.grid[i], [0, 2, 1, 3]) - 0.5
|
| 292 |
+
anchor_grid = tf.transpose(self.anchor_grid[i], [0, 2, 1, 3]) * 4
|
| 293 |
+
xy = (tf.sigmoid(y[..., 0:2]) * 2 + grid) * self.stride[i] # xy
|
| 294 |
+
wh = tf.sigmoid(y[..., 2:4]) ** 2 * anchor_grid
|
| 295 |
+
# Normalize xywh to 0-1 to reduce calibration error
|
| 296 |
+
xy /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
|
| 297 |
+
wh /= tf.constant([[self.imgsz[1], self.imgsz[0]]], dtype=tf.float32)
|
| 298 |
+
y = tf.concat([xy, wh, tf.sigmoid(y[..., 4:5 + self.nc]), y[..., 5 + self.nc:]], -1)
|
| 299 |
+
z.append(tf.reshape(y, [-1, self.na * ny * nx, self.no]))
|
| 300 |
+
|
| 301 |
+
return tf.transpose(x, [0, 2, 1, 3]) if self.training else (tf.concat(z, 1),)
|
| 302 |
+
|
| 303 |
+
@staticmethod
|
| 304 |
+
def _make_grid(nx=20, ny=20):
|
| 305 |
+
# yv, xv = torch.meshgrid([torch.arange(ny), torch.arange(nx)])
|
| 306 |
+
# return torch.stack((xv, yv), 2).view((1, 1, ny, nx, 2)).float()
|
| 307 |
+
xv, yv = tf.meshgrid(tf.range(nx), tf.range(ny))
|
| 308 |
+
return tf.cast(tf.reshape(tf.stack([xv, yv], 2), [1, 1, ny * nx, 2]), dtype=tf.float32)
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
class TFSegment(TFDetect):
|
| 312 |
+
# YOLO Segment head for segmentation models
|
| 313 |
+
def __init__(self, nc=80, anchors=(), nm=32, npr=256, ch=(), imgsz=(640, 640), w=None):
|
| 314 |
+
super().__init__(nc, anchors, ch, imgsz, w)
|
| 315 |
+
self.nm = nm # number of masks
|
| 316 |
+
self.npr = npr # number of protos
|
| 317 |
+
self.no = 5 + nc + self.nm # number of outputs per anchor
|
| 318 |
+
self.m = [TFConv2d(x, self.no * self.na, 1, w=w.m[i]) for i, x in enumerate(ch)] # output conv
|
| 319 |
+
self.proto = TFProto(ch[0], self.npr, self.nm, w=w.proto) # protos
|
| 320 |
+
self.detect = TFDetect.call
|
| 321 |
+
|
| 322 |
+
def call(self, x):
|
| 323 |
+
p = self.proto(x[0])
|
| 324 |
+
# p = TFUpsample(None, scale_factor=4, mode='nearest')(self.proto(x[0])) # (optional) full-size protos
|
| 325 |
+
p = tf.transpose(p, [0, 3, 1, 2]) # from shape(1,160,160,32) to shape(1,32,160,160)
|
| 326 |
+
x = self.detect(self, x)
|
| 327 |
+
return (x, p) if self.training else (x[0], p)
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
class TFProto(keras.layers.Layer):
|
| 331 |
+
|
| 332 |
+
def __init__(self, c1, c_=256, c2=32, w=None):
|
| 333 |
+
super().__init__()
|
| 334 |
+
self.cv1 = TFConv(c1, c_, k=3, w=w.cv1)
|
| 335 |
+
self.upsample = TFUpsample(None, scale_factor=2, mode='nearest')
|
| 336 |
+
self.cv2 = TFConv(c_, c_, k=3, w=w.cv2)
|
| 337 |
+
self.cv3 = TFConv(c_, c2, w=w.cv3)
|
| 338 |
+
|
| 339 |
+
def call(self, inputs):
|
| 340 |
+
return self.cv3(self.cv2(self.upsample(self.cv1(inputs))))
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
class TFUpsample(keras.layers.Layer):
|
| 344 |
+
# TF version of torch.nn.Upsample()
|
| 345 |
+
def __init__(self, size, scale_factor, mode, w=None): # warning: all arguments needed including 'w'
|
| 346 |
+
super().__init__()
|
| 347 |
+
assert scale_factor % 2 == 0, "scale_factor must be multiple of 2"
|
| 348 |
+
self.upsample = lambda x: tf.image.resize(x, (x.shape[1] * scale_factor, x.shape[2] * scale_factor), mode)
|
| 349 |
+
# self.upsample = keras.layers.UpSampling2D(size=scale_factor, interpolation=mode)
|
| 350 |
+
# with default arguments: align_corners=False, half_pixel_centers=False
|
| 351 |
+
# self.upsample = lambda x: tf.raw_ops.ResizeNearestNeighbor(images=x,
|
| 352 |
+
# size=(x.shape[1] * 2, x.shape[2] * 2))
|
| 353 |
+
|
| 354 |
+
def call(self, inputs):
|
| 355 |
+
return self.upsample(inputs)
|
| 356 |
+
|
| 357 |
+
|
| 358 |
+
class TFConcat(keras.layers.Layer):
|
| 359 |
+
# TF version of torch.concat()
|
| 360 |
+
def __init__(self, dimension=1, w=None):
|
| 361 |
+
super().__init__()
|
| 362 |
+
assert dimension == 1, "convert only NCHW to NHWC concat"
|
| 363 |
+
self.d = 3
|
| 364 |
+
|
| 365 |
+
def call(self, inputs):
|
| 366 |
+
return tf.concat(inputs, self.d)
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
def parse_model(d, ch, model, imgsz): # model_dict, input_channels(3)
|
| 370 |
+
LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
|
| 371 |
+
anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
|
| 372 |
+
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
| 373 |
+
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
| 374 |
+
|
| 375 |
+
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
| 376 |
+
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
|
| 377 |
+
m_str = m
|
| 378 |
+
m = eval(m) if isinstance(m, str) else m # eval strings
|
| 379 |
+
for j, a in enumerate(args):
|
| 380 |
+
try:
|
| 381 |
+
args[j] = eval(a) if isinstance(a, str) else a # eval strings
|
| 382 |
+
except NameError:
|
| 383 |
+
pass
|
| 384 |
+
|
| 385 |
+
n = max(round(n * gd), 1) if n > 1 else n # depth gain
|
| 386 |
+
if m in [
|
| 387 |
+
nn.Conv2d, Conv, DWConv, DWConvTranspose2d, Bottleneck, SPP, SPPF, MixConv2d, Focus, CrossConv,
|
| 388 |
+
BottleneckCSP, C3, C3x]:
|
| 389 |
+
c1, c2 = ch[f], args[0]
|
| 390 |
+
c2 = make_divisible(c2 * gw, 8) if c2 != no else c2
|
| 391 |
+
|
| 392 |
+
args = [c1, c2, *args[1:]]
|
| 393 |
+
if m in [BottleneckCSP, C3, C3x]:
|
| 394 |
+
args.insert(2, n)
|
| 395 |
+
n = 1
|
| 396 |
+
elif m is nn.BatchNorm2d:
|
| 397 |
+
args = [ch[f]]
|
| 398 |
+
elif m is Concat:
|
| 399 |
+
c2 = sum(ch[-1 if x == -1 else x + 1] for x in f)
|
| 400 |
+
elif m in [Detect, Segment]:
|
| 401 |
+
args.append([ch[x + 1] for x in f])
|
| 402 |
+
if isinstance(args[1], int): # number of anchors
|
| 403 |
+
args[1] = [list(range(args[1] * 2))] * len(f)
|
| 404 |
+
if m is Segment:
|
| 405 |
+
args[3] = make_divisible(args[3] * gw, 8)
|
| 406 |
+
args.append(imgsz)
|
| 407 |
+
else:
|
| 408 |
+
c2 = ch[f]
|
| 409 |
+
|
| 410 |
+
tf_m = eval('TF' + m_str.replace('nn.', ''))
|
| 411 |
+
m_ = keras.Sequential([tf_m(*args, w=model.model[i][j]) for j in range(n)]) if n > 1 \
|
| 412 |
+
else tf_m(*args, w=model.model[i]) # module
|
| 413 |
+
|
| 414 |
+
torch_m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
|
| 415 |
+
t = str(m)[8:-2].replace('__main__.', '') # module type
|
| 416 |
+
np = sum(x.numel() for x in torch_m_.parameters()) # number params
|
| 417 |
+
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
|
| 418 |
+
LOGGER.info(f'{i:>3}{str(f):>18}{str(n):>3}{np:>10} {t:<40}{str(args):<30}') # print
|
| 419 |
+
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
| 420 |
+
layers.append(m_)
|
| 421 |
+
ch.append(c2)
|
| 422 |
+
return keras.Sequential(layers), sorted(save)
|
| 423 |
+
|
| 424 |
+
|
| 425 |
+
class TFModel:
|
| 426 |
+
# TF YOLO model
|
| 427 |
+
def __init__(self, cfg='yolo.yaml', ch=3, nc=None, model=None, imgsz=(640, 640)): # model, channels, classes
|
| 428 |
+
super().__init__()
|
| 429 |
+
if isinstance(cfg, dict):
|
| 430 |
+
self.yaml = cfg # model dict
|
| 431 |
+
else: # is *.yaml
|
| 432 |
+
import yaml # for torch hub
|
| 433 |
+
self.yaml_file = Path(cfg).name
|
| 434 |
+
with open(cfg) as f:
|
| 435 |
+
self.yaml = yaml.load(f, Loader=yaml.FullLoader) # model dict
|
| 436 |
+
|
| 437 |
+
# Define model
|
| 438 |
+
if nc and nc != self.yaml['nc']:
|
| 439 |
+
LOGGER.info(f"Overriding {cfg} nc={self.yaml['nc']} with nc={nc}")
|
| 440 |
+
self.yaml['nc'] = nc # override yaml value
|
| 441 |
+
self.model, self.savelist = parse_model(deepcopy(self.yaml), ch=[ch], model=model, imgsz=imgsz)
|
| 442 |
+
|
| 443 |
+
def predict(self,
|
| 444 |
+
inputs,
|
| 445 |
+
tf_nms=False,
|
| 446 |
+
agnostic_nms=False,
|
| 447 |
+
topk_per_class=100,
|
| 448 |
+
topk_all=100,
|
| 449 |
+
iou_thres=0.45,
|
| 450 |
+
conf_thres=0.25):
|
| 451 |
+
y = [] # outputs
|
| 452 |
+
x = inputs
|
| 453 |
+
for m in self.model.layers:
|
| 454 |
+
if m.f != -1: # if not from previous layer
|
| 455 |
+
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
| 456 |
+
|
| 457 |
+
x = m(x) # run
|
| 458 |
+
y.append(x if m.i in self.savelist else None) # save output
|
| 459 |
+
|
| 460 |
+
# Add TensorFlow NMS
|
| 461 |
+
if tf_nms:
|
| 462 |
+
boxes = self._xywh2xyxy(x[0][..., :4])
|
| 463 |
+
probs = x[0][:, :, 4:5]
|
| 464 |
+
classes = x[0][:, :, 5:]
|
| 465 |
+
scores = probs * classes
|
| 466 |
+
if agnostic_nms:
|
| 467 |
+
nms = AgnosticNMS()((boxes, classes, scores), topk_all, iou_thres, conf_thres)
|
| 468 |
+
else:
|
| 469 |
+
boxes = tf.expand_dims(boxes, 2)
|
| 470 |
+
nms = tf.image.combined_non_max_suppression(boxes,
|
| 471 |
+
scores,
|
| 472 |
+
topk_per_class,
|
| 473 |
+
topk_all,
|
| 474 |
+
iou_thres,
|
| 475 |
+
conf_thres,
|
| 476 |
+
clip_boxes=False)
|
| 477 |
+
return (nms,)
|
| 478 |
+
return x # output [1,6300,85] = [xywh, conf, class0, class1, ...]
|
| 479 |
+
# x = x[0] # [x(1,6300,85), ...] to x(6300,85)
|
| 480 |
+
# xywh = x[..., :4] # x(6300,4) boxes
|
| 481 |
+
# conf = x[..., 4:5] # x(6300,1) confidences
|
| 482 |
+
# cls = tf.reshape(tf.cast(tf.argmax(x[..., 5:], axis=1), tf.float32), (-1, 1)) # x(6300,1) classes
|
| 483 |
+
# return tf.concat([conf, cls, xywh], 1)
|
| 484 |
+
|
| 485 |
+
@staticmethod
|
| 486 |
+
def _xywh2xyxy(xywh):
|
| 487 |
+
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
| 488 |
+
x, y, w, h = tf.split(xywh, num_or_size_splits=4, axis=-1)
|
| 489 |
+
return tf.concat([x - w / 2, y - h / 2, x + w / 2, y + h / 2], axis=-1)
|
| 490 |
+
|
| 491 |
+
|
| 492 |
+
class AgnosticNMS(keras.layers.Layer):
|
| 493 |
+
# TF Agnostic NMS
|
| 494 |
+
def call(self, input, topk_all, iou_thres, conf_thres):
|
| 495 |
+
# wrap map_fn to avoid TypeSpec related error https://stackoverflow.com/a/65809989/3036450
|
| 496 |
+
return tf.map_fn(lambda x: self._nms(x, topk_all, iou_thres, conf_thres),
|
| 497 |
+
input,
|
| 498 |
+
fn_output_signature=(tf.float32, tf.float32, tf.float32, tf.int32),
|
| 499 |
+
name='agnostic_nms')
|
| 500 |
+
|
| 501 |
+
@staticmethod
|
| 502 |
+
def _nms(x, topk_all=100, iou_thres=0.45, conf_thres=0.25): # agnostic NMS
|
| 503 |
+
boxes, classes, scores = x
|
| 504 |
+
class_inds = tf.cast(tf.argmax(classes, axis=-1), tf.float32)
|
| 505 |
+
scores_inp = tf.reduce_max(scores, -1)
|
| 506 |
+
selected_inds = tf.image.non_max_suppression(boxes,
|
| 507 |
+
scores_inp,
|
| 508 |
+
max_output_size=topk_all,
|
| 509 |
+
iou_threshold=iou_thres,
|
| 510 |
+
score_threshold=conf_thres)
|
| 511 |
+
selected_boxes = tf.gather(boxes, selected_inds)
|
| 512 |
+
padded_boxes = tf.pad(selected_boxes,
|
| 513 |
+
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]], [0, 0]],
|
| 514 |
+
mode="CONSTANT",
|
| 515 |
+
constant_values=0.0)
|
| 516 |
+
selected_scores = tf.gather(scores_inp, selected_inds)
|
| 517 |
+
padded_scores = tf.pad(selected_scores,
|
| 518 |
+
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
|
| 519 |
+
mode="CONSTANT",
|
| 520 |
+
constant_values=-1.0)
|
| 521 |
+
selected_classes = tf.gather(class_inds, selected_inds)
|
| 522 |
+
padded_classes = tf.pad(selected_classes,
|
| 523 |
+
paddings=[[0, topk_all - tf.shape(selected_boxes)[0]]],
|
| 524 |
+
mode="CONSTANT",
|
| 525 |
+
constant_values=-1.0)
|
| 526 |
+
valid_detections = tf.shape(selected_inds)[0]
|
| 527 |
+
return padded_boxes, padded_scores, padded_classes, valid_detections
|
| 528 |
+
|
| 529 |
+
|
| 530 |
+
def activations(act=nn.SiLU):
|
| 531 |
+
# Returns TF activation from input PyTorch activation
|
| 532 |
+
if isinstance(act, nn.LeakyReLU):
|
| 533 |
+
return lambda x: keras.activations.relu(x, alpha=0.1)
|
| 534 |
+
elif isinstance(act, nn.Hardswish):
|
| 535 |
+
return lambda x: x * tf.nn.relu6(x + 3) * 0.166666667
|
| 536 |
+
elif isinstance(act, (nn.SiLU, SiLU)):
|
| 537 |
+
return lambda x: keras.activations.swish(x)
|
| 538 |
+
else:
|
| 539 |
+
raise Exception(f'no matching TensorFlow activation found for PyTorch activation {act}')
|
| 540 |
+
|
| 541 |
+
|
| 542 |
+
def representative_dataset_gen(dataset, ncalib=100):
|
| 543 |
+
# Representative dataset generator for use with converter.representative_dataset, returns a generator of np arrays
|
| 544 |
+
for n, (path, img, im0s, vid_cap, string) in enumerate(dataset):
|
| 545 |
+
im = np.transpose(img, [1, 2, 0])
|
| 546 |
+
im = np.expand_dims(im, axis=0).astype(np.float32)
|
| 547 |
+
im /= 255
|
| 548 |
+
yield [im]
|
| 549 |
+
if n >= ncalib:
|
| 550 |
+
break
|
| 551 |
+
|
| 552 |
+
|
| 553 |
+
def run(
|
| 554 |
+
weights=ROOT / 'yolo.pt', # weights path
|
| 555 |
+
imgsz=(640, 640), # inference size h,w
|
| 556 |
+
batch_size=1, # batch size
|
| 557 |
+
dynamic=False, # dynamic batch size
|
| 558 |
+
):
|
| 559 |
+
# PyTorch model
|
| 560 |
+
im = torch.zeros((batch_size, 3, *imgsz)) # BCHW image
|
| 561 |
+
model = attempt_load(weights, device=torch.device('cpu'), inplace=True, fuse=False)
|
| 562 |
+
_ = model(im) # inference
|
| 563 |
+
model.info()
|
| 564 |
+
|
| 565 |
+
# TensorFlow model
|
| 566 |
+
im = tf.zeros((batch_size, *imgsz, 3)) # BHWC image
|
| 567 |
+
tf_model = TFModel(cfg=model.yaml, model=model, nc=model.nc, imgsz=imgsz)
|
| 568 |
+
_ = tf_model.predict(im) # inference
|
| 569 |
+
|
| 570 |
+
# Keras model
|
| 571 |
+
im = keras.Input(shape=(*imgsz, 3), batch_size=None if dynamic else batch_size)
|
| 572 |
+
keras_model = keras.Model(inputs=im, outputs=tf_model.predict(im))
|
| 573 |
+
keras_model.summary()
|
| 574 |
+
|
| 575 |
+
LOGGER.info('PyTorch, TensorFlow and Keras models successfully verified.\nUse export.py for TF model export.')
|
| 576 |
+
|
| 577 |
+
|
| 578 |
+
def parse_opt():
|
| 579 |
+
parser = argparse.ArgumentParser()
|
| 580 |
+
parser.add_argument('--weights', type=str, default=ROOT / 'yolo.pt', help='weights path')
|
| 581 |
+
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
|
| 582 |
+
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
|
| 583 |
+
parser.add_argument('--dynamic', action='store_true', help='dynamic batch size')
|
| 584 |
+
opt = parser.parse_args()
|
| 585 |
+
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
|
| 586 |
+
print_args(vars(opt))
|
| 587 |
+
return opt
|
| 588 |
+
|
| 589 |
+
|
| 590 |
+
def main(opt):
|
| 591 |
+
run(**vars(opt))
|
| 592 |
+
|
| 593 |
+
|
| 594 |
+
if __name__ == "__main__":
|
| 595 |
+
opt = parse_opt()
|
| 596 |
+
main(opt)
|
models/yolo.py
ADDED
|
@@ -0,0 +1,853 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import os
|
| 3 |
+
import platform
|
| 4 |
+
import sys
|
| 5 |
+
from copy import deepcopy
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
|
| 8 |
+
FILE = Path(__file__).resolve()
|
| 9 |
+
ROOT = FILE.parents[1] # YOLO root directory
|
| 10 |
+
if str(ROOT) not in sys.path:
|
| 11 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
| 12 |
+
if platform.system() != 'Windows':
|
| 13 |
+
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
|
| 14 |
+
|
| 15 |
+
from models.common import *
|
| 16 |
+
from models.experimental import *
|
| 17 |
+
from utils.general import LOGGER, check_version, check_yaml, make_divisible, print_args
|
| 18 |
+
from utils.plots import feature_visualization
|
| 19 |
+
from utils.torch_utils import (fuse_conv_and_bn, initialize_weights, model_info, profile, scale_img, select_device,
|
| 20 |
+
time_sync)
|
| 21 |
+
from utils.tal.anchor_generator import make_anchors, dist2bbox
|
| 22 |
+
from models.attention.blocks import *
|
| 23 |
+
try:
|
| 24 |
+
import thop # for FLOPs computation
|
| 25 |
+
except ImportError:
|
| 26 |
+
thop = None
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class Detect(nn.Module):
|
| 30 |
+
# YOLO Detect head for detection models
|
| 31 |
+
dynamic = False # force grid reconstruction
|
| 32 |
+
export = False # export mode
|
| 33 |
+
shape = None
|
| 34 |
+
anchors = torch.empty(0) # init
|
| 35 |
+
strides = torch.empty(0) # init
|
| 36 |
+
|
| 37 |
+
def __init__(self, nc=80, ch=(), inplace=True): # detection layer
|
| 38 |
+
super().__init__()
|
| 39 |
+
self.nc = nc # number of classes
|
| 40 |
+
self.nl = len(ch) # number of detection layers
|
| 41 |
+
self.reg_max = 16
|
| 42 |
+
self.no = nc + self.reg_max * 4 # number of outputs per anchor
|
| 43 |
+
self.inplace = inplace # use inplace ops (e.g. slice assignment)
|
| 44 |
+
self.stride = torch.zeros(self.nl) # strides computed during build
|
| 45 |
+
|
| 46 |
+
c2, c3 = max((ch[0] // 4, self.reg_max * 4, 16)), max((ch[0], min((self.nc * 2, 128)))) # channels
|
| 47 |
+
self.cv2 = nn.ModuleList(
|
| 48 |
+
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch)
|
| 49 |
+
self.cv3 = nn.ModuleList(
|
| 50 |
+
nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
|
| 51 |
+
self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()
|
| 52 |
+
|
| 53 |
+
def forward(self, x):
|
| 54 |
+
shape = x[0].shape # BCHW
|
| 55 |
+
for i in range(self.nl):
|
| 56 |
+
x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
|
| 57 |
+
if self.training:
|
| 58 |
+
return x
|
| 59 |
+
elif self.dynamic or self.shape != shape:
|
| 60 |
+
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
|
| 61 |
+
self.shape = shape
|
| 62 |
+
|
| 63 |
+
box, cls = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2).split((self.reg_max * 4, self.nc), 1)
|
| 64 |
+
dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
| 65 |
+
y = torch.cat((dbox, cls.sigmoid()), 1)
|
| 66 |
+
return y if self.export else (y, x)
|
| 67 |
+
|
| 68 |
+
def bias_init(self):
|
| 69 |
+
# Initialize Detect() biases, WARNING: requires stride availability
|
| 70 |
+
m = self # self.model[-1] # Detect() module
|
| 71 |
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
|
| 72 |
+
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
|
| 73 |
+
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
|
| 74 |
+
a[-1].bias.data[:] = 1.0 # box
|
| 75 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
class DDetect(nn.Module):
|
| 79 |
+
# YOLO Detect head for detection models
|
| 80 |
+
dynamic = False # force grid reconstruction
|
| 81 |
+
export = False # export mode
|
| 82 |
+
shape = None
|
| 83 |
+
anchors = torch.empty(0) # init
|
| 84 |
+
strides = torch.empty(0) # init
|
| 85 |
+
|
| 86 |
+
def __init__(self, nc=80, ch=(), inplace=True): # detection layer
|
| 87 |
+
super().__init__()
|
| 88 |
+
self.nc = nc # number of classes
|
| 89 |
+
self.nl = len(ch) # number of detection layers
|
| 90 |
+
self.reg_max = 16
|
| 91 |
+
self.no = nc + self.reg_max * 4 # number of outputs per anchor
|
| 92 |
+
self.inplace = inplace # use inplace ops (e.g. slice assignment)
|
| 93 |
+
self.stride = torch.zeros(self.nl) # strides computed during build
|
| 94 |
+
|
| 95 |
+
c2, c3 = make_divisible(max((ch[0] // 4, self.reg_max * 4, 16)), 4), max((ch[0], min((self.nc * 2, 128)))) # channels
|
| 96 |
+
self.cv2 = nn.ModuleList(
|
| 97 |
+
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3, g=4), nn.Conv2d(c2, 4 * self.reg_max, 1, groups=4)) for x in ch)
|
| 98 |
+
self.cv3 = nn.ModuleList(
|
| 99 |
+
nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch)
|
| 100 |
+
self.dfl = DFL(self.reg_max) if self.reg_max > 1 else nn.Identity()
|
| 101 |
+
|
| 102 |
+
def forward(self, x):
|
| 103 |
+
shape = x[0].shape # BCHW
|
| 104 |
+
for i in range(self.nl):
|
| 105 |
+
x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
|
| 106 |
+
if self.training:
|
| 107 |
+
return x
|
| 108 |
+
elif self.dynamic or self.shape != shape:
|
| 109 |
+
self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
|
| 110 |
+
self.shape = shape
|
| 111 |
+
|
| 112 |
+
box, cls = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2).split((self.reg_max * 4, self.nc), 1)
|
| 113 |
+
dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
| 114 |
+
y = torch.cat((dbox, cls.sigmoid()), 1)
|
| 115 |
+
return y if self.export else (y, x)
|
| 116 |
+
|
| 117 |
+
def bias_init(self):
|
| 118 |
+
# Initialize Detect() biases, WARNING: requires stride availability
|
| 119 |
+
m = self # self.model[-1] # Detect() module
|
| 120 |
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
|
| 121 |
+
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
|
| 122 |
+
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
|
| 123 |
+
a[-1].bias.data[:] = 1.0 # box
|
| 124 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
class DualDetect(nn.Module):
|
| 128 |
+
# YOLO Detect head for detection models
|
| 129 |
+
dynamic = False # force grid reconstruction
|
| 130 |
+
export = False # export mode
|
| 131 |
+
shape = None
|
| 132 |
+
anchors = torch.empty(0) # init
|
| 133 |
+
strides = torch.empty(0) # init
|
| 134 |
+
|
| 135 |
+
def __init__(self, nc=80, ch=(), inplace=True): # detection layer
|
| 136 |
+
super().__init__()
|
| 137 |
+
self.nc = nc # number of classes
|
| 138 |
+
self.nl = len(ch) // 2 # number of detection layers
|
| 139 |
+
self.reg_max = 16
|
| 140 |
+
self.no = nc + self.reg_max * 4 # number of outputs per anchor
|
| 141 |
+
self.inplace = inplace # use inplace ops (e.g. slice assignment)
|
| 142 |
+
self.stride = torch.zeros(self.nl) # strides computed during build
|
| 143 |
+
|
| 144 |
+
c2, c3 = max((ch[0] // 4, self.reg_max * 4, 16)), max((ch[0], min((self.nc * 2, 128)))) # channels
|
| 145 |
+
c4, c5 = max((ch[self.nl] // 4, self.reg_max * 4, 16)), max((ch[self.nl], min((self.nc * 2, 128)))) # channels
|
| 146 |
+
self.cv2 = nn.ModuleList(
|
| 147 |
+
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch[:self.nl])
|
| 148 |
+
self.cv3 = nn.ModuleList(
|
| 149 |
+
nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl])
|
| 150 |
+
self.cv4 = nn.ModuleList(
|
| 151 |
+
nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, 4 * self.reg_max, 1)) for x in ch[self.nl:])
|
| 152 |
+
self.cv5 = nn.ModuleList(
|
| 153 |
+
nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:])
|
| 154 |
+
self.dfl = DFL(self.reg_max)
|
| 155 |
+
self.dfl2 = DFL(self.reg_max)
|
| 156 |
+
|
| 157 |
+
def forward(self, x):
|
| 158 |
+
shape = x[0].shape # BCHW
|
| 159 |
+
d1 = []
|
| 160 |
+
d2 = []
|
| 161 |
+
for i in range(self.nl):
|
| 162 |
+
d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1))
|
| 163 |
+
d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1))
|
| 164 |
+
if self.training:
|
| 165 |
+
return [d1, d2]
|
| 166 |
+
elif self.dynamic or self.shape != shape:
|
| 167 |
+
self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5))
|
| 168 |
+
self.shape = shape
|
| 169 |
+
|
| 170 |
+
box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1)
|
| 171 |
+
dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
| 172 |
+
box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1)
|
| 173 |
+
dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
| 174 |
+
y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1)]
|
| 175 |
+
return y if self.export else (y, [d1, d2])
|
| 176 |
+
|
| 177 |
+
def bias_init(self):
|
| 178 |
+
# Initialize Detect() biases, WARNING: requires stride availability
|
| 179 |
+
m = self # self.model[-1] # Detect() module
|
| 180 |
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
|
| 181 |
+
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
|
| 182 |
+
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
|
| 183 |
+
a[-1].bias.data[:] = 1.0 # box
|
| 184 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
| 185 |
+
for a, b, s in zip(m.cv4, m.cv5, m.stride): # from
|
| 186 |
+
a[-1].bias.data[:] = 1.0 # box
|
| 187 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
| 188 |
+
|
| 189 |
+
|
| 190 |
+
class DualDDetect(nn.Module):
|
| 191 |
+
# YOLO Detect head for detection models
|
| 192 |
+
dynamic = False # force grid reconstruction
|
| 193 |
+
export = False # export mode
|
| 194 |
+
shape = None
|
| 195 |
+
anchors = torch.empty(0) # init
|
| 196 |
+
strides = torch.empty(0) # init
|
| 197 |
+
|
| 198 |
+
def __init__(self, nc=80, ch=(), inplace=True): # detection layer
|
| 199 |
+
super().__init__()
|
| 200 |
+
self.nc = nc # number of classes
|
| 201 |
+
self.nl = len(ch) // 2 # number of detection layers
|
| 202 |
+
self.reg_max = 16
|
| 203 |
+
self.no = nc + self.reg_max * 4 # number of outputs per anchor
|
| 204 |
+
self.inplace = inplace # use inplace ops (e.g. slice assignment)
|
| 205 |
+
self.stride = torch.zeros(self.nl) # strides computed during build
|
| 206 |
+
|
| 207 |
+
c2, c3 = make_divisible(max((ch[0] // 4, self.reg_max * 4, 16)), 4), max((ch[0], min((self.nc * 2, 128)))) # channels
|
| 208 |
+
c4, c5 = make_divisible(max((ch[self.nl] // 4, self.reg_max * 4, 16)), 4), max((ch[self.nl], min((self.nc * 2, 128)))) # channels
|
| 209 |
+
self.cv2 = nn.ModuleList(
|
| 210 |
+
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3, g=4), nn.Conv2d(c2, 4 * self.reg_max, 1, groups=4)) for x in ch[:self.nl])
|
| 211 |
+
self.cv3 = nn.ModuleList(
|
| 212 |
+
nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl])
|
| 213 |
+
self.cv4 = nn.ModuleList(
|
| 214 |
+
nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3, g=4), nn.Conv2d(c4, 4 * self.reg_max, 1, groups=4)) for x in ch[self.nl:])
|
| 215 |
+
self.cv5 = nn.ModuleList(
|
| 216 |
+
nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:])
|
| 217 |
+
self.dfl = DFL(self.reg_max)
|
| 218 |
+
self.dfl2 = DFL(self.reg_max)
|
| 219 |
+
|
| 220 |
+
def forward(self, x):
|
| 221 |
+
shape = x[0].shape # BCHW
|
| 222 |
+
d1 = []
|
| 223 |
+
d2 = []
|
| 224 |
+
for i in range(self.nl):
|
| 225 |
+
d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1))
|
| 226 |
+
d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1))
|
| 227 |
+
if self.training:
|
| 228 |
+
return [d1, d2]
|
| 229 |
+
elif self.dynamic or self.shape != shape:
|
| 230 |
+
self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5))
|
| 231 |
+
self.shape = shape
|
| 232 |
+
|
| 233 |
+
box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1)
|
| 234 |
+
dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
| 235 |
+
box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1)
|
| 236 |
+
dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
| 237 |
+
y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1)]
|
| 238 |
+
return y if self.export else (y, [d1, d2])
|
| 239 |
+
#y = torch.cat((dbox2, cls2.sigmoid()), 1)
|
| 240 |
+
#return y if self.export else (y, d2)
|
| 241 |
+
#y1 = torch.cat((dbox, cls.sigmoid()), 1)
|
| 242 |
+
#y2 = torch.cat((dbox2, cls2.sigmoid()), 1)
|
| 243 |
+
#return [y1, y2] if self.export else [(y1, d1), (y2, d2)]
|
| 244 |
+
#return [y1, y2] if self.export else [(y1, y2), (d1, d2)]
|
| 245 |
+
|
| 246 |
+
def bias_init(self):
|
| 247 |
+
# Initialize Detect() biases, WARNING: requires stride availability
|
| 248 |
+
m = self # self.model[-1] # Detect() module
|
| 249 |
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
|
| 250 |
+
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
|
| 251 |
+
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
|
| 252 |
+
a[-1].bias.data[:] = 1.0 # box
|
| 253 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
| 254 |
+
for a, b, s in zip(m.cv4, m.cv5, m.stride): # from
|
| 255 |
+
a[-1].bias.data[:] = 1.0 # box
|
| 256 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
| 257 |
+
|
| 258 |
+
class IDualDDetect(nn.Module):
|
| 259 |
+
# YOLO Detect head for detection models
|
| 260 |
+
dynamic = False # force grid reconstruction
|
| 261 |
+
export = False # export mode
|
| 262 |
+
shape = None
|
| 263 |
+
anchors = torch.empty(0) # init
|
| 264 |
+
strides = torch.empty(0) # init
|
| 265 |
+
|
| 266 |
+
def __init__(self, nc=80, ch=(), inplace=True): # detection layer
|
| 267 |
+
super().__init__()
|
| 268 |
+
self.nc = nc # number of classes
|
| 269 |
+
self.nl = len(ch) // 2 # number of detection layers
|
| 270 |
+
self.reg_max = 16
|
| 271 |
+
self.no = nc + self.reg_max * 4 # number of outputs per anchor
|
| 272 |
+
self.inplace = inplace # use inplace ops (e.g. slice assignment)
|
| 273 |
+
self.stride = torch.zeros(self.nl) # strides computed during build
|
| 274 |
+
|
| 275 |
+
c2, c3 = make_divisible(max((ch[0] // 4, self.reg_max * 4, 16)), 4), max((ch[0], min((self.nc * 2, 128)))) # channels
|
| 276 |
+
c4, c5 = make_divisible(max((ch[self.nl] // 4, self.reg_max * 4, 16)), 4), max((ch[self.nl], min((self.nc * 2, 128)))) # channels
|
| 277 |
+
self.cv2 = nn.ModuleList(
|
| 278 |
+
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3, g=4), nn.Conv2d(c2, 4 * self.reg_max, 1, groups=4)) for x in ch[:self.nl])
|
| 279 |
+
self.cv3 = nn.ModuleList(
|
| 280 |
+
nn.Sequential(Convb(x, c3, 1), Conv(c3, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl])
|
| 281 |
+
self.cv4 = nn.ModuleList(
|
| 282 |
+
nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3, g=4), nn.Conv2d(c4, 4 * self.reg_max, 1, groups=4)) for x in ch[self.nl:])
|
| 283 |
+
self.cv5 = nn.ModuleList(
|
| 284 |
+
nn.Sequential(Convb(x, c5, 1), Conv(c5, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:])
|
| 285 |
+
self.dfl = DFL(self.reg_max)
|
| 286 |
+
self.dfl2 = DFL(self.reg_max)
|
| 287 |
+
# Define ImplicitA and ImplicitM modules
|
| 288 |
+
self.implicita = nn.ModuleList(ImplicitA(x) for x in ch)
|
| 289 |
+
self.implicitm = nn.ModuleList(ImplicitM(self.nc) for _ in ch)
|
| 290 |
+
|
| 291 |
+
def fuse(self):
|
| 292 |
+
# Fuse weights with implicit knowledge
|
| 293 |
+
for i in range(self.nl):
|
| 294 |
+
# Fuse ImplicitA with Convolution
|
| 295 |
+
c1, c2, _, _ = self.cv3[i][0].conv.weight.shape
|
| 296 |
+
c1_, c2_, _, _ = self.implicita[i].implicit.shape
|
| 297 |
+
self.cv3[i][0].conv.bias.data += torch.matmul(self.cv3[i][0].conv.weight.reshape(c1, c2), self.implicita[i].implicit.reshape(c2_, c1_)).squeeze(1)
|
| 298 |
+
c1, c2, _, _ = self.cv5[i][0].conv.weight.shape
|
| 299 |
+
self.cv5[i][0].conv.bias.data += torch.matmul(self.cv5[i][0].conv.weight.reshape(c1, c2), self.implicita[i].implicit.reshape(c2_, c1_)).squeeze(1)
|
| 300 |
+
# Fuse ImplicitM with Convolution
|
| 301 |
+
c1,c2, _,_ = self.implicitm[i].implicit.shape
|
| 302 |
+
self.cv3[i][-1].weight.data = torch.mul(self.cv3[i][-1].weight, self.implicitm[i].implicit.transpose(0,1))
|
| 303 |
+
self.cv3[i][-1].bias.data = torch.matmul(self.cv3[i][-1].bias, self.implicitm[i].implicit.reshape(c2))
|
| 304 |
+
self.cv5[i][-1].weight.data = torch.mul(self.cv5[i][-1].weight, self.implicitm[i].implicit.transpose(0,1))
|
| 305 |
+
self.cv5[i][-1].bias.data = torch.matmul(self.cv5[i][-1].bias, self.implicitm[i].implicit.reshape(c2))
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
def forward(self, x):
|
| 309 |
+
shape = x[0].shape # BCHW
|
| 310 |
+
d1 = []
|
| 311 |
+
d2 = []
|
| 312 |
+
for i in range(self.nl):
|
| 313 |
+
d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1))
|
| 314 |
+
d2.append(torch.cat((self.cv4[i](x[self.nl+i]),self.cv5[i](x[self.nl+i])), 1))
|
| 315 |
+
if self.training:
|
| 316 |
+
return [d1, d2]
|
| 317 |
+
elif self.dynamic or self.shape != shape:
|
| 318 |
+
self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5))
|
| 319 |
+
self.shape = shape
|
| 320 |
+
|
| 321 |
+
box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1)
|
| 322 |
+
dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
| 323 |
+
box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1)
|
| 324 |
+
dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
| 325 |
+
y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1)]
|
| 326 |
+
return y if self.export else (y, [d1, d2])
|
| 327 |
+
|
| 328 |
+
def bias_init(self):
|
| 329 |
+
# Initialize Detect() biases, WARNING: requires stride availability
|
| 330 |
+
m = self # self.model[-1] # Detect() module
|
| 331 |
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
|
| 332 |
+
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
|
| 333 |
+
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
|
| 334 |
+
a[-1].bias.data[:] = 1.0 # box
|
| 335 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
| 336 |
+
for a, b, s in zip(m.cv4, m.cv5, m.stride): # from
|
| 337 |
+
a[-1].bias.data[:] = 1.0 # box
|
| 338 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
class TripleDetect(nn.Module):
|
| 342 |
+
# YOLO Detect head for detection models
|
| 343 |
+
dynamic = False # force grid reconstruction
|
| 344 |
+
export = False # export mode
|
| 345 |
+
shape = None
|
| 346 |
+
anchors = torch.empty(0) # init
|
| 347 |
+
strides = torch.empty(0) # init
|
| 348 |
+
|
| 349 |
+
def __init__(self, nc=80, ch=(), inplace=True): # detection layer
|
| 350 |
+
super().__init__()
|
| 351 |
+
self.nc = nc # number of classes
|
| 352 |
+
self.nl = len(ch) // 3 # number of detection layers
|
| 353 |
+
self.reg_max = 16
|
| 354 |
+
self.no = nc + self.reg_max * 4 # number of outputs per anchor
|
| 355 |
+
self.inplace = inplace # use inplace ops (e.g. slice assignment)
|
| 356 |
+
self.stride = torch.zeros(self.nl) # strides computed during build
|
| 357 |
+
|
| 358 |
+
c2, c3 = max((ch[0] // 4, self.reg_max * 4, 16)), max((ch[0], min((self.nc * 2, 128)))) # channels
|
| 359 |
+
c4, c5 = max((ch[self.nl] // 4, self.reg_max * 4, 16)), max((ch[self.nl], min((self.nc * 2, 128)))) # channels
|
| 360 |
+
c6, c7 = max((ch[self.nl * 2] // 4, self.reg_max * 4, 16)), max((ch[self.nl * 2], min((self.nc * 2, 128)))) # channels
|
| 361 |
+
self.cv2 = nn.ModuleList(
|
| 362 |
+
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3), nn.Conv2d(c2, 4 * self.reg_max, 1)) for x in ch[:self.nl])
|
| 363 |
+
self.cv3 = nn.ModuleList(
|
| 364 |
+
nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl])
|
| 365 |
+
self.cv4 = nn.ModuleList(
|
| 366 |
+
nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, 4 * self.reg_max, 1)) for x in ch[self.nl:self.nl*2])
|
| 367 |
+
self.cv5 = nn.ModuleList(
|
| 368 |
+
nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:self.nl*2])
|
| 369 |
+
self.cv6 = nn.ModuleList(
|
| 370 |
+
nn.Sequential(Conv(x, c6, 3), Conv(c6, c6, 3), nn.Conv2d(c6, 4 * self.reg_max, 1)) for x in ch[self.nl*2:self.nl*3])
|
| 371 |
+
self.cv7 = nn.ModuleList(
|
| 372 |
+
nn.Sequential(Conv(x, c7, 3), Conv(c7, c7, 3), nn.Conv2d(c7, self.nc, 1)) for x in ch[self.nl*2:self.nl*3])
|
| 373 |
+
self.dfl = DFL(self.reg_max)
|
| 374 |
+
self.dfl2 = DFL(self.reg_max)
|
| 375 |
+
self.dfl3 = DFL(self.reg_max)
|
| 376 |
+
|
| 377 |
+
def forward(self, x):
|
| 378 |
+
shape = x[0].shape # BCHW
|
| 379 |
+
d1 = []
|
| 380 |
+
d2 = []
|
| 381 |
+
d3 = []
|
| 382 |
+
for i in range(self.nl):
|
| 383 |
+
d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1))
|
| 384 |
+
d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1))
|
| 385 |
+
d3.append(torch.cat((self.cv6[i](x[self.nl*2+i]), self.cv7[i](x[self.nl*2+i])), 1))
|
| 386 |
+
if self.training:
|
| 387 |
+
return [d1, d2, d3]
|
| 388 |
+
elif self.dynamic or self.shape != shape:
|
| 389 |
+
self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5))
|
| 390 |
+
self.shape = shape
|
| 391 |
+
|
| 392 |
+
box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1)
|
| 393 |
+
dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
| 394 |
+
box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1)
|
| 395 |
+
dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
| 396 |
+
box3, cls3 = torch.cat([di.view(shape[0], self.no, -1) for di in d3], 2).split((self.reg_max * 4, self.nc), 1)
|
| 397 |
+
dbox3 = dist2bbox(self.dfl3(box3), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
| 398 |
+
y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1), torch.cat((dbox3, cls3.sigmoid()), 1)]
|
| 399 |
+
return y if self.export else (y, [d1, d2, d3])
|
| 400 |
+
|
| 401 |
+
def bias_init(self):
|
| 402 |
+
# Initialize Detect() biases, WARNING: requires stride availability
|
| 403 |
+
m = self # self.model[-1] # Detect() module
|
| 404 |
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
|
| 405 |
+
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
|
| 406 |
+
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
|
| 407 |
+
a[-1].bias.data[:] = 1.0 # box
|
| 408 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
| 409 |
+
for a, b, s in zip(m.cv4, m.cv5, m.stride): # from
|
| 410 |
+
a[-1].bias.data[:] = 1.0 # box
|
| 411 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
| 412 |
+
for a, b, s in zip(m.cv6, m.cv7, m.stride): # from
|
| 413 |
+
a[-1].bias.data[:] = 1.0 # box
|
| 414 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
| 415 |
+
|
| 416 |
+
|
| 417 |
+
class TripleDDetect(nn.Module):
|
| 418 |
+
# YOLO Detect head for detection models
|
| 419 |
+
dynamic = False # force grid reconstruction
|
| 420 |
+
export = False # export mode
|
| 421 |
+
shape = None
|
| 422 |
+
anchors = torch.empty(0) # init
|
| 423 |
+
strides = torch.empty(0) # init
|
| 424 |
+
|
| 425 |
+
def __init__(self, nc=80, ch=(), inplace=True): # detection layer
|
| 426 |
+
super().__init__()
|
| 427 |
+
self.nc = nc # number of classes
|
| 428 |
+
self.nl = len(ch) // 3 # number of detection layers
|
| 429 |
+
self.reg_max = 16
|
| 430 |
+
self.no = nc + self.reg_max * 4 # number of outputs per anchor
|
| 431 |
+
self.inplace = inplace # use inplace ops (e.g. slice assignment)
|
| 432 |
+
self.stride = torch.zeros(self.nl) # strides computed during build
|
| 433 |
+
|
| 434 |
+
c2, c3 = make_divisible(max((ch[0] // 4, self.reg_max * 4, 16)), 4), \
|
| 435 |
+
max((ch[0], min((self.nc * 2, 128)))) # channels
|
| 436 |
+
c4, c5 = make_divisible(max((ch[self.nl] // 4, self.reg_max * 4, 16)), 4), \
|
| 437 |
+
max((ch[self.nl], min((self.nc * 2, 128)))) # channels
|
| 438 |
+
c6, c7 = make_divisible(max((ch[self.nl * 2] // 4, self.reg_max * 4, 16)), 4), \
|
| 439 |
+
max((ch[self.nl * 2], min((self.nc * 2, 128)))) # channels
|
| 440 |
+
self.cv2 = nn.ModuleList(
|
| 441 |
+
nn.Sequential(Conv(x, c2, 3), Conv(c2, c2, 3, g=4),
|
| 442 |
+
nn.Conv2d(c2, 4 * self.reg_max, 1, groups=4)) for x in ch[:self.nl])
|
| 443 |
+
self.cv3 = nn.ModuleList(
|
| 444 |
+
nn.Sequential(Conv(x, c3, 3), Conv(c3, c3, 3), nn.Conv2d(c3, self.nc, 1)) for x in ch[:self.nl])
|
| 445 |
+
self.cv4 = nn.ModuleList(
|
| 446 |
+
nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3, g=4),
|
| 447 |
+
nn.Conv2d(c4, 4 * self.reg_max, 1, groups=4)) for x in ch[self.nl:self.nl*2])
|
| 448 |
+
self.cv5 = nn.ModuleList(
|
| 449 |
+
nn.Sequential(Conv(x, c5, 3), Conv(c5, c5, 3), nn.Conv2d(c5, self.nc, 1)) for x in ch[self.nl:self.nl*2])
|
| 450 |
+
self.cv6 = nn.ModuleList(
|
| 451 |
+
nn.Sequential(Conv(x, c6, 3), Conv(c6, c6, 3, g=4),
|
| 452 |
+
nn.Conv2d(c6, 4 * self.reg_max, 1, groups=4)) for x in ch[self.nl*2:self.nl*3])
|
| 453 |
+
self.cv7 = nn.ModuleList(
|
| 454 |
+
nn.Sequential(Conv(x, c7, 3), Conv(c7, c7, 3), nn.Conv2d(c7, self.nc, 1)) for x in ch[self.nl*2:self.nl*3])
|
| 455 |
+
self.dfl = DFL(self.reg_max)
|
| 456 |
+
self.dfl2 = DFL(self.reg_max)
|
| 457 |
+
self.dfl3 = DFL(self.reg_max)
|
| 458 |
+
|
| 459 |
+
def forward(self, x):
|
| 460 |
+
shape = x[0].shape # BCHW
|
| 461 |
+
d1 = []
|
| 462 |
+
d2 = []
|
| 463 |
+
d3 = []
|
| 464 |
+
for i in range(self.nl):
|
| 465 |
+
d1.append(torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1))
|
| 466 |
+
d2.append(torch.cat((self.cv4[i](x[self.nl+i]), self.cv5[i](x[self.nl+i])), 1))
|
| 467 |
+
d3.append(torch.cat((self.cv6[i](x[self.nl*2+i]), self.cv7[i](x[self.nl*2+i])), 1))
|
| 468 |
+
if self.training:
|
| 469 |
+
return [d1, d2, d3]
|
| 470 |
+
elif self.dynamic or self.shape != shape:
|
| 471 |
+
self.anchors, self.strides = (d1.transpose(0, 1) for d1 in make_anchors(d1, self.stride, 0.5))
|
| 472 |
+
self.shape = shape
|
| 473 |
+
|
| 474 |
+
box, cls = torch.cat([di.view(shape[0], self.no, -1) for di in d1], 2).split((self.reg_max * 4, self.nc), 1)
|
| 475 |
+
dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
| 476 |
+
box2, cls2 = torch.cat([di.view(shape[0], self.no, -1) for di in d2], 2).split((self.reg_max * 4, self.nc), 1)
|
| 477 |
+
dbox2 = dist2bbox(self.dfl2(box2), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
| 478 |
+
box3, cls3 = torch.cat([di.view(shape[0], self.no, -1) for di in d3], 2).split((self.reg_max * 4, self.nc), 1)
|
| 479 |
+
dbox3 = dist2bbox(self.dfl3(box3), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
|
| 480 |
+
#y = [torch.cat((dbox, cls.sigmoid()), 1), torch.cat((dbox2, cls2.sigmoid()), 1), torch.cat((dbox3, cls3.sigmoid()), 1)]
|
| 481 |
+
#return y if self.export else (y, [d1, d2, d3])
|
| 482 |
+
y = torch.cat((dbox3, cls3.sigmoid()), 1)
|
| 483 |
+
return y if self.export else (y, d3)
|
| 484 |
+
|
| 485 |
+
def bias_init(self):
|
| 486 |
+
# Initialize Detect() biases, WARNING: requires stride availability
|
| 487 |
+
m = self # self.model[-1] # Detect() module
|
| 488 |
+
# cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1
|
| 489 |
+
# ncf = math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum()) # nominal class frequency
|
| 490 |
+
for a, b, s in zip(m.cv2, m.cv3, m.stride): # from
|
| 491 |
+
a[-1].bias.data[:] = 1.0 # box
|
| 492 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
| 493 |
+
for a, b, s in zip(m.cv4, m.cv5, m.stride): # from
|
| 494 |
+
a[-1].bias.data[:] = 1.0 # box
|
| 495 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
| 496 |
+
for a, b, s in zip(m.cv6, m.cv7, m.stride): # from
|
| 497 |
+
a[-1].bias.data[:] = 1.0 # box
|
| 498 |
+
b[-1].bias.data[:m.nc] = math.log(5 / m.nc / (640 / s) ** 2) # cls (5 objects and 80 classes per 640 image)
|
| 499 |
+
|
| 500 |
+
|
| 501 |
+
class Segment(Detect):
|
| 502 |
+
# YOLO Segment head for segmentation models
|
| 503 |
+
def __init__(self, nc=80, nm=32, npr=256, ch=(), inplace=True):
|
| 504 |
+
super().__init__(nc, ch, inplace)
|
| 505 |
+
self.nm = nm # number of masks
|
| 506 |
+
self.npr = npr # number of protos
|
| 507 |
+
self.proto = Proto(ch[0], self.npr, self.nm) # protos
|
| 508 |
+
self.detect = Detect.forward
|
| 509 |
+
|
| 510 |
+
c4 = max(ch[0] // 4, self.nm)
|
| 511 |
+
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch)
|
| 512 |
+
|
| 513 |
+
def forward(self, x):
|
| 514 |
+
p = self.proto(x[0])
|
| 515 |
+
bs = p.shape[0]
|
| 516 |
+
|
| 517 |
+
mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients
|
| 518 |
+
x = self.detect(self, x)
|
| 519 |
+
if self.training:
|
| 520 |
+
return x, mc, p
|
| 521 |
+
return (torch.cat([x, mc], 1), p) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p))
|
| 522 |
+
|
| 523 |
+
|
| 524 |
+
class Panoptic(Detect):
|
| 525 |
+
# YOLO Panoptic head for panoptic segmentation models
|
| 526 |
+
def __init__(self, nc=80, sem_nc=93, nm=32, npr=256, ch=(), inplace=True):
|
| 527 |
+
super().__init__(nc, ch, inplace)
|
| 528 |
+
self.sem_nc = sem_nc
|
| 529 |
+
self.nm = nm # number of masks
|
| 530 |
+
self.npr = npr # number of protos
|
| 531 |
+
self.proto = Proto(ch[0], self.npr, self.nm) # protos
|
| 532 |
+
self.uconv = UConv(ch[0], ch[0]//4, self.sem_nc+self.nc)
|
| 533 |
+
self.detect = Detect.forward
|
| 534 |
+
|
| 535 |
+
c4 = max(ch[0] // 4, self.nm)
|
| 536 |
+
self.cv4 = nn.ModuleList(nn.Sequential(Conv(x, c4, 3), Conv(c4, c4, 3), nn.Conv2d(c4, self.nm, 1)) for x in ch)
|
| 537 |
+
|
| 538 |
+
|
| 539 |
+
def forward(self, x):
|
| 540 |
+
p = self.proto(x[0])
|
| 541 |
+
s = self.uconv(x[0])
|
| 542 |
+
bs = p.shape[0]
|
| 543 |
+
|
| 544 |
+
mc = torch.cat([self.cv4[i](x[i]).view(bs, self.nm, -1) for i in range(self.nl)], 2) # mask coefficients
|
| 545 |
+
x = self.detect(self, x)
|
| 546 |
+
if self.training:
|
| 547 |
+
return x, mc, p, s
|
| 548 |
+
return (torch.cat([x, mc], 1), p, s) if self.export else (torch.cat([x[0], mc], 1), (x[1], mc, p, s))
|
| 549 |
+
|
| 550 |
+
|
| 551 |
+
class BaseModel(nn.Module):
|
| 552 |
+
# YOLO base model
|
| 553 |
+
def forward(self, x, profile=False, visualize=False):
|
| 554 |
+
return self._forward_once(x, profile, visualize) # single-scale inference, train
|
| 555 |
+
|
| 556 |
+
def _forward_once(self, x, profile=False, visualize=False):
|
| 557 |
+
y, dt = [], [] # outputs
|
| 558 |
+
for m in self.model:
|
| 559 |
+
if m.f != -1: # if not from previous layer
|
| 560 |
+
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
|
| 561 |
+
if profile:
|
| 562 |
+
self._profile_one_layer(m, x, dt)
|
| 563 |
+
x = m(x) # run
|
| 564 |
+
y.append(x if m.i in self.save else None) # save output
|
| 565 |
+
if visualize:
|
| 566 |
+
feature_visualization(x, m.type, m.i, save_dir=visualize)
|
| 567 |
+
return x
|
| 568 |
+
|
| 569 |
+
def _profile_one_layer(self, m, x, dt):
|
| 570 |
+
c = m == self.model[-1] # is final layer, copy input as inplace fix
|
| 571 |
+
o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0 # FLOPs
|
| 572 |
+
t = time_sync()
|
| 573 |
+
for _ in range(10):
|
| 574 |
+
m(x.copy() if c else x)
|
| 575 |
+
dt.append((time_sync() - t) * 100)
|
| 576 |
+
if m == self.model[0]:
|
| 577 |
+
LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s} module")
|
| 578 |
+
LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f} {m.type}')
|
| 579 |
+
if c:
|
| 580 |
+
LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s} Total")
|
| 581 |
+
|
| 582 |
+
def fuse(self): # fuse model Conv2d() + BatchNorm2d() layers
|
| 583 |
+
LOGGER.info('Fusing layers... ')
|
| 584 |
+
for m in self.model.modules():
|
| 585 |
+
if isinstance(m, (RepConvN)) and hasattr(m, 'fuse_convs'):
|
| 586 |
+
m.fuse_convs()
|
| 587 |
+
m.forward = m.forward_fuse # update forward
|
| 588 |
+
if isinstance(m, (Conv, Convb, DWConv)) and hasattr(m, 'bn'):
|
| 589 |
+
m.conv = fuse_conv_and_bn(m.conv, m.bn) # update conv
|
| 590 |
+
delattr(m, 'bn') # remove batchnorm
|
| 591 |
+
m.forward = m.forward_fuse # update forward
|
| 592 |
+
elif isinstance(m, (IDualDDetect)):
|
| 593 |
+
m.fuse()
|
| 594 |
+
|
| 595 |
+
self.info()
|
| 596 |
+
return self
|
| 597 |
+
|
| 598 |
+
def info(self, verbose=False, img_size=640): # print model information
|
| 599 |
+
model_info(self, verbose, img_size)
|
| 600 |
+
|
| 601 |
+
def _apply(self, fn):
|
| 602 |
+
# Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
|
| 603 |
+
self = super()._apply(fn)
|
| 604 |
+
m = self.model[-1] # Detect()
|
| 605 |
+
if isinstance(m, (Detect, DualDetect, TripleDetect, DDetect, DualDDetect, IDualDDetect, TripleDDetect, Segment)):
|
| 606 |
+
m.stride = fn(m.stride)
|
| 607 |
+
m.anchors = fn(m.anchors)
|
| 608 |
+
m.strides = fn(m.strides)
|
| 609 |
+
# m.grid = list(map(fn, m.grid))
|
| 610 |
+
return self
|
| 611 |
+
|
| 612 |
+
|
| 613 |
+
class DetectionModel(BaseModel):
|
| 614 |
+
# YOLO detection model
|
| 615 |
+
def __init__(self, cfg='yolo.yaml', ch=3, nc=None, anchors=None): # model, input channels, number of classes
|
| 616 |
+
super().__init__()
|
| 617 |
+
if isinstance(cfg, dict):
|
| 618 |
+
self.yaml = cfg # model dict
|
| 619 |
+
else: # is *.yaml
|
| 620 |
+
import yaml # for torch hub
|
| 621 |
+
self.yaml_file = Path(cfg).name
|
| 622 |
+
with open(cfg, encoding='ascii', errors='ignore') as f:
|
| 623 |
+
self.yaml = yaml.safe_load(f) # model dict
|
| 624 |
+
|
| 625 |
+
# Define model
|
| 626 |
+
ch = self.yaml['ch'] = self.yaml.get('ch', ch) # input channels
|
| 627 |
+
if nc and nc != self.yaml['nc']:
|
| 628 |
+
LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
|
| 629 |
+
self.yaml['nc'] = nc # override yaml value
|
| 630 |
+
if anchors:
|
| 631 |
+
LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
|
| 632 |
+
self.yaml['anchors'] = round(anchors) # override yaml value
|
| 633 |
+
self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) # model, savelist
|
| 634 |
+
self.names = [str(i) for i in range(self.yaml['nc'])] # default names
|
| 635 |
+
self.inplace = self.yaml.get('inplace', True)
|
| 636 |
+
|
| 637 |
+
# Build strides, anchors
|
| 638 |
+
m = self.model[-1] # Detect()
|
| 639 |
+
if isinstance(m, (Detect, DDetect, Segment)):
|
| 640 |
+
s = 256 # 2x min stride
|
| 641 |
+
m.inplace = self.inplace
|
| 642 |
+
forward = lambda x: self.forward(x)[0] if isinstance(m, (Segment)) else self.forward(x)
|
| 643 |
+
m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward
|
| 644 |
+
# check_anchor_order(m)
|
| 645 |
+
# m.anchors /= m.stride.view(-1, 1, 1)
|
| 646 |
+
self.stride = m.stride
|
| 647 |
+
m.bias_init() # only run once
|
| 648 |
+
if isinstance(m, (DualDetect, TripleDetect, DualDDetect, IDualDDetect, TripleDDetect)):
|
| 649 |
+
s = 256 # 2x min stride
|
| 650 |
+
m.inplace = self.inplace
|
| 651 |
+
#forward = lambda x: self.forward(x)[0][0] if isinstance(m, (DualSegment)) else self.forward(x)[0]
|
| 652 |
+
forward = lambda x: self.forward(x)[0]
|
| 653 |
+
m.stride = torch.tensor([s / x.shape[-2] for x in forward(torch.zeros(1, ch, s, s))]) # forward
|
| 654 |
+
# check_anchor_order(m)
|
| 655 |
+
# m.anchors /= m.stride.view(-1, 1, 1)
|
| 656 |
+
self.stride = m.stride
|
| 657 |
+
m.bias_init() # only run once
|
| 658 |
+
|
| 659 |
+
# Init weights, biases
|
| 660 |
+
initialize_weights(self)
|
| 661 |
+
self.info()
|
| 662 |
+
LOGGER.info('')
|
| 663 |
+
|
| 664 |
+
def forward(self, x, augment=False, profile=False, visualize=False):
|
| 665 |
+
if augment:
|
| 666 |
+
return self._forward_augment(x) # augmented inference, None
|
| 667 |
+
return self._forward_once(x, profile, visualize) # single-scale inference, train
|
| 668 |
+
|
| 669 |
+
def _forward_augment(self, x):
|
| 670 |
+
img_size = x.shape[-2:] # height, width
|
| 671 |
+
s = [1, 0.83, 0.67] # scales
|
| 672 |
+
f = [None, 3, None] # flips (2-ud, 3-lr)
|
| 673 |
+
y = [] # outputs
|
| 674 |
+
for si, fi in zip(s, f):
|
| 675 |
+
xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
|
| 676 |
+
yi = self._forward_once(xi)[0] # forward
|
| 677 |
+
# cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1]) # save
|
| 678 |
+
yi = self._descale_pred(yi, fi, si, img_size)
|
| 679 |
+
y.append(yi)
|
| 680 |
+
y = self._clip_augmented(y) # clip augmented tails
|
| 681 |
+
return torch.cat(y, 1), None # augmented inference, train
|
| 682 |
+
|
| 683 |
+
def _descale_pred(self, p, flips, scale, img_size):
|
| 684 |
+
# de-scale predictions following augmented inference (inverse operation)
|
| 685 |
+
if self.inplace:
|
| 686 |
+
p[..., :4] /= scale # de-scale
|
| 687 |
+
if flips == 2:
|
| 688 |
+
p[..., 1] = img_size[0] - p[..., 1] # de-flip ud
|
| 689 |
+
elif flips == 3:
|
| 690 |
+
p[..., 0] = img_size[1] - p[..., 0] # de-flip lr
|
| 691 |
+
else:
|
| 692 |
+
x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale # de-scale
|
| 693 |
+
if flips == 2:
|
| 694 |
+
y = img_size[0] - y # de-flip ud
|
| 695 |
+
elif flips == 3:
|
| 696 |
+
x = img_size[1] - x # de-flip lr
|
| 697 |
+
p = torch.cat((x, y, wh, p[..., 4:]), -1)
|
| 698 |
+
return p
|
| 699 |
+
|
| 700 |
+
def _clip_augmented(self, y):
|
| 701 |
+
# Clip YOLO augmented inference tails
|
| 702 |
+
nl = self.model[-1].nl # number of detection layers (P3-P5)
|
| 703 |
+
g = sum(4 ** x for x in range(nl)) # grid points
|
| 704 |
+
e = 1 # exclude layer count
|
| 705 |
+
i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e)) # indices
|
| 706 |
+
y[0] = y[0][:, :-i] # large
|
| 707 |
+
i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e)) # indices
|
| 708 |
+
y[-1] = y[-1][:, i:] # small
|
| 709 |
+
return y
|
| 710 |
+
|
| 711 |
+
|
| 712 |
+
Model = DetectionModel # retain YOLO 'Model' class for backwards compatibility
|
| 713 |
+
|
| 714 |
+
|
| 715 |
+
class SegmentationModel(DetectionModel):
|
| 716 |
+
# YOLO segmentation model
|
| 717 |
+
def __init__(self, cfg='yolo-seg.yaml', ch=3, nc=None, anchors=None):
|
| 718 |
+
super().__init__(cfg, ch, nc, anchors)
|
| 719 |
+
|
| 720 |
+
|
| 721 |
+
class ClassificationModel(BaseModel):
|
| 722 |
+
# YOLO classification model
|
| 723 |
+
def __init__(self, cfg=None, model=None, nc=1000, cutoff=10): # yaml, model, number of classes, cutoff index
|
| 724 |
+
super().__init__()
|
| 725 |
+
self._from_detection_model(model, nc, cutoff) if model is not None else self._from_yaml(cfg)
|
| 726 |
+
|
| 727 |
+
def _from_detection_model(self, model, nc=1000, cutoff=10):
|
| 728 |
+
# Create a YOLO classification model from a YOLO detection model
|
| 729 |
+
if isinstance(model, DetectMultiBackend):
|
| 730 |
+
model = model.model # unwrap DetectMultiBackend
|
| 731 |
+
model.model = model.model[:cutoff] # backbone
|
| 732 |
+
m = model.model[-1] # last layer
|
| 733 |
+
ch = m.conv.in_channels if hasattr(m, 'conv') else m.cv1.conv.in_channels # ch into module
|
| 734 |
+
c = Classify(ch, nc) # Classify()
|
| 735 |
+
c.i, c.f, c.type = m.i, m.f, 'models.common.Classify' # index, from, type
|
| 736 |
+
model.model[-1] = c # replace
|
| 737 |
+
self.model = model.model
|
| 738 |
+
self.stride = model.stride
|
| 739 |
+
self.save = []
|
| 740 |
+
self.nc = nc
|
| 741 |
+
|
| 742 |
+
def _from_yaml(self, cfg):
|
| 743 |
+
# Create a YOLO classification model from a *.yaml file
|
| 744 |
+
self.model = None
|
| 745 |
+
|
| 746 |
+
|
| 747 |
+
def parse_model(d, ch): # model_dict, input_channels(3)
|
| 748 |
+
# Parse a YOLO model.yaml dictionary
|
| 749 |
+
LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10} {'module':<40}{'arguments':<30}")
|
| 750 |
+
anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
|
| 751 |
+
if act:
|
| 752 |
+
Conv.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU()
|
| 753 |
+
RepConvN.default_act = eval(act) # redefine default activation, i.e. Conv.default_act = nn.SiLU()
|
| 754 |
+
LOGGER.info(f"{colorstr('activation:')} {act}") # print
|
| 755 |
+
na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors # number of anchors
|
| 756 |
+
no = na * (nc + 5) # number of outputs = anchors * (classes + 5)
|
| 757 |
+
|
| 758 |
+
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
|
| 759 |
+
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
|
| 760 |
+
m = eval(m) if isinstance(m, str) else m # eval strings
|
| 761 |
+
for j, a in enumerate(args):
|
| 762 |
+
with contextlib.suppress(NameError):
|
| 763 |
+
args[j] = eval(a) if isinstance(a, str) else a # eval strings
|
| 764 |
+
|
| 765 |
+
n = n_ = max(round(n * gd), 1) if n > 1 else n # depth gain
|
| 766 |
+
if m in {
|
| 767 |
+
Conv, Convb, AConv, ConvTranspose,
|
| 768 |
+
Bottleneck, SPP, SPPF, DWConv, BottleneckCSP, nn.ConvTranspose2d, DWConvTranspose2d, SPPCSPC, ADown,
|
| 769 |
+
RepNCSPELAN4, SPPELAN, CBAMC4, RepNCBAMELAN4, SOCA, RepNSAELAN4, SABottleneck, LSKBottleneck, RepNLSKELAN4,
|
| 770 |
+
RepNECALAN4, C2f_DCNv2, RepDCNv2LEAN4}:
|
| 771 |
+
c1, c2 = ch[f], args[0]
|
| 772 |
+
if c2 != no: # if not output
|
| 773 |
+
c2 = make_divisible(c2 * gw, 8)
|
| 774 |
+
|
| 775 |
+
args = [c1, c2, *args[1:]]
|
| 776 |
+
if m in {BottleneckCSP, SPPCSPC}:
|
| 777 |
+
args.insert(2, n) # number of repeats
|
| 778 |
+
n = 1
|
| 779 |
+
elif m is nn.BatchNorm2d:
|
| 780 |
+
args = [ch[f]]
|
| 781 |
+
elif m is Concat:
|
| 782 |
+
c2 = sum(ch[x] for x in f)
|
| 783 |
+
elif m is Shortcut:
|
| 784 |
+
c2 = ch[f[0]]
|
| 785 |
+
elif m is ReOrg:
|
| 786 |
+
c2 = ch[f] * 4
|
| 787 |
+
elif m is CBLinear:
|
| 788 |
+
c2 = args[0]
|
| 789 |
+
c1 = ch[f]
|
| 790 |
+
args = [c1, c2, *args[1:]]
|
| 791 |
+
elif m is CBFuse:
|
| 792 |
+
c2 = ch[f[-1]]
|
| 793 |
+
# TODO: channel, gw, gd
|
| 794 |
+
elif m in {Detect, DualDetect, TripleDetect, DDetect, DualDDetect, IDualDDetect, TripleDDetect, Segment}:
|
| 795 |
+
args.append([ch[x] for x in f])
|
| 796 |
+
# if isinstance(args[1], int): # number of anchors
|
| 797 |
+
# args[1] = [list(range(args[1] * 2))] * len(f)
|
| 798 |
+
if m in {Segment}:
|
| 799 |
+
args[2] = make_divisible(args[2] * gw, 8)
|
| 800 |
+
elif m is Contract:
|
| 801 |
+
c2 = ch[f] * args[0] ** 2
|
| 802 |
+
elif m is Expand:
|
| 803 |
+
c2 = ch[f] // args[0] ** 2
|
| 804 |
+
else:
|
| 805 |
+
c2 = ch[f]
|
| 806 |
+
|
| 807 |
+
m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
|
| 808 |
+
t = str(m)[8:-2].replace('__main__.', '') # module type
|
| 809 |
+
np = sum(x.numel() for x in m_.parameters()) # number params
|
| 810 |
+
m_.i, m_.f, m_.type, m_.np = i, f, t, np # attach index, 'from' index, type, number params
|
| 811 |
+
LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f} {t:<40}{str(args):<30}') # print
|
| 812 |
+
save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
|
| 813 |
+
layers.append(m_)
|
| 814 |
+
if i == 0:
|
| 815 |
+
ch = []
|
| 816 |
+
ch.append(c2)
|
| 817 |
+
return nn.Sequential(*layers), sorted(save)
|
| 818 |
+
|
| 819 |
+
|
| 820 |
+
if __name__ == '__main__':
|
| 821 |
+
parser = argparse.ArgumentParser()
|
| 822 |
+
parser.add_argument('--cfg', type=str, default='./detect/attention/yolov9-e-repnlskelan4.yaml', help='model.yaml')
|
| 823 |
+
parser.add_argument('--batch-size', type=int, default=1, help='total batch size for all GPUs')
|
| 824 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
| 825 |
+
parser.add_argument('--profile', action='store_true', help='profile model speed')
|
| 826 |
+
parser.add_argument('--line-profile', action='store_true', help='profile model speed layer by layer')
|
| 827 |
+
parser.add_argument('--test', action='store_true', help='test all yolo*.yaml')
|
| 828 |
+
opt = parser.parse_args()
|
| 829 |
+
opt.cfg = check_yaml(opt.cfg) # check YAML
|
| 830 |
+
print_args(vars(opt))
|
| 831 |
+
device = select_device(opt.device)
|
| 832 |
+
|
| 833 |
+
# Create model
|
| 834 |
+
im = torch.rand(opt.batch_size, 3, 640, 640).to(device)
|
| 835 |
+
model = Model(opt.cfg).to(device)
|
| 836 |
+
model.eval()
|
| 837 |
+
|
| 838 |
+
# Options
|
| 839 |
+
if opt.line_profile: # profile layer by layer
|
| 840 |
+
model(im, profile=True)
|
| 841 |
+
|
| 842 |
+
elif opt.profile: # profile forward-backward
|
| 843 |
+
results = profile(input=im, ops=[model], n=3)
|
| 844 |
+
|
| 845 |
+
elif opt.test: # test all models
|
| 846 |
+
for cfg in Path(ROOT / 'models').rglob('yolo*.yaml'):
|
| 847 |
+
try:
|
| 848 |
+
_ = Model(cfg)
|
| 849 |
+
except Exception as e:
|
| 850 |
+
print(f'Error in {cfg}: {e}')
|
| 851 |
+
|
| 852 |
+
else: # report fused model summary
|
| 853 |
+
model.fuse()
|
requirements.txt
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# requirements
|
| 2 |
+
# Usage: pip install -r requirements.txt
|
| 3 |
+
|
| 4 |
+
# Base ------------------------------------------------------------------------
|
| 5 |
+
gitpython
|
| 6 |
+
ipython
|
| 7 |
+
matplotlib>=3.2.2
|
| 8 |
+
numpy>=1.18.5
|
| 9 |
+
opencv-python>=4.1.1
|
| 10 |
+
Pillow>=7.1.2
|
| 11 |
+
psutil
|
| 12 |
+
PyYAML>=5.3.1
|
| 13 |
+
requests>=2.23.0
|
| 14 |
+
scipy>=1.4.1
|
| 15 |
+
thop>=0.1.1
|
| 16 |
+
torch>=1.7.0
|
| 17 |
+
torchvision>=0.8.1
|
| 18 |
+
tqdm>=4.64.0
|
| 19 |
+
# protobuf<=3.20.1
|
| 20 |
+
gradio
|
| 21 |
+
# Logging ---------------------------------------------------------------------
|
| 22 |
+
tensorboard>=2.4.1
|
| 23 |
+
# clearml>=1.2.0
|
| 24 |
+
# comet
|
| 25 |
+
|
| 26 |
+
# Plotting --------------------------------------------------------------------
|
| 27 |
+
pandas>=1.1.4
|
| 28 |
+
seaborn>=0.11.0
|
| 29 |
+
|
| 30 |
+
# Export ----------------------------------------------------------------------
|
| 31 |
+
# coremltools>=6.0
|
| 32 |
+
# onnx>=1.9.0
|
| 33 |
+
# onnx-simplifier>=0.4.1
|
| 34 |
+
# nvidia-pyindex
|
| 35 |
+
# nvidia-tensorrt
|
| 36 |
+
# scikit-learn<=1.1.2
|
| 37 |
+
# tensorflow>=2.4.1
|
| 38 |
+
# tensorflowjs>=3.9.0
|
| 39 |
+
# openvino-dev
|
| 40 |
+
|
| 41 |
+
# Deploy ----------------------------------------------------------------------
|
| 42 |
+
# tritonclient[all]~=2.24.0
|
| 43 |
+
|
| 44 |
+
# Extras ----------------------------------------------------------------------
|
| 45 |
+
# mss
|
| 46 |
+
albumentations>=1.0.3
|
| 47 |
+
pycocotools>=2.0
|
utils/__init__.py
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import contextlib
|
| 2 |
+
import platform
|
| 3 |
+
import threading
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
def emojis(str=''):
|
| 7 |
+
# Return platform-dependent emoji-safe version of string
|
| 8 |
+
return str.encode().decode('ascii', 'ignore') if platform.system() == 'Windows' else str
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class TryExcept(contextlib.ContextDecorator):
|
| 12 |
+
# YOLOv5 TryExcept class. Usage: @TryExcept() decorator or 'with TryExcept():' context manager
|
| 13 |
+
def __init__(self, msg=''):
|
| 14 |
+
self.msg = msg
|
| 15 |
+
|
| 16 |
+
def __enter__(self):
|
| 17 |
+
pass
|
| 18 |
+
|
| 19 |
+
def __exit__(self, exc_type, value, traceback):
|
| 20 |
+
if value:
|
| 21 |
+
print(emojis(f"{self.msg}{': ' if self.msg else ''}{value}"))
|
| 22 |
+
return True
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def threaded(func):
|
| 26 |
+
# Multi-threads a target function and returns thread. Usage: @threaded decorator
|
| 27 |
+
def wrapper(*args, **kwargs):
|
| 28 |
+
thread = threading.Thread(target=func, args=args, kwargs=kwargs, daemon=True)
|
| 29 |
+
thread.start()
|
| 30 |
+
return thread
|
| 31 |
+
|
| 32 |
+
return wrapper
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def join_threads(verbose=False):
|
| 36 |
+
# Join all daemon threads, i.e. atexit.register(lambda: join_threads())
|
| 37 |
+
main_thread = threading.current_thread()
|
| 38 |
+
for t in threading.enumerate():
|
| 39 |
+
if t is not main_thread:
|
| 40 |
+
if verbose:
|
| 41 |
+
print(f'Joining thread {t.name}')
|
| 42 |
+
t.join()
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
def notebook_init(verbose=True):
|
| 46 |
+
# Check system software and hardware
|
| 47 |
+
print('Checking setup...')
|
| 48 |
+
|
| 49 |
+
import os
|
| 50 |
+
import shutil
|
| 51 |
+
|
| 52 |
+
from utils.general import check_font, check_requirements, is_colab
|
| 53 |
+
from utils.torch_utils import select_device # imports
|
| 54 |
+
|
| 55 |
+
check_font()
|
| 56 |
+
|
| 57 |
+
import psutil
|
| 58 |
+
from IPython import display # to display images and clear console output
|
| 59 |
+
|
| 60 |
+
if is_colab():
|
| 61 |
+
shutil.rmtree('/content/sample_data', ignore_errors=True) # remove colab /sample_data directory
|
| 62 |
+
|
| 63 |
+
# System info
|
| 64 |
+
if verbose:
|
| 65 |
+
gb = 1 << 30 # bytes to GiB (1024 ** 3)
|
| 66 |
+
ram = psutil.virtual_memory().total
|
| 67 |
+
total, used, free = shutil.disk_usage("/")
|
| 68 |
+
display.clear_output()
|
| 69 |
+
s = f'({os.cpu_count()} CPUs, {ram / gb:.1f} GB RAM, {(total - free) / gb:.1f}/{total / gb:.1f} GB disk)'
|
| 70 |
+
else:
|
| 71 |
+
s = ''
|
| 72 |
+
|
| 73 |
+
select_device(newline=False)
|
| 74 |
+
print(emojis(f'Setup complete ✅ {s}'))
|
| 75 |
+
return display
|
utils/augmentations.py
ADDED
|
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import random
|
| 3 |
+
|
| 4 |
+
import cv2
|
| 5 |
+
import numpy as np
|
| 6 |
+
import torch
|
| 7 |
+
import torchvision.transforms as T
|
| 8 |
+
import torchvision.transforms.functional as TF
|
| 9 |
+
|
| 10 |
+
from utils.general import LOGGER, check_version, colorstr, resample_segments, segment2box, xywhn2xyxy
|
| 11 |
+
from utils.metrics import bbox_ioa
|
| 12 |
+
|
| 13 |
+
IMAGENET_MEAN = 0.485, 0.456, 0.406 # RGB mean
|
| 14 |
+
IMAGENET_STD = 0.229, 0.224, 0.225 # RGB standard deviation
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
class Albumentations:
|
| 18 |
+
# YOLOv5 Albumentations class (optional, only used if package is installed)
|
| 19 |
+
def __init__(self, size=640):
|
| 20 |
+
self.transform = None
|
| 21 |
+
prefix = colorstr('albumentations: ')
|
| 22 |
+
try:
|
| 23 |
+
import albumentations as A
|
| 24 |
+
check_version(A.__version__, '1.0.3', hard=True) # version requirement
|
| 25 |
+
|
| 26 |
+
T = [
|
| 27 |
+
A.RandomResizedCrop(height=size, width=size, scale=(0.8, 1.0), ratio=(0.9, 1.11), p=0.0),
|
| 28 |
+
A.Blur(p=0.01),
|
| 29 |
+
A.MedianBlur(p=0.01),
|
| 30 |
+
A.ToGray(p=0.01),
|
| 31 |
+
A.CLAHE(p=0.01),
|
| 32 |
+
A.RandomBrightnessContrast(p=0.0),
|
| 33 |
+
A.RandomGamma(p=0.0),
|
| 34 |
+
A.ImageCompression(quality_lower=75, p=0.0)] # transforms
|
| 35 |
+
self.transform = A.Compose(T, bbox_params=A.BboxParams(format='yolo', label_fields=['class_labels']))
|
| 36 |
+
|
| 37 |
+
LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p))
|
| 38 |
+
except ImportError: # package not installed, skip
|
| 39 |
+
pass
|
| 40 |
+
except Exception as e:
|
| 41 |
+
LOGGER.info(f'{prefix}{e}')
|
| 42 |
+
|
| 43 |
+
def __call__(self, im, labels, p=1.0):
|
| 44 |
+
if self.transform and random.random() < p:
|
| 45 |
+
new = self.transform(image=im, bboxes=labels[:, 1:], class_labels=labels[:, 0]) # transformed
|
| 46 |
+
im, labels = new['image'], np.array([[c, *b] for c, b in zip(new['class_labels'], new['bboxes'])])
|
| 47 |
+
return im, labels
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
def normalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD, inplace=False):
|
| 51 |
+
# Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = (x - mean) / std
|
| 52 |
+
return TF.normalize(x, mean, std, inplace=inplace)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def denormalize(x, mean=IMAGENET_MEAN, std=IMAGENET_STD):
|
| 56 |
+
# Denormalize RGB images x per ImageNet stats in BCHW format, i.e. = x * std + mean
|
| 57 |
+
for i in range(3):
|
| 58 |
+
x[:, i] = x[:, i] * std[i] + mean[i]
|
| 59 |
+
return x
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def augment_hsv(im, hgain=0.5, sgain=0.5, vgain=0.5):
|
| 63 |
+
# HSV color-space augmentation
|
| 64 |
+
if hgain or sgain or vgain:
|
| 65 |
+
r = np.random.uniform(-1, 1, 3) * [hgain, sgain, vgain] + 1 # random gains
|
| 66 |
+
hue, sat, val = cv2.split(cv2.cvtColor(im, cv2.COLOR_BGR2HSV))
|
| 67 |
+
dtype = im.dtype # uint8
|
| 68 |
+
|
| 69 |
+
x = np.arange(0, 256, dtype=r.dtype)
|
| 70 |
+
lut_hue = ((x * r[0]) % 180).astype(dtype)
|
| 71 |
+
lut_sat = np.clip(x * r[1], 0, 255).astype(dtype)
|
| 72 |
+
lut_val = np.clip(x * r[2], 0, 255).astype(dtype)
|
| 73 |
+
|
| 74 |
+
im_hsv = cv2.merge((cv2.LUT(hue, lut_hue), cv2.LUT(sat, lut_sat), cv2.LUT(val, lut_val)))
|
| 75 |
+
cv2.cvtColor(im_hsv, cv2.COLOR_HSV2BGR, dst=im) # no return needed
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def hist_equalize(im, clahe=True, bgr=False):
|
| 79 |
+
# Equalize histogram on BGR image 'im' with im.shape(n,m,3) and range 0-255
|
| 80 |
+
yuv = cv2.cvtColor(im, cv2.COLOR_BGR2YUV if bgr else cv2.COLOR_RGB2YUV)
|
| 81 |
+
if clahe:
|
| 82 |
+
c = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8, 8))
|
| 83 |
+
yuv[:, :, 0] = c.apply(yuv[:, :, 0])
|
| 84 |
+
else:
|
| 85 |
+
yuv[:, :, 0] = cv2.equalizeHist(yuv[:, :, 0]) # equalize Y channel histogram
|
| 86 |
+
return cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR if bgr else cv2.COLOR_YUV2RGB) # convert YUV image to RGB
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def replicate(im, labels):
|
| 90 |
+
# Replicate labels
|
| 91 |
+
h, w = im.shape[:2]
|
| 92 |
+
boxes = labels[:, 1:].astype(int)
|
| 93 |
+
x1, y1, x2, y2 = boxes.T
|
| 94 |
+
s = ((x2 - x1) + (y2 - y1)) / 2 # side length (pixels)
|
| 95 |
+
for i in s.argsort()[:round(s.size * 0.5)]: # smallest indices
|
| 96 |
+
x1b, y1b, x2b, y2b = boxes[i]
|
| 97 |
+
bh, bw = y2b - y1b, x2b - x1b
|
| 98 |
+
yc, xc = int(random.uniform(0, h - bh)), int(random.uniform(0, w - bw)) # offset x, y
|
| 99 |
+
x1a, y1a, x2a, y2a = [xc, yc, xc + bw, yc + bh]
|
| 100 |
+
im[y1a:y2a, x1a:x2a] = im[y1b:y2b, x1b:x2b] # im4[ymin:ymax, xmin:xmax]
|
| 101 |
+
labels = np.append(labels, [[labels[i, 0], x1a, y1a, x2a, y2a]], axis=0)
|
| 102 |
+
|
| 103 |
+
return im, labels
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
|
| 107 |
+
# Resize and pad image while meeting stride-multiple constraints
|
| 108 |
+
shape = im.shape[:2] # current shape [height, width]
|
| 109 |
+
if isinstance(new_shape, int):
|
| 110 |
+
new_shape = (new_shape, new_shape)
|
| 111 |
+
|
| 112 |
+
# Scale ratio (new / old)
|
| 113 |
+
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
| 114 |
+
if not scaleup: # only scale down, do not scale up (for better val mAP)
|
| 115 |
+
r = min(r, 1.0)
|
| 116 |
+
|
| 117 |
+
# Compute padding
|
| 118 |
+
ratio = r, r # width, height ratios
|
| 119 |
+
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
| 120 |
+
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
| 121 |
+
if auto: # minimum rectangle
|
| 122 |
+
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
|
| 123 |
+
elif scaleFill: # stretch
|
| 124 |
+
dw, dh = 0.0, 0.0
|
| 125 |
+
new_unpad = (new_shape[1], new_shape[0])
|
| 126 |
+
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
| 127 |
+
|
| 128 |
+
dw /= 2 # divide padding into 2 sides
|
| 129 |
+
dh /= 2
|
| 130 |
+
|
| 131 |
+
if shape[::-1] != new_unpad: # resize
|
| 132 |
+
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
|
| 133 |
+
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
| 134 |
+
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
| 135 |
+
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
| 136 |
+
return im, ratio, (dw, dh)
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
def random_perspective(im,
|
| 140 |
+
targets=(),
|
| 141 |
+
segments=(),
|
| 142 |
+
degrees=10,
|
| 143 |
+
translate=.1,
|
| 144 |
+
scale=.1,
|
| 145 |
+
shear=10,
|
| 146 |
+
perspective=0.0,
|
| 147 |
+
border=(0, 0)):
|
| 148 |
+
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(0.1, 0.1), scale=(0.9, 1.1), shear=(-10, 10))
|
| 149 |
+
# targets = [cls, xyxy]
|
| 150 |
+
|
| 151 |
+
height = im.shape[0] + border[0] * 2 # shape(h,w,c)
|
| 152 |
+
width = im.shape[1] + border[1] * 2
|
| 153 |
+
|
| 154 |
+
# Center
|
| 155 |
+
C = np.eye(3)
|
| 156 |
+
C[0, 2] = -im.shape[1] / 2 # x translation (pixels)
|
| 157 |
+
C[1, 2] = -im.shape[0] / 2 # y translation (pixels)
|
| 158 |
+
|
| 159 |
+
# Perspective
|
| 160 |
+
P = np.eye(3)
|
| 161 |
+
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
|
| 162 |
+
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
|
| 163 |
+
|
| 164 |
+
# Rotation and Scale
|
| 165 |
+
R = np.eye(3)
|
| 166 |
+
a = random.uniform(-degrees, degrees)
|
| 167 |
+
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
|
| 168 |
+
s = random.uniform(1 - scale, 1 + scale)
|
| 169 |
+
# s = 2 ** random.uniform(-scale, scale)
|
| 170 |
+
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
|
| 171 |
+
|
| 172 |
+
# Shear
|
| 173 |
+
S = np.eye(3)
|
| 174 |
+
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
|
| 175 |
+
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
|
| 176 |
+
|
| 177 |
+
# Translation
|
| 178 |
+
T = np.eye(3)
|
| 179 |
+
T[0, 2] = random.uniform(0.5 - translate, 0.5 + translate) * width # x translation (pixels)
|
| 180 |
+
T[1, 2] = random.uniform(0.5 - translate, 0.5 + translate) * height # y translation (pixels)
|
| 181 |
+
|
| 182 |
+
# Combined rotation matrix
|
| 183 |
+
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
|
| 184 |
+
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
|
| 185 |
+
if perspective:
|
| 186 |
+
im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
|
| 187 |
+
else: # affine
|
| 188 |
+
im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
|
| 189 |
+
|
| 190 |
+
# Visualize
|
| 191 |
+
# import matplotlib.pyplot as plt
|
| 192 |
+
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
|
| 193 |
+
# ax[0].imshow(im[:, :, ::-1]) # base
|
| 194 |
+
# ax[1].imshow(im2[:, :, ::-1]) # warped
|
| 195 |
+
|
| 196 |
+
# Transform label coordinates
|
| 197 |
+
n = len(targets)
|
| 198 |
+
if n:
|
| 199 |
+
use_segments = any(x.any() for x in segments)
|
| 200 |
+
new = np.zeros((n, 4))
|
| 201 |
+
if use_segments: # warp segments
|
| 202 |
+
segments = resample_segments(segments) # upsample
|
| 203 |
+
for i, segment in enumerate(segments):
|
| 204 |
+
xy = np.ones((len(segment), 3))
|
| 205 |
+
xy[:, :2] = segment
|
| 206 |
+
xy = xy @ M.T # transform
|
| 207 |
+
xy = xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2] # perspective rescale or affine
|
| 208 |
+
|
| 209 |
+
# clip
|
| 210 |
+
new[i] = segment2box(xy, width, height)
|
| 211 |
+
|
| 212 |
+
else: # warp boxes
|
| 213 |
+
xy = np.ones((n * 4, 3))
|
| 214 |
+
xy[:, :2] = targets[:, [1, 2, 3, 4, 1, 4, 3, 2]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
|
| 215 |
+
xy = xy @ M.T # transform
|
| 216 |
+
xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]).reshape(n, 8) # perspective rescale or affine
|
| 217 |
+
|
| 218 |
+
# create new boxes
|
| 219 |
+
x = xy[:, [0, 2, 4, 6]]
|
| 220 |
+
y = xy[:, [1, 3, 5, 7]]
|
| 221 |
+
new = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
|
| 222 |
+
|
| 223 |
+
# clip
|
| 224 |
+
new[:, [0, 2]] = new[:, [0, 2]].clip(0, width)
|
| 225 |
+
new[:, [1, 3]] = new[:, [1, 3]].clip(0, height)
|
| 226 |
+
|
| 227 |
+
# filter candidates
|
| 228 |
+
i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01 if use_segments else 0.10)
|
| 229 |
+
targets = targets[i]
|
| 230 |
+
targets[:, 1:5] = new[i]
|
| 231 |
+
|
| 232 |
+
return im, targets
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
def copy_paste(im, labels, segments, p=0.5):
|
| 236 |
+
# Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
|
| 237 |
+
n = len(segments)
|
| 238 |
+
if p and n:
|
| 239 |
+
h, w, c = im.shape # height, width, channels
|
| 240 |
+
im_new = np.zeros(im.shape, np.uint8)
|
| 241 |
+
|
| 242 |
+
# calculate ioa first then select indexes randomly
|
| 243 |
+
boxes = np.stack([w - labels[:, 3], labels[:, 2], w - labels[:, 1], labels[:, 4]], axis=-1) # (n, 4)
|
| 244 |
+
ioa = bbox_ioa(boxes, labels[:, 1:5]) # intersection over area
|
| 245 |
+
indexes = np.nonzero((ioa < 0.30).all(1))[0] # (N, )
|
| 246 |
+
n = len(indexes)
|
| 247 |
+
for j in random.sample(list(indexes), k=round(p * n)):
|
| 248 |
+
l, box, s = labels[j], boxes[j], segments[j]
|
| 249 |
+
labels = np.concatenate((labels, [[l[0], *box]]), 0)
|
| 250 |
+
segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
|
| 251 |
+
cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (1, 1, 1), cv2.FILLED)
|
| 252 |
+
|
| 253 |
+
result = cv2.flip(im, 1) # augment segments (flip left-right)
|
| 254 |
+
i = cv2.flip(im_new, 1).astype(bool)
|
| 255 |
+
im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug
|
| 256 |
+
|
| 257 |
+
return im, labels, segments
|
| 258 |
+
|
| 259 |
+
|
| 260 |
+
def cutout(im, labels, p=0.5):
|
| 261 |
+
# Applies image cutout augmentation https://arxiv.org/abs/1708.04552
|
| 262 |
+
if random.random() < p:
|
| 263 |
+
h, w = im.shape[:2]
|
| 264 |
+
scales = [0.5] * 1 + [0.25] * 2 + [0.125] * 4 + [0.0625] * 8 + [0.03125] * 16 # image size fraction
|
| 265 |
+
for s in scales:
|
| 266 |
+
mask_h = random.randint(1, int(h * s)) # create random masks
|
| 267 |
+
mask_w = random.randint(1, int(w * s))
|
| 268 |
+
|
| 269 |
+
# box
|
| 270 |
+
xmin = max(0, random.randint(0, w) - mask_w // 2)
|
| 271 |
+
ymin = max(0, random.randint(0, h) - mask_h // 2)
|
| 272 |
+
xmax = min(w, xmin + mask_w)
|
| 273 |
+
ymax = min(h, ymin + mask_h)
|
| 274 |
+
|
| 275 |
+
# apply random color mask
|
| 276 |
+
im[ymin:ymax, xmin:xmax] = [random.randint(64, 191) for _ in range(3)]
|
| 277 |
+
|
| 278 |
+
# return unobscured labels
|
| 279 |
+
if len(labels) and s > 0.03:
|
| 280 |
+
box = np.array([[xmin, ymin, xmax, ymax]], dtype=np.float32)
|
| 281 |
+
ioa = bbox_ioa(box, xywhn2xyxy(labels[:, 1:5], w, h))[0] # intersection over area
|
| 282 |
+
labels = labels[ioa < 0.60] # remove >60% obscured labels
|
| 283 |
+
|
| 284 |
+
return labels
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
def mixup(im, labels, im2, labels2):
|
| 288 |
+
# Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
|
| 289 |
+
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
|
| 290 |
+
im = (im * r + im2 * (1 - r)).astype(np.uint8)
|
| 291 |
+
labels = np.concatenate((labels, labels2), 0)
|
| 292 |
+
return im, labels
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
def box_candidates(box1, box2, wh_thr=2, ar_thr=100, area_thr=0.1, eps=1e-16): # box1(4,n), box2(4,n)
|
| 296 |
+
# Compute candidate boxes: box1 before augment, box2 after augment, wh_thr (pixels), aspect_ratio_thr, area_ratio
|
| 297 |
+
w1, h1 = box1[2] - box1[0], box1[3] - box1[1]
|
| 298 |
+
w2, h2 = box2[2] - box2[0], box2[3] - box2[1]
|
| 299 |
+
ar = np.maximum(w2 / (h2 + eps), h2 / (w2 + eps)) # aspect ratio
|
| 300 |
+
return (w2 > wh_thr) & (h2 > wh_thr) & (w2 * h2 / (w1 * h1 + eps) > area_thr) & (ar < ar_thr) # candidates
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
def classify_albumentations(
|
| 304 |
+
augment=True,
|
| 305 |
+
size=224,
|
| 306 |
+
scale=(0.08, 1.0),
|
| 307 |
+
ratio=(0.75, 1.0 / 0.75), # 0.75, 1.33
|
| 308 |
+
hflip=0.5,
|
| 309 |
+
vflip=0.0,
|
| 310 |
+
jitter=0.4,
|
| 311 |
+
mean=IMAGENET_MEAN,
|
| 312 |
+
std=IMAGENET_STD,
|
| 313 |
+
auto_aug=False):
|
| 314 |
+
# YOLOv5 classification Albumentations (optional, only used if package is installed)
|
| 315 |
+
prefix = colorstr('albumentations: ')
|
| 316 |
+
try:
|
| 317 |
+
import albumentations as A
|
| 318 |
+
from albumentations.pytorch import ToTensorV2
|
| 319 |
+
check_version(A.__version__, '1.0.3', hard=True) # version requirement
|
| 320 |
+
if augment: # Resize and crop
|
| 321 |
+
T = [A.RandomResizedCrop(height=size, width=size, scale=scale, ratio=ratio)]
|
| 322 |
+
if auto_aug:
|
| 323 |
+
# TODO: implement AugMix, AutoAug & RandAug in albumentation
|
| 324 |
+
LOGGER.info(f'{prefix}auto augmentations are currently not supported')
|
| 325 |
+
else:
|
| 326 |
+
if hflip > 0:
|
| 327 |
+
T += [A.HorizontalFlip(p=hflip)]
|
| 328 |
+
if vflip > 0:
|
| 329 |
+
T += [A.VerticalFlip(p=vflip)]
|
| 330 |
+
if jitter > 0:
|
| 331 |
+
color_jitter = (float(jitter),) * 3 # repeat value for brightness, contrast, satuaration, 0 hue
|
| 332 |
+
T += [A.ColorJitter(*color_jitter, 0)]
|
| 333 |
+
else: # Use fixed crop for eval set (reproducibility)
|
| 334 |
+
T = [A.SmallestMaxSize(max_size=size), A.CenterCrop(height=size, width=size)]
|
| 335 |
+
T += [A.Normalize(mean=mean, std=std), ToTensorV2()] # Normalize and convert to Tensor
|
| 336 |
+
LOGGER.info(prefix + ', '.join(f'{x}'.replace('always_apply=False, ', '') for x in T if x.p))
|
| 337 |
+
return A.Compose(T)
|
| 338 |
+
|
| 339 |
+
except ImportError: # package not installed, skip
|
| 340 |
+
LOGGER.warning(f'{prefix}⚠️ not found, install with `pip install albumentations` (recommended)')
|
| 341 |
+
except Exception as e:
|
| 342 |
+
LOGGER.info(f'{prefix}{e}')
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
def classify_transforms(size=224):
|
| 346 |
+
# Transforms to apply if albumentations not installed
|
| 347 |
+
assert isinstance(size, int), f'ERROR: classify_transforms size {size} must be integer, not (list, tuple)'
|
| 348 |
+
# T.Compose([T.ToTensor(), T.Resize(size), T.CenterCrop(size), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
|
| 349 |
+
return T.Compose([CenterCrop(size), ToTensor(), T.Normalize(IMAGENET_MEAN, IMAGENET_STD)])
|
| 350 |
+
|
| 351 |
+
|
| 352 |
+
class LetterBox:
|
| 353 |
+
# YOLOv5 LetterBox class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])
|
| 354 |
+
def __init__(self, size=(640, 640), auto=False, stride=32):
|
| 355 |
+
super().__init__()
|
| 356 |
+
self.h, self.w = (size, size) if isinstance(size, int) else size
|
| 357 |
+
self.auto = auto # pass max size integer, automatically solve for short side using stride
|
| 358 |
+
self.stride = stride # used with auto
|
| 359 |
+
|
| 360 |
+
def __call__(self, im): # im = np.array HWC
|
| 361 |
+
imh, imw = im.shape[:2]
|
| 362 |
+
r = min(self.h / imh, self.w / imw) # ratio of new/old
|
| 363 |
+
h, w = round(imh * r), round(imw * r) # resized image
|
| 364 |
+
hs, ws = (math.ceil(x / self.stride) * self.stride for x in (h, w)) if self.auto else self.h, self.w
|
| 365 |
+
top, left = round((hs - h) / 2 - 0.1), round((ws - w) / 2 - 0.1)
|
| 366 |
+
im_out = np.full((self.h, self.w, 3), 114, dtype=im.dtype)
|
| 367 |
+
im_out[top:top + h, left:left + w] = cv2.resize(im, (w, h), interpolation=cv2.INTER_LINEAR)
|
| 368 |
+
return im_out
|
| 369 |
+
|
| 370 |
+
|
| 371 |
+
class CenterCrop:
|
| 372 |
+
# YOLOv5 CenterCrop class for image preprocessing, i.e. T.Compose([CenterCrop(size), ToTensor()])
|
| 373 |
+
def __init__(self, size=640):
|
| 374 |
+
super().__init__()
|
| 375 |
+
self.h, self.w = (size, size) if isinstance(size, int) else size
|
| 376 |
+
|
| 377 |
+
def __call__(self, im): # im = np.array HWC
|
| 378 |
+
imh, imw = im.shape[:2]
|
| 379 |
+
m = min(imh, imw) # min dimension
|
| 380 |
+
top, left = (imh - m) // 2, (imw - m) // 2
|
| 381 |
+
return cv2.resize(im[top:top + m, left:left + m], (self.w, self.h), interpolation=cv2.INTER_LINEAR)
|
| 382 |
+
|
| 383 |
+
|
| 384 |
+
class ToTensor:
|
| 385 |
+
# YOLOv5 ToTensor class for image preprocessing, i.e. T.Compose([LetterBox(size), ToTensor()])
|
| 386 |
+
def __init__(self, half=False):
|
| 387 |
+
super().__init__()
|
| 388 |
+
self.half = half
|
| 389 |
+
|
| 390 |
+
def __call__(self, im): # im = np.array HWC in BGR order
|
| 391 |
+
im = np.ascontiguousarray(im.transpose((2, 0, 1))[::-1]) # HWC to CHW -> BGR to RGB -> contiguous
|
| 392 |
+
im = torch.from_numpy(im) # to torch
|
| 393 |
+
im = im.half() if self.half else im.float() # uint8 to fp16/32
|
| 394 |
+
im /= 255.0 # 0-255 to 0.0-1.0
|
| 395 |
+
return im
|
utils/autoanchor.py
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import yaml
|
| 6 |
+
from tqdm import tqdm
|
| 7 |
+
|
| 8 |
+
from utils import TryExcept
|
| 9 |
+
from utils.general import LOGGER, TQDM_BAR_FORMAT, colorstr
|
| 10 |
+
|
| 11 |
+
PREFIX = colorstr('AutoAnchor: ')
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def check_anchor_order(m):
|
| 15 |
+
# Check anchor order against stride order for YOLOv5 Detect() module m, and correct if necessary
|
| 16 |
+
a = m.anchors.prod(-1).mean(-1).view(-1) # mean anchor area per output layer
|
| 17 |
+
da = a[-1] - a[0] # delta a
|
| 18 |
+
ds = m.stride[-1] - m.stride[0] # delta s
|
| 19 |
+
if da and (da.sign() != ds.sign()): # same order
|
| 20 |
+
LOGGER.info(f'{PREFIX}Reversing anchor order')
|
| 21 |
+
m.anchors[:] = m.anchors.flip(0)
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
@TryExcept(f'{PREFIX}ERROR')
|
| 25 |
+
def check_anchors(dataset, model, thr=4.0, imgsz=640):
|
| 26 |
+
# Check anchor fit to data, recompute if necessary
|
| 27 |
+
m = model.module.model[-1] if hasattr(model, 'module') else model.model[-1] # Detect()
|
| 28 |
+
shapes = imgsz * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
| 29 |
+
scale = np.random.uniform(0.9, 1.1, size=(shapes.shape[0], 1)) # augment scale
|
| 30 |
+
wh = torch.tensor(np.concatenate([l[:, 3:5] * s for s, l in zip(shapes * scale, dataset.labels)])).float() # wh
|
| 31 |
+
|
| 32 |
+
def metric(k): # compute metric
|
| 33 |
+
r = wh[:, None] / k[None]
|
| 34 |
+
x = torch.min(r, 1 / r).min(2)[0] # ratio metric
|
| 35 |
+
best = x.max(1)[0] # best_x
|
| 36 |
+
aat = (x > 1 / thr).float().sum(1).mean() # anchors above threshold
|
| 37 |
+
bpr = (best > 1 / thr).float().mean() # best possible recall
|
| 38 |
+
return bpr, aat
|
| 39 |
+
|
| 40 |
+
stride = m.stride.to(m.anchors.device).view(-1, 1, 1) # model strides
|
| 41 |
+
anchors = m.anchors.clone() * stride # current anchors
|
| 42 |
+
bpr, aat = metric(anchors.cpu().view(-1, 2))
|
| 43 |
+
s = f'\n{PREFIX}{aat:.2f} anchors/target, {bpr:.3f} Best Possible Recall (BPR). '
|
| 44 |
+
if bpr > 0.98: # threshold to recompute
|
| 45 |
+
LOGGER.info(f'{s}Current anchors are a good fit to dataset ✅')
|
| 46 |
+
else:
|
| 47 |
+
LOGGER.info(f'{s}Anchors are a poor fit to dataset ⚠️, attempting to improve...')
|
| 48 |
+
na = m.anchors.numel() // 2 # number of anchors
|
| 49 |
+
anchors = kmean_anchors(dataset, n=na, img_size=imgsz, thr=thr, gen=1000, verbose=False)
|
| 50 |
+
new_bpr = metric(anchors)[0]
|
| 51 |
+
if new_bpr > bpr: # replace anchors
|
| 52 |
+
anchors = torch.tensor(anchors, device=m.anchors.device).type_as(m.anchors)
|
| 53 |
+
m.anchors[:] = anchors.clone().view_as(m.anchors)
|
| 54 |
+
check_anchor_order(m) # must be in pixel-space (not grid-space)
|
| 55 |
+
m.anchors /= stride
|
| 56 |
+
s = f'{PREFIX}Done ✅ (optional: update model *.yaml to use these anchors in the future)'
|
| 57 |
+
else:
|
| 58 |
+
s = f'{PREFIX}Done ⚠️ (original anchors better than new anchors, proceeding with original anchors)'
|
| 59 |
+
LOGGER.info(s)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def kmean_anchors(dataset='./data/coco128.yaml', n=9, img_size=640, thr=4.0, gen=1000, verbose=True):
|
| 63 |
+
""" Creates kmeans-evolved anchors from training dataset
|
| 64 |
+
|
| 65 |
+
Arguments:
|
| 66 |
+
dataset: path to data.yaml, or a loaded dataset
|
| 67 |
+
n: number of anchors
|
| 68 |
+
img_size: image size used for training
|
| 69 |
+
thr: anchor-label wh ratio threshold hyperparameter hyp['anchor_t'] used for training, default=4.0
|
| 70 |
+
gen: generations to evolve anchors using genetic algorithm
|
| 71 |
+
verbose: print all results
|
| 72 |
+
|
| 73 |
+
Return:
|
| 74 |
+
k: kmeans evolved anchors
|
| 75 |
+
|
| 76 |
+
Usage:
|
| 77 |
+
from utils.autoanchor import *; _ = kmean_anchors()
|
| 78 |
+
"""
|
| 79 |
+
from scipy.cluster.vq import kmeans
|
| 80 |
+
|
| 81 |
+
npr = np.random
|
| 82 |
+
thr = 1 / thr
|
| 83 |
+
|
| 84 |
+
def metric(k, wh): # compute metrics
|
| 85 |
+
r = wh[:, None] / k[None]
|
| 86 |
+
x = torch.min(r, 1 / r).min(2)[0] # ratio metric
|
| 87 |
+
# x = wh_iou(wh, torch.tensor(k)) # iou metric
|
| 88 |
+
return x, x.max(1)[0] # x, best_x
|
| 89 |
+
|
| 90 |
+
def anchor_fitness(k): # mutation fitness
|
| 91 |
+
_, best = metric(torch.tensor(k, dtype=torch.float32), wh)
|
| 92 |
+
return (best * (best > thr).float()).mean() # fitness
|
| 93 |
+
|
| 94 |
+
def print_results(k, verbose=True):
|
| 95 |
+
k = k[np.argsort(k.prod(1))] # sort small to large
|
| 96 |
+
x, best = metric(k, wh0)
|
| 97 |
+
bpr, aat = (best > thr).float().mean(), (x > thr).float().mean() * n # best possible recall, anch > thr
|
| 98 |
+
s = f'{PREFIX}thr={thr:.2f}: {bpr:.4f} best possible recall, {aat:.2f} anchors past thr\n' \
|
| 99 |
+
f'{PREFIX}n={n}, img_size={img_size}, metric_all={x.mean():.3f}/{best.mean():.3f}-mean/best, ' \
|
| 100 |
+
f'past_thr={x[x > thr].mean():.3f}-mean: '
|
| 101 |
+
for x in k:
|
| 102 |
+
s += '%i,%i, ' % (round(x[0]), round(x[1]))
|
| 103 |
+
if verbose:
|
| 104 |
+
LOGGER.info(s[:-2])
|
| 105 |
+
return k
|
| 106 |
+
|
| 107 |
+
if isinstance(dataset, str): # *.yaml file
|
| 108 |
+
with open(dataset, errors='ignore') as f:
|
| 109 |
+
data_dict = yaml.safe_load(f) # model dict
|
| 110 |
+
from utils.dataloaders import LoadImagesAndLabels
|
| 111 |
+
dataset = LoadImagesAndLabels(data_dict['train'], augment=True, rect=True)
|
| 112 |
+
|
| 113 |
+
# Get label wh
|
| 114 |
+
shapes = img_size * dataset.shapes / dataset.shapes.max(1, keepdims=True)
|
| 115 |
+
wh0 = np.concatenate([l[:, 3:5] * s for s, l in zip(shapes, dataset.labels)]) # wh
|
| 116 |
+
|
| 117 |
+
# Filter
|
| 118 |
+
i = (wh0 < 3.0).any(1).sum()
|
| 119 |
+
if i:
|
| 120 |
+
LOGGER.info(f'{PREFIX}WARNING ⚠️ Extremely small objects found: {i} of {len(wh0)} labels are <3 pixels in size')
|
| 121 |
+
wh = wh0[(wh0 >= 2.0).any(1)].astype(np.float32) # filter > 2 pixels
|
| 122 |
+
# wh = wh * (npr.rand(wh.shape[0], 1) * 0.9 + 0.1) # multiply by random scale 0-1
|
| 123 |
+
|
| 124 |
+
# Kmeans init
|
| 125 |
+
try:
|
| 126 |
+
LOGGER.info(f'{PREFIX}Running kmeans for {n} anchors on {len(wh)} points...')
|
| 127 |
+
assert n <= len(wh) # apply overdetermined constraint
|
| 128 |
+
s = wh.std(0) # sigmas for whitening
|
| 129 |
+
k = kmeans(wh / s, n, iter=30)[0] * s # points
|
| 130 |
+
assert n == len(k) # kmeans may return fewer points than requested if wh is insufficient or too similar
|
| 131 |
+
except Exception:
|
| 132 |
+
LOGGER.warning(f'{PREFIX}WARNING ⚠️ switching strategies from kmeans to random init')
|
| 133 |
+
k = np.sort(npr.rand(n * 2)).reshape(n, 2) * img_size # random init
|
| 134 |
+
wh, wh0 = (torch.tensor(x, dtype=torch.float32) for x in (wh, wh0))
|
| 135 |
+
k = print_results(k, verbose=False)
|
| 136 |
+
|
| 137 |
+
# Plot
|
| 138 |
+
# k, d = [None] * 20, [None] * 20
|
| 139 |
+
# for i in tqdm(range(1, 21)):
|
| 140 |
+
# k[i-1], d[i-1] = kmeans(wh / s, i) # points, mean distance
|
| 141 |
+
# fig, ax = plt.subplots(1, 2, figsize=(14, 7), tight_layout=True)
|
| 142 |
+
# ax = ax.ravel()
|
| 143 |
+
# ax[0].plot(np.arange(1, 21), np.array(d) ** 2, marker='.')
|
| 144 |
+
# fig, ax = plt.subplots(1, 2, figsize=(14, 7)) # plot wh
|
| 145 |
+
# ax[0].hist(wh[wh[:, 0]<100, 0],400)
|
| 146 |
+
# ax[1].hist(wh[wh[:, 1]<100, 1],400)
|
| 147 |
+
# fig.savefig('wh.png', dpi=200)
|
| 148 |
+
|
| 149 |
+
# Evolve
|
| 150 |
+
f, sh, mp, s = anchor_fitness(k), k.shape, 0.9, 0.1 # fitness, generations, mutation prob, sigma
|
| 151 |
+
pbar = tqdm(range(gen), bar_format=TQDM_BAR_FORMAT) # progress bar
|
| 152 |
+
for _ in pbar:
|
| 153 |
+
v = np.ones(sh)
|
| 154 |
+
while (v == 1).all(): # mutate until a change occurs (prevent duplicates)
|
| 155 |
+
v = ((npr.random(sh) < mp) * random.random() * npr.randn(*sh) * s + 1).clip(0.3, 3.0)
|
| 156 |
+
kg = (k.copy() * v).clip(min=2.0)
|
| 157 |
+
fg = anchor_fitness(kg)
|
| 158 |
+
if fg > f:
|
| 159 |
+
f, k = fg, kg.copy()
|
| 160 |
+
pbar.desc = f'{PREFIX}Evolving anchors with Genetic Algorithm: fitness = {f:.4f}'
|
| 161 |
+
if verbose:
|
| 162 |
+
print_results(k, verbose)
|
| 163 |
+
|
| 164 |
+
return print_results(k).astype(np.float32)
|
utils/autobatch.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from copy import deepcopy
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
from utils.general import LOGGER, colorstr
|
| 7 |
+
from utils.torch_utils import profile
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def check_train_batch_size(model, imgsz=640, amp=True):
|
| 11 |
+
# Check YOLOv5 training batch size
|
| 12 |
+
with torch.cuda.amp.autocast(amp):
|
| 13 |
+
return autobatch(deepcopy(model).train(), imgsz) # compute optimal batch size
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def autobatch(model, imgsz=640, fraction=0.8, batch_size=16):
|
| 17 |
+
# Automatically estimate best YOLOv5 batch size to use `fraction` of available CUDA memory
|
| 18 |
+
# Usage:
|
| 19 |
+
# import torch
|
| 20 |
+
# from utils.autobatch import autobatch
|
| 21 |
+
# model = torch.hub.load('ultralytics/yolov5', 'yolov5s', autoshape=False)
|
| 22 |
+
# print(autobatch(model))
|
| 23 |
+
|
| 24 |
+
# Check device
|
| 25 |
+
prefix = colorstr('AutoBatch: ')
|
| 26 |
+
LOGGER.info(f'{prefix}Computing optimal batch size for --imgsz {imgsz}')
|
| 27 |
+
device = next(model.parameters()).device # get model device
|
| 28 |
+
if device.type == 'cpu':
|
| 29 |
+
LOGGER.info(f'{prefix}CUDA not detected, using default CPU batch-size {batch_size}')
|
| 30 |
+
return batch_size
|
| 31 |
+
if torch.backends.cudnn.benchmark:
|
| 32 |
+
LOGGER.info(f'{prefix} ⚠️ Requires torch.backends.cudnn.benchmark=False, using default batch-size {batch_size}')
|
| 33 |
+
return batch_size
|
| 34 |
+
|
| 35 |
+
# Inspect CUDA memory
|
| 36 |
+
gb = 1 << 30 # bytes to GiB (1024 ** 3)
|
| 37 |
+
d = str(device).upper() # 'CUDA:0'
|
| 38 |
+
properties = torch.cuda.get_device_properties(device) # device properties
|
| 39 |
+
t = properties.total_memory / gb # GiB total
|
| 40 |
+
r = torch.cuda.memory_reserved(device) / gb # GiB reserved
|
| 41 |
+
a = torch.cuda.memory_allocated(device) / gb # GiB allocated
|
| 42 |
+
f = t - (r + a) # GiB free
|
| 43 |
+
LOGGER.info(f'{prefix}{d} ({properties.name}) {t:.2f}G total, {r:.2f}G reserved, {a:.2f}G allocated, {f:.2f}G free')
|
| 44 |
+
|
| 45 |
+
# Profile batch sizes
|
| 46 |
+
batch_sizes = [1, 2, 4, 8, 16]
|
| 47 |
+
try:
|
| 48 |
+
img = [torch.empty(b, 3, imgsz, imgsz) for b in batch_sizes]
|
| 49 |
+
results = profile(img, model, n=3, device=device)
|
| 50 |
+
except Exception as e:
|
| 51 |
+
LOGGER.warning(f'{prefix}{e}')
|
| 52 |
+
|
| 53 |
+
# Fit a solution
|
| 54 |
+
y = [x[2] for x in results if x] # memory [2]
|
| 55 |
+
p = np.polyfit(batch_sizes[:len(y)], y, deg=1) # first degree polynomial fit
|
| 56 |
+
b = int((f * fraction - p[1]) / p[0]) # y intercept (optimal batch size)
|
| 57 |
+
if None in results: # some sizes failed
|
| 58 |
+
i = results.index(None) # first fail index
|
| 59 |
+
if b >= batch_sizes[i]: # y intercept above failure point
|
| 60 |
+
b = batch_sizes[max(i - 1, 0)] # select prior safe point
|
| 61 |
+
if b < 1 or b > 1024: # b outside of safe range
|
| 62 |
+
b = batch_size
|
| 63 |
+
LOGGER.warning(f'{prefix}WARNING ⚠️ CUDA anomaly detected, recommend restart environment and retry command.')
|
| 64 |
+
|
| 65 |
+
fraction = (np.polyval(p, b) + r + a) / t # actual fraction predicted
|
| 66 |
+
LOGGER.info(f'{prefix}Using batch-size {b} for {d} {t * fraction:.2f}G/{t:.2f}G ({fraction * 100:.0f}%) ✅')
|
| 67 |
+
return b
|
utils/callbacks.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import threading
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class Callbacks:
|
| 5 |
+
""""
|
| 6 |
+
Handles all registered callbacks for YOLOv5 Hooks
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
def __init__(self):
|
| 10 |
+
# Define the available callbacks
|
| 11 |
+
self._callbacks = {
|
| 12 |
+
'on_pretrain_routine_start': [],
|
| 13 |
+
'on_pretrain_routine_end': [],
|
| 14 |
+
'on_train_start': [],
|
| 15 |
+
'on_train_epoch_start': [],
|
| 16 |
+
'on_train_batch_start': [],
|
| 17 |
+
'optimizer_step': [],
|
| 18 |
+
'on_before_zero_grad': [],
|
| 19 |
+
'on_train_batch_end': [],
|
| 20 |
+
'on_train_epoch_end': [],
|
| 21 |
+
'on_val_start': [],
|
| 22 |
+
'on_val_batch_start': [],
|
| 23 |
+
'on_val_image_end': [],
|
| 24 |
+
'on_val_batch_end': [],
|
| 25 |
+
'on_val_end': [],
|
| 26 |
+
'on_fit_epoch_end': [], # fit = train + val
|
| 27 |
+
'on_model_save': [],
|
| 28 |
+
'on_train_end': [],
|
| 29 |
+
'on_params_update': [],
|
| 30 |
+
'teardown': [],}
|
| 31 |
+
self.stop_training = False # set True to interrupt training
|
| 32 |
+
|
| 33 |
+
def register_action(self, hook, name='', callback=None):
|
| 34 |
+
"""
|
| 35 |
+
Register a new action to a callback hook
|
| 36 |
+
|
| 37 |
+
Args:
|
| 38 |
+
hook: The callback hook name to register the action to
|
| 39 |
+
name: The name of the action for later reference
|
| 40 |
+
callback: The callback to fire
|
| 41 |
+
"""
|
| 42 |
+
assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
|
| 43 |
+
assert callable(callback), f"callback '{callback}' is not callable"
|
| 44 |
+
self._callbacks[hook].append({'name': name, 'callback': callback})
|
| 45 |
+
|
| 46 |
+
def get_registered_actions(self, hook=None):
|
| 47 |
+
""""
|
| 48 |
+
Returns all the registered actions by callback hook
|
| 49 |
+
|
| 50 |
+
Args:
|
| 51 |
+
hook: The name of the hook to check, defaults to all
|
| 52 |
+
"""
|
| 53 |
+
return self._callbacks[hook] if hook else self._callbacks
|
| 54 |
+
|
| 55 |
+
def run(self, hook, *args, thread=False, **kwargs):
|
| 56 |
+
"""
|
| 57 |
+
Loop through the registered actions and fire all callbacks on main thread
|
| 58 |
+
|
| 59 |
+
Args:
|
| 60 |
+
hook: The name of the hook to check, defaults to all
|
| 61 |
+
args: Arguments to receive from YOLOv5
|
| 62 |
+
thread: (boolean) Run callbacks in daemon thread
|
| 63 |
+
kwargs: Keyword Arguments to receive from YOLOv5
|
| 64 |
+
"""
|
| 65 |
+
|
| 66 |
+
assert hook in self._callbacks, f"hook '{hook}' not found in callbacks {self._callbacks}"
|
| 67 |
+
for logger in self._callbacks[hook]:
|
| 68 |
+
if thread:
|
| 69 |
+
threading.Thread(target=logger['callback'], args=args, kwargs=kwargs, daemon=True).start()
|
| 70 |
+
else:
|
| 71 |
+
logger['callback'](*args, **kwargs)
|
utils/coco_utils.py
ADDED
|
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
|
| 3 |
+
from pycocotools.coco import COCO
|
| 4 |
+
from pycocotools import mask as maskUtils
|
| 5 |
+
|
| 6 |
+
# coco id: https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
|
| 7 |
+
all_instances_ids = [
|
| 8 |
+
1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
|
| 9 |
+
11, 13, 14, 15, 16, 17, 18, 19, 20,
|
| 10 |
+
21, 22, 23, 24, 25, 27, 28,
|
| 11 |
+
31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
|
| 12 |
+
41, 42, 43, 44, 46, 47, 48, 49, 50,
|
| 13 |
+
51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
|
| 14 |
+
61, 62, 63, 64, 65, 67, 70,
|
| 15 |
+
72, 73, 74, 75, 76, 77, 78, 79, 80,
|
| 16 |
+
81, 82, 84, 85, 86, 87, 88, 89, 90,
|
| 17 |
+
]
|
| 18 |
+
|
| 19 |
+
all_stuff_ids = [
|
| 20 |
+
92, 93, 94, 95, 96, 97, 98, 99, 100,
|
| 21 |
+
101, 102, 103, 104, 105, 106, 107, 108, 109, 110,
|
| 22 |
+
111, 112, 113, 114, 115, 116, 117, 118, 119, 120,
|
| 23 |
+
121, 122, 123, 124, 125, 126, 127, 128, 129, 130,
|
| 24 |
+
131, 132, 133, 134, 135, 136, 137, 138, 139, 140,
|
| 25 |
+
141, 142, 143, 144, 145, 146, 147, 148, 149, 150,
|
| 26 |
+
151, 152, 153, 154, 155, 156, 157, 158, 159, 160,
|
| 27 |
+
161, 162, 163, 164, 165, 166, 167, 168, 169, 170,
|
| 28 |
+
171, 172, 173, 174, 175, 176, 177, 178, 179, 180,
|
| 29 |
+
181, 182,
|
| 30 |
+
# other
|
| 31 |
+
183,
|
| 32 |
+
# unlabeled
|
| 33 |
+
0,
|
| 34 |
+
]
|
| 35 |
+
|
| 36 |
+
# panoptic id: https://github.com/cocodataset/panopticapi/blob/master/panoptic_coco_categories.json
|
| 37 |
+
panoptic_stuff_ids = [
|
| 38 |
+
92, 93, 95, 100,
|
| 39 |
+
107, 109,
|
| 40 |
+
112, 118, 119,
|
| 41 |
+
122, 125, 128, 130,
|
| 42 |
+
133, 138,
|
| 43 |
+
141, 144, 145, 147, 148, 149,
|
| 44 |
+
151, 154, 155, 156, 159,
|
| 45 |
+
161, 166, 168,
|
| 46 |
+
171, 175, 176, 177, 178, 180,
|
| 47 |
+
181, 184, 185, 186, 187, 188, 189, 190,
|
| 48 |
+
191, 192, 193, 194, 195, 196, 197, 198, 199, 200,
|
| 49 |
+
# unlabeled
|
| 50 |
+
0,
|
| 51 |
+
]
|
| 52 |
+
|
| 53 |
+
def getCocoIds(name = 'semantic'):
|
| 54 |
+
if 'instances' == name:
|
| 55 |
+
return all_instances_ids
|
| 56 |
+
elif 'stuff' == name:
|
| 57 |
+
return all_stuff_ids
|
| 58 |
+
elif 'panoptic' == name:
|
| 59 |
+
return all_instances_ids + panoptic_stuff_ids
|
| 60 |
+
else: # semantic
|
| 61 |
+
return all_instances_ids + all_stuff_ids
|
| 62 |
+
|
| 63 |
+
def getMappingId(index, name = 'semantic'):
|
| 64 |
+
ids = getCocoIds(name = name)
|
| 65 |
+
return ids[index]
|
| 66 |
+
|
| 67 |
+
def getMappingIndex(id, name = 'semantic'):
|
| 68 |
+
ids = getCocoIds(name = name)
|
| 69 |
+
return ids.index(id)
|
| 70 |
+
|
| 71 |
+
# convert ann to rle encoded string
|
| 72 |
+
def annToRLE(ann, img_size):
|
| 73 |
+
h, w = img_size
|
| 74 |
+
segm = ann['segmentation']
|
| 75 |
+
if list == type(segm):
|
| 76 |
+
# polygon -- a single object might consist of multiple parts
|
| 77 |
+
# we merge all parts into one mask rle code
|
| 78 |
+
rles = maskUtils.frPyObjects(segm, h, w)
|
| 79 |
+
rle = maskUtils.merge(rles)
|
| 80 |
+
elif list == type(segm['counts']):
|
| 81 |
+
# uncompressed RLE
|
| 82 |
+
rle = maskUtils.frPyObjects(segm, h, w)
|
| 83 |
+
else:
|
| 84 |
+
# rle
|
| 85 |
+
rle = ann['segmentation']
|
| 86 |
+
return rle
|
| 87 |
+
|
| 88 |
+
# decode ann to mask martix
|
| 89 |
+
def annToMask(ann, img_size):
|
| 90 |
+
rle = annToRLE(ann, img_size)
|
| 91 |
+
m = maskUtils.decode(rle)
|
| 92 |
+
return m
|
| 93 |
+
|
| 94 |
+
# convert mask to polygans
|
| 95 |
+
def convert_to_polys(mask):
|
| 96 |
+
# opencv 3.2
|
| 97 |
+
contours, hierarchy = cv2.findContours((mask).astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
| 98 |
+
|
| 99 |
+
# before opencv 3.2
|
| 100 |
+
# contours, hierarchy = cv2.findContours((mask).astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
| 101 |
+
|
| 102 |
+
segmentation = []
|
| 103 |
+
for contour in contours:
|
| 104 |
+
contour = contour.flatten().tolist()
|
| 105 |
+
if 4 < len(contour):
|
| 106 |
+
segmentation.append(contour)
|
| 107 |
+
|
| 108 |
+
return segmentation
|
utils/dataloaders.py
ADDED
|
@@ -0,0 +1,1217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import contextlib
|
| 2 |
+
import glob
|
| 3 |
+
import hashlib
|
| 4 |
+
import json
|
| 5 |
+
import math
|
| 6 |
+
import os
|
| 7 |
+
import random
|
| 8 |
+
import shutil
|
| 9 |
+
import time
|
| 10 |
+
from itertools import repeat
|
| 11 |
+
from multiprocessing.pool import Pool, ThreadPool
|
| 12 |
+
from pathlib import Path
|
| 13 |
+
from threading import Thread
|
| 14 |
+
from urllib.parse import urlparse
|
| 15 |
+
|
| 16 |
+
import numpy as np
|
| 17 |
+
import psutil
|
| 18 |
+
import torch
|
| 19 |
+
import torch.nn.functional as F
|
| 20 |
+
import torchvision
|
| 21 |
+
import yaml
|
| 22 |
+
from PIL import ExifTags, Image, ImageOps
|
| 23 |
+
from torch.utils.data import DataLoader, Dataset, dataloader, distributed
|
| 24 |
+
from tqdm import tqdm
|
| 25 |
+
|
| 26 |
+
from utils.augmentations import (Albumentations, augment_hsv, classify_albumentations, classify_transforms, copy_paste,
|
| 27 |
+
letterbox, mixup, random_perspective)
|
| 28 |
+
from utils.general import (DATASETS_DIR, LOGGER, NUM_THREADS, TQDM_BAR_FORMAT, check_dataset, check_requirements,
|
| 29 |
+
check_yaml, clean_str, cv2, is_colab, is_kaggle, segments2boxes, unzip_file, xyn2xy,
|
| 30 |
+
xywh2xyxy, xywhn2xyxy, xyxy2xywhn)
|
| 31 |
+
from utils.torch_utils import torch_distributed_zero_first
|
| 32 |
+
|
| 33 |
+
# Parameters
|
| 34 |
+
HELP_URL = 'See https://github.com/ultralytics/yolov5/wiki/Train-Custom-Data'
|
| 35 |
+
IMG_FORMATS = 'bmp', 'dng', 'jpeg', 'jpg', 'mpo', 'png', 'tif', 'tiff', 'webp', 'pfm' # include image suffixes
|
| 36 |
+
VID_FORMATS = 'asf', 'avi', 'gif', 'm4v', 'mkv', 'mov', 'mp4', 'mpeg', 'mpg', 'ts', 'wmv' # include video suffixes
|
| 37 |
+
LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1)) # https://pytorch.org/docs/stable/elastic/run.html
|
| 38 |
+
RANK = int(os.getenv('RANK', -1))
|
| 39 |
+
PIN_MEMORY = str(os.getenv('PIN_MEMORY', True)).lower() == 'true' # global pin_memory for dataloaders
|
| 40 |
+
|
| 41 |
+
# Get orientation exif tag
|
| 42 |
+
for orientation in ExifTags.TAGS.keys():
|
| 43 |
+
if ExifTags.TAGS[orientation] == 'Orientation':
|
| 44 |
+
break
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
def get_hash(paths):
|
| 48 |
+
# Returns a single hash value of a list of paths (files or dirs)
|
| 49 |
+
size = sum(os.path.getsize(p) for p in paths if os.path.exists(p)) # sizes
|
| 50 |
+
h = hashlib.md5(str(size).encode()) # hash sizes
|
| 51 |
+
h.update(''.join(paths).encode()) # hash paths
|
| 52 |
+
return h.hexdigest() # return hash
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
def exif_size(img):
|
| 56 |
+
# Returns exif-corrected PIL size
|
| 57 |
+
s = img.size # (width, height)
|
| 58 |
+
with contextlib.suppress(Exception):
|
| 59 |
+
rotation = dict(img._getexif().items())[orientation]
|
| 60 |
+
if rotation in [6, 8]: # rotation 270 or 90
|
| 61 |
+
s = (s[1], s[0])
|
| 62 |
+
return s
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def exif_transpose(image):
|
| 66 |
+
"""
|
| 67 |
+
Transpose a PIL image accordingly if it has an EXIF Orientation tag.
|
| 68 |
+
Inplace version of https://github.com/python-pillow/Pillow/blob/master/src/PIL/ImageOps.py exif_transpose()
|
| 69 |
+
|
| 70 |
+
:param image: The image to transpose.
|
| 71 |
+
:return: An image.
|
| 72 |
+
"""
|
| 73 |
+
exif = image.getexif()
|
| 74 |
+
orientation = exif.get(0x0112, 1) # default 1
|
| 75 |
+
if orientation > 1:
|
| 76 |
+
method = {
|
| 77 |
+
2: Image.FLIP_LEFT_RIGHT,
|
| 78 |
+
3: Image.ROTATE_180,
|
| 79 |
+
4: Image.FLIP_TOP_BOTTOM,
|
| 80 |
+
5: Image.TRANSPOSE,
|
| 81 |
+
6: Image.ROTATE_270,
|
| 82 |
+
7: Image.TRANSVERSE,
|
| 83 |
+
8: Image.ROTATE_90}.get(orientation)
|
| 84 |
+
if method is not None:
|
| 85 |
+
image = image.transpose(method)
|
| 86 |
+
del exif[0x0112]
|
| 87 |
+
image.info["exif"] = exif.tobytes()
|
| 88 |
+
return image
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
def seed_worker(worker_id):
|
| 92 |
+
# Set dataloader worker seed https://pytorch.org/docs/stable/notes/randomness.html#dataloader
|
| 93 |
+
worker_seed = torch.initial_seed() % 2 ** 32
|
| 94 |
+
np.random.seed(worker_seed)
|
| 95 |
+
random.seed(worker_seed)
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def create_dataloader(path,
|
| 99 |
+
imgsz,
|
| 100 |
+
batch_size,
|
| 101 |
+
stride,
|
| 102 |
+
single_cls=False,
|
| 103 |
+
hyp=None,
|
| 104 |
+
augment=False,
|
| 105 |
+
cache=False,
|
| 106 |
+
pad=0.0,
|
| 107 |
+
rect=False,
|
| 108 |
+
rank=-1,
|
| 109 |
+
workers=8,
|
| 110 |
+
image_weights=False,
|
| 111 |
+
close_mosaic=False,
|
| 112 |
+
quad=False,
|
| 113 |
+
min_items=0,
|
| 114 |
+
prefix='',
|
| 115 |
+
shuffle=False):
|
| 116 |
+
if rect and shuffle:
|
| 117 |
+
LOGGER.warning('WARNING ⚠️ --rect is incompatible with DataLoader shuffle, setting shuffle=False')
|
| 118 |
+
shuffle = False
|
| 119 |
+
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
|
| 120 |
+
dataset = LoadImagesAndLabels(
|
| 121 |
+
path,
|
| 122 |
+
imgsz,
|
| 123 |
+
batch_size,
|
| 124 |
+
augment=augment, # augmentation
|
| 125 |
+
hyp=hyp, # hyperparameters
|
| 126 |
+
rect=rect, # rectangular batches
|
| 127 |
+
cache_images=cache,
|
| 128 |
+
single_cls=single_cls,
|
| 129 |
+
stride=int(stride),
|
| 130 |
+
pad=pad,
|
| 131 |
+
image_weights=image_weights,
|
| 132 |
+
min_items=min_items,
|
| 133 |
+
prefix=prefix)
|
| 134 |
+
|
| 135 |
+
batch_size = min(batch_size, len(dataset))
|
| 136 |
+
nd = torch.cuda.device_count() # number of CUDA devices
|
| 137 |
+
nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) # number of workers
|
| 138 |
+
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
|
| 139 |
+
#loader = DataLoader if image_weights else InfiniteDataLoader # only DataLoader allows for attribute updates
|
| 140 |
+
loader = DataLoader if image_weights or close_mosaic else InfiniteDataLoader
|
| 141 |
+
generator = torch.Generator()
|
| 142 |
+
generator.manual_seed(6148914691236517205 + RANK)
|
| 143 |
+
return loader(dataset,
|
| 144 |
+
batch_size=batch_size,
|
| 145 |
+
shuffle=shuffle and sampler is None,
|
| 146 |
+
num_workers=nw,
|
| 147 |
+
sampler=sampler,
|
| 148 |
+
pin_memory=PIN_MEMORY,
|
| 149 |
+
collate_fn=LoadImagesAndLabels.collate_fn4 if quad else LoadImagesAndLabels.collate_fn,
|
| 150 |
+
worker_init_fn=seed_worker,
|
| 151 |
+
generator=generator), dataset
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
class InfiniteDataLoader(dataloader.DataLoader):
|
| 155 |
+
""" Dataloader that reuses workers
|
| 156 |
+
|
| 157 |
+
Uses same syntax as vanilla DataLoader
|
| 158 |
+
"""
|
| 159 |
+
|
| 160 |
+
def __init__(self, *args, **kwargs):
|
| 161 |
+
super().__init__(*args, **kwargs)
|
| 162 |
+
object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler))
|
| 163 |
+
self.iterator = super().__iter__()
|
| 164 |
+
|
| 165 |
+
def __len__(self):
|
| 166 |
+
return len(self.batch_sampler.sampler)
|
| 167 |
+
|
| 168 |
+
def __iter__(self):
|
| 169 |
+
for _ in range(len(self)):
|
| 170 |
+
yield next(self.iterator)
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
class _RepeatSampler:
|
| 174 |
+
""" Sampler that repeats forever
|
| 175 |
+
|
| 176 |
+
Args:
|
| 177 |
+
sampler (Sampler)
|
| 178 |
+
"""
|
| 179 |
+
|
| 180 |
+
def __init__(self, sampler):
|
| 181 |
+
self.sampler = sampler
|
| 182 |
+
|
| 183 |
+
def __iter__(self):
|
| 184 |
+
while True:
|
| 185 |
+
yield from iter(self.sampler)
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
class LoadScreenshots:
|
| 189 |
+
# YOLOv5 screenshot dataloader, i.e. `python detect.py --source "screen 0 100 100 512 256"`
|
| 190 |
+
def __init__(self, source, img_size=640, stride=32, auto=True, transforms=None):
|
| 191 |
+
# source = [screen_number left top width height] (pixels)
|
| 192 |
+
check_requirements('mss')
|
| 193 |
+
import mss
|
| 194 |
+
|
| 195 |
+
source, *params = source.split()
|
| 196 |
+
self.screen, left, top, width, height = 0, None, None, None, None # default to full screen 0
|
| 197 |
+
if len(params) == 1:
|
| 198 |
+
self.screen = int(params[0])
|
| 199 |
+
elif len(params) == 4:
|
| 200 |
+
left, top, width, height = (int(x) for x in params)
|
| 201 |
+
elif len(params) == 5:
|
| 202 |
+
self.screen, left, top, width, height = (int(x) for x in params)
|
| 203 |
+
self.img_size = img_size
|
| 204 |
+
self.stride = stride
|
| 205 |
+
self.transforms = transforms
|
| 206 |
+
self.auto = auto
|
| 207 |
+
self.mode = 'stream'
|
| 208 |
+
self.frame = 0
|
| 209 |
+
self.sct = mss.mss()
|
| 210 |
+
|
| 211 |
+
# Parse monitor shape
|
| 212 |
+
monitor = self.sct.monitors[self.screen]
|
| 213 |
+
self.top = monitor["top"] if top is None else (monitor["top"] + top)
|
| 214 |
+
self.left = monitor["left"] if left is None else (monitor["left"] + left)
|
| 215 |
+
self.width = width or monitor["width"]
|
| 216 |
+
self.height = height or monitor["height"]
|
| 217 |
+
self.monitor = {"left": self.left, "top": self.top, "width": self.width, "height": self.height}
|
| 218 |
+
|
| 219 |
+
def __iter__(self):
|
| 220 |
+
return self
|
| 221 |
+
|
| 222 |
+
def __next__(self):
|
| 223 |
+
# mss screen capture: get raw pixels from the screen as np array
|
| 224 |
+
im0 = np.array(self.sct.grab(self.monitor))[:, :, :3] # [:, :, :3] BGRA to BGR
|
| 225 |
+
s = f"screen {self.screen} (LTWH): {self.left},{self.top},{self.width},{self.height}: "
|
| 226 |
+
|
| 227 |
+
if self.transforms:
|
| 228 |
+
im = self.transforms(im0) # transforms
|
| 229 |
+
else:
|
| 230 |
+
im = letterbox(im0, self.img_size, stride=self.stride, auto=self.auto)[0] # padded resize
|
| 231 |
+
im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
| 232 |
+
im = np.ascontiguousarray(im) # contiguous
|
| 233 |
+
self.frame += 1
|
| 234 |
+
return str(self.screen), im, im0, None, s # screen, img, original img, im0s, s
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
class LoadImages:
|
| 238 |
+
# YOLOv5 image/video dataloader, i.e. `python detect.py --source image.jpg/vid.mp4`
|
| 239 |
+
def __init__(self, path, img_size=640, stride=32, auto=True, transforms=None, vid_stride=1):
|
| 240 |
+
files = []
|
| 241 |
+
for p in sorted(path) if isinstance(path, (list, tuple)) else [path]:
|
| 242 |
+
p = str(Path(p).resolve())
|
| 243 |
+
if '*' in p:
|
| 244 |
+
files.extend(sorted(glob.glob(p, recursive=True))) # glob
|
| 245 |
+
elif os.path.isdir(p):
|
| 246 |
+
files.extend(sorted(glob.glob(os.path.join(p, '*.*')))) # dir
|
| 247 |
+
elif os.path.isfile(p):
|
| 248 |
+
files.append(p) # files
|
| 249 |
+
else:
|
| 250 |
+
raise FileNotFoundError(f'{p} does not exist')
|
| 251 |
+
|
| 252 |
+
images = [x for x in files if x.split('.')[-1].lower() in IMG_FORMATS]
|
| 253 |
+
videos = [x for x in files if x.split('.')[-1].lower() in VID_FORMATS]
|
| 254 |
+
ni, nv = len(images), len(videos)
|
| 255 |
+
|
| 256 |
+
self.img_size = img_size
|
| 257 |
+
self.stride = stride
|
| 258 |
+
self.files = images + videos
|
| 259 |
+
self.nf = ni + nv # number of files
|
| 260 |
+
self.video_flag = [False] * ni + [True] * nv
|
| 261 |
+
self.mode = 'image'
|
| 262 |
+
self.auto = auto
|
| 263 |
+
self.transforms = transforms # optional
|
| 264 |
+
self.vid_stride = vid_stride # video frame-rate stride
|
| 265 |
+
if any(videos):
|
| 266 |
+
self._new_video(videos[0]) # new video
|
| 267 |
+
else:
|
| 268 |
+
self.cap = None
|
| 269 |
+
assert self.nf > 0, f'No images or videos found in {p}. ' \
|
| 270 |
+
f'Supported formats are:\nimages: {IMG_FORMATS}\nvideos: {VID_FORMATS}'
|
| 271 |
+
|
| 272 |
+
def __iter__(self):
|
| 273 |
+
self.count = 0
|
| 274 |
+
return self
|
| 275 |
+
|
| 276 |
+
def __next__(self):
|
| 277 |
+
if self.count == self.nf:
|
| 278 |
+
raise StopIteration
|
| 279 |
+
path = self.files[self.count]
|
| 280 |
+
|
| 281 |
+
if self.video_flag[self.count]:
|
| 282 |
+
# Read video
|
| 283 |
+
self.mode = 'video'
|
| 284 |
+
for _ in range(self.vid_stride):
|
| 285 |
+
self.cap.grab()
|
| 286 |
+
ret_val, im0 = self.cap.retrieve()
|
| 287 |
+
while not ret_val:
|
| 288 |
+
self.count += 1
|
| 289 |
+
self.cap.release()
|
| 290 |
+
if self.count == self.nf: # last video
|
| 291 |
+
raise StopIteration
|
| 292 |
+
path = self.files[self.count]
|
| 293 |
+
self._new_video(path)
|
| 294 |
+
ret_val, im0 = self.cap.read()
|
| 295 |
+
|
| 296 |
+
self.frame += 1
|
| 297 |
+
# im0 = self._cv2_rotate(im0) # for use if cv2 autorotation is False
|
| 298 |
+
s = f'video {self.count + 1}/{self.nf} ({self.frame}/{self.frames}) {path}: '
|
| 299 |
+
|
| 300 |
+
else:
|
| 301 |
+
# Read image
|
| 302 |
+
self.count += 1
|
| 303 |
+
im0 = cv2.imread(path) # BGR
|
| 304 |
+
assert im0 is not None, f'Image Not Found {path}'
|
| 305 |
+
s = f'image {self.count}/{self.nf} {path}: '
|
| 306 |
+
|
| 307 |
+
if self.transforms:
|
| 308 |
+
im = self.transforms(im0) # transforms
|
| 309 |
+
else:
|
| 310 |
+
im = letterbox(im0, self.img_size, stride=self.stride, auto=self.auto)[0] # padded resize
|
| 311 |
+
im = im.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
| 312 |
+
im = np.ascontiguousarray(im) # contiguous
|
| 313 |
+
|
| 314 |
+
return path, im, im0, self.cap, s
|
| 315 |
+
|
| 316 |
+
def _new_video(self, path):
|
| 317 |
+
# Create a new video capture object
|
| 318 |
+
self.frame = 0
|
| 319 |
+
self.cap = cv2.VideoCapture(path)
|
| 320 |
+
self.frames = int(self.cap.get(cv2.CAP_PROP_FRAME_COUNT) / self.vid_stride)
|
| 321 |
+
self.orientation = int(self.cap.get(cv2.CAP_PROP_ORIENTATION_META)) # rotation degrees
|
| 322 |
+
# self.cap.set(cv2.CAP_PROP_ORIENTATION_AUTO, 0) # disable https://github.com/ultralytics/yolov5/issues/8493
|
| 323 |
+
|
| 324 |
+
def _cv2_rotate(self, im):
|
| 325 |
+
# Rotate a cv2 video manually
|
| 326 |
+
if self.orientation == 0:
|
| 327 |
+
return cv2.rotate(im, cv2.ROTATE_90_CLOCKWISE)
|
| 328 |
+
elif self.orientation == 180:
|
| 329 |
+
return cv2.rotate(im, cv2.ROTATE_90_COUNTERCLOCKWISE)
|
| 330 |
+
elif self.orientation == 90:
|
| 331 |
+
return cv2.rotate(im, cv2.ROTATE_180)
|
| 332 |
+
return im
|
| 333 |
+
|
| 334 |
+
def __len__(self):
|
| 335 |
+
return self.nf # number of files
|
| 336 |
+
|
| 337 |
+
|
| 338 |
+
class LoadStreams:
|
| 339 |
+
# YOLOv5 streamloader, i.e. `python detect.py --source 'rtsp://example.com/media.mp4' # RTSP, RTMP, HTTP streams`
|
| 340 |
+
def __init__(self, sources='streams.txt', img_size=640, stride=32, auto=True, transforms=None, vid_stride=1):
|
| 341 |
+
torch.backends.cudnn.benchmark = True # faster for fixed-size inference
|
| 342 |
+
self.mode = 'stream'
|
| 343 |
+
self.img_size = img_size
|
| 344 |
+
self.stride = stride
|
| 345 |
+
self.vid_stride = vid_stride # video frame-rate stride
|
| 346 |
+
sources = Path(sources).read_text().rsplit() if os.path.isfile(sources) else [sources]
|
| 347 |
+
n = len(sources)
|
| 348 |
+
self.sources = [clean_str(x) for x in sources] # clean source names for later
|
| 349 |
+
self.imgs, self.fps, self.frames, self.threads = [None] * n, [0] * n, [0] * n, [None] * n
|
| 350 |
+
for i, s in enumerate(sources): # index, source
|
| 351 |
+
# Start thread to read frames from video stream
|
| 352 |
+
st = f'{i + 1}/{n}: {s}... '
|
| 353 |
+
if urlparse(s).hostname in ('www.youtube.com', 'youtube.com', 'youtu.be'): # if source is YouTube video
|
| 354 |
+
# YouTube format i.e. 'https://www.youtube.com/watch?v=Zgi9g1ksQHc' or 'https://youtu.be/Zgi9g1ksQHc'
|
| 355 |
+
check_requirements(('pafy', 'youtube_dl==2020.12.2'))
|
| 356 |
+
import pafy
|
| 357 |
+
s = pafy.new(s).getbest(preftype="mp4").url # YouTube URL
|
| 358 |
+
s = eval(s) if s.isnumeric() else s # i.e. s = '0' local webcam
|
| 359 |
+
if s == 0:
|
| 360 |
+
assert not is_colab(), '--source 0 webcam unsupported on Colab. Rerun command in a local environment.'
|
| 361 |
+
assert not is_kaggle(), '--source 0 webcam unsupported on Kaggle. Rerun command in a local environment.'
|
| 362 |
+
cap = cv2.VideoCapture(s)
|
| 363 |
+
assert cap.isOpened(), f'{st}Failed to open {s}'
|
| 364 |
+
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 365 |
+
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 366 |
+
fps = cap.get(cv2.CAP_PROP_FPS) # warning: may return 0 or nan
|
| 367 |
+
self.frames[i] = max(int(cap.get(cv2.CAP_PROP_FRAME_COUNT)), 0) or float('inf') # infinite stream fallback
|
| 368 |
+
self.fps[i] = max((fps if math.isfinite(fps) else 0) % 100, 0) or 30 # 30 FPS fallback
|
| 369 |
+
|
| 370 |
+
_, self.imgs[i] = cap.read() # guarantee first frame
|
| 371 |
+
self.threads[i] = Thread(target=self.update, args=([i, cap, s]), daemon=True)
|
| 372 |
+
LOGGER.info(f"{st} Success ({self.frames[i]} frames {w}x{h} at {self.fps[i]:.2f} FPS)")
|
| 373 |
+
self.threads[i].start()
|
| 374 |
+
LOGGER.info('') # newline
|
| 375 |
+
|
| 376 |
+
# check for common shapes
|
| 377 |
+
s = np.stack([letterbox(x, img_size, stride=stride, auto=auto)[0].shape for x in self.imgs])
|
| 378 |
+
self.rect = np.unique(s, axis=0).shape[0] == 1 # rect inference if all shapes equal
|
| 379 |
+
self.auto = auto and self.rect
|
| 380 |
+
self.transforms = transforms # optional
|
| 381 |
+
if not self.rect:
|
| 382 |
+
LOGGER.warning('WARNING ⚠️ Stream shapes differ. For optimal performance supply similarly-shaped streams.')
|
| 383 |
+
|
| 384 |
+
def update(self, i, cap, stream):
|
| 385 |
+
# Read stream `i` frames in daemon thread
|
| 386 |
+
n, f = 0, self.frames[i] # frame number, frame array
|
| 387 |
+
while cap.isOpened() and n < f:
|
| 388 |
+
n += 1
|
| 389 |
+
cap.grab() # .read() = .grab() followed by .retrieve()
|
| 390 |
+
if n % self.vid_stride == 0:
|
| 391 |
+
success, im = cap.retrieve()
|
| 392 |
+
if success:
|
| 393 |
+
self.imgs[i] = im
|
| 394 |
+
else:
|
| 395 |
+
LOGGER.warning('WARNING ⚠️ Video stream unresponsive, please check your IP camera connection.')
|
| 396 |
+
self.imgs[i] = np.zeros_like(self.imgs[i])
|
| 397 |
+
cap.open(stream) # re-open stream if signal was lost
|
| 398 |
+
time.sleep(0.0) # wait time
|
| 399 |
+
|
| 400 |
+
def __iter__(self):
|
| 401 |
+
self.count = -1
|
| 402 |
+
return self
|
| 403 |
+
|
| 404 |
+
def __next__(self):
|
| 405 |
+
self.count += 1
|
| 406 |
+
if not all(x.is_alive() for x in self.threads) or cv2.waitKey(1) == ord('q'): # q to quit
|
| 407 |
+
cv2.destroyAllWindows()
|
| 408 |
+
raise StopIteration
|
| 409 |
+
|
| 410 |
+
im0 = self.imgs.copy()
|
| 411 |
+
if self.transforms:
|
| 412 |
+
im = np.stack([self.transforms(x) for x in im0]) # transforms
|
| 413 |
+
else:
|
| 414 |
+
im = np.stack([letterbox(x, self.img_size, stride=self.stride, auto=self.auto)[0] for x in im0]) # resize
|
| 415 |
+
im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW
|
| 416 |
+
im = np.ascontiguousarray(im) # contiguous
|
| 417 |
+
|
| 418 |
+
return self.sources, im, im0, None, ''
|
| 419 |
+
|
| 420 |
+
def __len__(self):
|
| 421 |
+
return len(self.sources) # 1E12 frames = 32 streams at 30 FPS for 30 years
|
| 422 |
+
|
| 423 |
+
|
| 424 |
+
def img2label_paths(img_paths):
|
| 425 |
+
# Define label paths as a function of image paths
|
| 426 |
+
sa, sb = f'{os.sep}images{os.sep}', f'{os.sep}labels{os.sep}' # /images/, /labels/ substrings
|
| 427 |
+
return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths]
|
| 428 |
+
|
| 429 |
+
|
| 430 |
+
class LoadImagesAndLabels(Dataset):
|
| 431 |
+
# YOLOv5 train_loader/val_loader, loads images and labels for training and validation
|
| 432 |
+
cache_version = 0.6 # dataset labels *.cache version
|
| 433 |
+
rand_interp_methods = [cv2.INTER_NEAREST, cv2.INTER_LINEAR, cv2.INTER_CUBIC, cv2.INTER_AREA, cv2.INTER_LANCZOS4]
|
| 434 |
+
|
| 435 |
+
def __init__(self,
|
| 436 |
+
path,
|
| 437 |
+
img_size=640,
|
| 438 |
+
batch_size=16,
|
| 439 |
+
augment=False,
|
| 440 |
+
hyp=None,
|
| 441 |
+
rect=False,
|
| 442 |
+
image_weights=False,
|
| 443 |
+
cache_images=False,
|
| 444 |
+
single_cls=False,
|
| 445 |
+
stride=32,
|
| 446 |
+
pad=0.0,
|
| 447 |
+
min_items=0,
|
| 448 |
+
prefix=''):
|
| 449 |
+
self.img_size = img_size
|
| 450 |
+
self.augment = augment
|
| 451 |
+
self.hyp = hyp
|
| 452 |
+
self.image_weights = image_weights
|
| 453 |
+
self.rect = False if image_weights else rect
|
| 454 |
+
self.mosaic = self.augment and not self.rect # load 4 images at a time into a mosaic (only during training)
|
| 455 |
+
self.mosaic_border = [-img_size // 2, -img_size // 2]
|
| 456 |
+
self.stride = stride
|
| 457 |
+
self.path = path
|
| 458 |
+
self.albumentations = Albumentations(size=img_size) if augment else None
|
| 459 |
+
|
| 460 |
+
try:
|
| 461 |
+
f = [] # image files
|
| 462 |
+
for p in path if isinstance(path, list) else [path]:
|
| 463 |
+
p = Path(p) # os-agnostic
|
| 464 |
+
if p.is_dir(): # dir
|
| 465 |
+
f += glob.glob(str(p / '**' / '*.*'), recursive=True)
|
| 466 |
+
# f = list(p.rglob('*.*')) # pathlib
|
| 467 |
+
elif p.is_file(): # file
|
| 468 |
+
with open(p) as t:
|
| 469 |
+
t = t.read().strip().splitlines()
|
| 470 |
+
parent = str(p.parent) + os.sep
|
| 471 |
+
f += [x.replace('./', parent, 1) if x.startswith('./') else x for x in t] # to global path
|
| 472 |
+
# f += [p.parent / x.lstrip(os.sep) for x in t] # to global path (pathlib)
|
| 473 |
+
else:
|
| 474 |
+
raise FileNotFoundError(f'{prefix}{p} does not exist')
|
| 475 |
+
self.im_files = sorted(x.replace('/', os.sep) for x in f if x.split('.')[-1].lower() in IMG_FORMATS)
|
| 476 |
+
# self.img_files = sorted([x for x in f if x.suffix[1:].lower() in IMG_FORMATS]) # pathlib
|
| 477 |
+
assert self.im_files, f'{prefix}No images found'
|
| 478 |
+
except Exception as e:
|
| 479 |
+
raise Exception(f'{prefix}Error loading data from {path}: {e}\n{HELP_URL}') from e
|
| 480 |
+
|
| 481 |
+
# Check cache
|
| 482 |
+
self.label_files = img2label_paths(self.im_files) # labels
|
| 483 |
+
cache_path = (p if p.is_file() else Path(self.label_files[0]).parent).with_suffix('.cache')
|
| 484 |
+
try:
|
| 485 |
+
cache, exists = np.load(cache_path, allow_pickle=True).item(), True # load dict
|
| 486 |
+
assert cache['version'] == self.cache_version # matches current version
|
| 487 |
+
assert cache['hash'] == get_hash(self.label_files + self.im_files) # identical hash
|
| 488 |
+
except Exception:
|
| 489 |
+
cache, exists = self.cache_labels(cache_path, prefix), False # run cache ops
|
| 490 |
+
|
| 491 |
+
# Display cache
|
| 492 |
+
nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupt, total
|
| 493 |
+
if exists and LOCAL_RANK in {-1, 0}:
|
| 494 |
+
d = f"Scanning {cache_path}... {nf} images, {nm + ne} backgrounds, {nc} corrupt"
|
| 495 |
+
tqdm(None, desc=prefix + d, total=n, initial=n, bar_format=TQDM_BAR_FORMAT) # display cache results
|
| 496 |
+
if cache['msgs']:
|
| 497 |
+
LOGGER.info('\n'.join(cache['msgs'])) # display warnings
|
| 498 |
+
assert nf > 0 or not augment, f'{prefix}No labels found in {cache_path}, can not start training. {HELP_URL}'
|
| 499 |
+
|
| 500 |
+
# Read cache
|
| 501 |
+
[cache.pop(k) for k in ('hash', 'version', 'msgs')] # remove items
|
| 502 |
+
labels, shapes, self.segments = zip(*cache.values())
|
| 503 |
+
nl = len(np.concatenate(labels, 0)) # number of labels
|
| 504 |
+
assert nl > 0 or not augment, f'{prefix}All labels empty in {cache_path}, can not start training. {HELP_URL}'
|
| 505 |
+
self.labels = list(labels)
|
| 506 |
+
self.shapes = np.array(shapes)
|
| 507 |
+
self.im_files = list(cache.keys()) # update
|
| 508 |
+
self.label_files = img2label_paths(cache.keys()) # update
|
| 509 |
+
|
| 510 |
+
# Filter images
|
| 511 |
+
if min_items:
|
| 512 |
+
include = np.array([len(x) >= min_items for x in self.labels]).nonzero()[0].astype(int)
|
| 513 |
+
LOGGER.info(f'{prefix}{n - len(include)}/{n} images filtered from dataset')
|
| 514 |
+
self.im_files = [self.im_files[i] for i in include]
|
| 515 |
+
self.label_files = [self.label_files[i] for i in include]
|
| 516 |
+
self.labels = [self.labels[i] for i in include]
|
| 517 |
+
self.segments = [self.segments[i] for i in include]
|
| 518 |
+
self.shapes = self.shapes[include] # wh
|
| 519 |
+
|
| 520 |
+
# Create indices
|
| 521 |
+
n = len(self.shapes) # number of images
|
| 522 |
+
bi = np.floor(np.arange(n) / batch_size).astype(int) # batch index
|
| 523 |
+
nb = bi[-1] + 1 # number of batches
|
| 524 |
+
self.batch = bi # batch index of image
|
| 525 |
+
self.n = n
|
| 526 |
+
self.indices = range(n)
|
| 527 |
+
|
| 528 |
+
# Update labels
|
| 529 |
+
include_class = [] # filter labels to include only these classes (optional)
|
| 530 |
+
include_class_array = np.array(include_class).reshape(1, -1)
|
| 531 |
+
for i, (label, segment) in enumerate(zip(self.labels, self.segments)):
|
| 532 |
+
if include_class:
|
| 533 |
+
j = (label[:, 0:1] == include_class_array).any(1)
|
| 534 |
+
self.labels[i] = label[j]
|
| 535 |
+
if segment:
|
| 536 |
+
self.segments[i] = segment[j]
|
| 537 |
+
if single_cls: # single-class training, merge all classes into 0
|
| 538 |
+
self.labels[i][:, 0] = 0
|
| 539 |
+
|
| 540 |
+
# Rectangular Training
|
| 541 |
+
if self.rect:
|
| 542 |
+
# Sort by aspect ratio
|
| 543 |
+
s = self.shapes # wh
|
| 544 |
+
ar = s[:, 1] / s[:, 0] # aspect ratio
|
| 545 |
+
irect = ar.argsort()
|
| 546 |
+
self.im_files = [self.im_files[i] for i in irect]
|
| 547 |
+
self.label_files = [self.label_files[i] for i in irect]
|
| 548 |
+
self.labels = [self.labels[i] for i in irect]
|
| 549 |
+
self.segments = [self.segments[i] for i in irect]
|
| 550 |
+
self.shapes = s[irect] # wh
|
| 551 |
+
ar = ar[irect]
|
| 552 |
+
|
| 553 |
+
# Set training image shapes
|
| 554 |
+
shapes = [[1, 1]] * nb
|
| 555 |
+
for i in range(nb):
|
| 556 |
+
ari = ar[bi == i]
|
| 557 |
+
mini, maxi = ari.min(), ari.max()
|
| 558 |
+
if maxi < 1:
|
| 559 |
+
shapes[i] = [maxi, 1]
|
| 560 |
+
elif mini > 1:
|
| 561 |
+
shapes[i] = [1, 1 / mini]
|
| 562 |
+
|
| 563 |
+
self.batch_shapes = np.ceil(np.array(shapes) * img_size / stride + pad).astype(int) * stride
|
| 564 |
+
|
| 565 |
+
# Cache images into RAM/disk for faster training
|
| 566 |
+
if cache_images == 'ram' and not self.check_cache_ram(prefix=prefix):
|
| 567 |
+
cache_images = False
|
| 568 |
+
self.ims = [None] * n
|
| 569 |
+
self.npy_files = [Path(f).with_suffix('.npy') for f in self.im_files]
|
| 570 |
+
if cache_images:
|
| 571 |
+
b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes
|
| 572 |
+
self.im_hw0, self.im_hw = [None] * n, [None] * n
|
| 573 |
+
fcn = self.cache_images_to_disk if cache_images == 'disk' else self.load_image
|
| 574 |
+
results = ThreadPool(NUM_THREADS).imap(fcn, range(n))
|
| 575 |
+
pbar = tqdm(enumerate(results), total=n, bar_format=TQDM_BAR_FORMAT, disable=LOCAL_RANK > 0)
|
| 576 |
+
for i, x in pbar:
|
| 577 |
+
if cache_images == 'disk':
|
| 578 |
+
b += self.npy_files[i].stat().st_size
|
| 579 |
+
else: # 'ram'
|
| 580 |
+
self.ims[i], self.im_hw0[i], self.im_hw[i] = x # im, hw_orig, hw_resized = load_image(self, i)
|
| 581 |
+
b += self.ims[i].nbytes
|
| 582 |
+
pbar.desc = f'{prefix}Caching images ({b / gb:.1f}GB {cache_images})'
|
| 583 |
+
pbar.close()
|
| 584 |
+
|
| 585 |
+
def check_cache_ram(self, safety_margin=0.1, prefix=''):
|
| 586 |
+
# Check image caching requirements vs available memory
|
| 587 |
+
b, gb = 0, 1 << 30 # bytes of cached images, bytes per gigabytes
|
| 588 |
+
n = min(self.n, 30) # extrapolate from 30 random images
|
| 589 |
+
for _ in range(n):
|
| 590 |
+
im = cv2.imread(random.choice(self.im_files)) # sample image
|
| 591 |
+
ratio = self.img_size / max(im.shape[0], im.shape[1]) # max(h, w) # ratio
|
| 592 |
+
b += im.nbytes * ratio ** 2
|
| 593 |
+
mem_required = b * self.n / n # GB required to cache dataset into RAM
|
| 594 |
+
mem = psutil.virtual_memory()
|
| 595 |
+
cache = mem_required * (1 + safety_margin) < mem.available # to cache or not to cache, that is the question
|
| 596 |
+
if not cache:
|
| 597 |
+
LOGGER.info(f"{prefix}{mem_required / gb:.1f}GB RAM required, "
|
| 598 |
+
f"{mem.available / gb:.1f}/{mem.total / gb:.1f}GB available, "
|
| 599 |
+
f"{'caching images ✅' if cache else 'not caching images ⚠️'}")
|
| 600 |
+
return cache
|
| 601 |
+
|
| 602 |
+
def cache_labels(self, path=Path('./labels.cache'), prefix=''):
|
| 603 |
+
# Cache dataset labels, check images and read shapes
|
| 604 |
+
x = {} # dict
|
| 605 |
+
nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages
|
| 606 |
+
desc = f"{prefix}Scanning {path.parent / path.stem}..."
|
| 607 |
+
with Pool(NUM_THREADS) as pool:
|
| 608 |
+
pbar = tqdm(pool.imap(verify_image_label, zip(self.im_files, self.label_files, repeat(prefix))),
|
| 609 |
+
desc=desc,
|
| 610 |
+
total=len(self.im_files),
|
| 611 |
+
bar_format=TQDM_BAR_FORMAT)
|
| 612 |
+
for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
|
| 613 |
+
nm += nm_f
|
| 614 |
+
nf += nf_f
|
| 615 |
+
ne += ne_f
|
| 616 |
+
nc += nc_f
|
| 617 |
+
if im_file:
|
| 618 |
+
x[im_file] = [lb, shape, segments]
|
| 619 |
+
if msg:
|
| 620 |
+
msgs.append(msg)
|
| 621 |
+
pbar.desc = f"{desc} {nf} images, {nm + ne} backgrounds, {nc} corrupt"
|
| 622 |
+
|
| 623 |
+
pbar.close()
|
| 624 |
+
if msgs:
|
| 625 |
+
LOGGER.info('\n'.join(msgs))
|
| 626 |
+
if nf == 0:
|
| 627 |
+
LOGGER.warning(f'{prefix}WARNING ⚠️ No labels found in {path}. {HELP_URL}')
|
| 628 |
+
x['hash'] = get_hash(self.label_files + self.im_files)
|
| 629 |
+
x['results'] = nf, nm, ne, nc, len(self.im_files)
|
| 630 |
+
x['msgs'] = msgs # warnings
|
| 631 |
+
x['version'] = self.cache_version # cache version
|
| 632 |
+
try:
|
| 633 |
+
np.save(path, x) # save cache for next time
|
| 634 |
+
path.with_suffix('.cache.npy').rename(path) # remove .npy suffix
|
| 635 |
+
LOGGER.info(f'{prefix}New cache created: {path}')
|
| 636 |
+
except Exception as e:
|
| 637 |
+
LOGGER.warning(f'{prefix}WARNING ⚠️ Cache directory {path.parent} is not writeable: {e}') # not writeable
|
| 638 |
+
return x
|
| 639 |
+
|
| 640 |
+
def __len__(self):
|
| 641 |
+
return len(self.im_files)
|
| 642 |
+
|
| 643 |
+
# def __iter__(self):
|
| 644 |
+
# self.count = -1
|
| 645 |
+
# print('ran dataset iter')
|
| 646 |
+
# #self.shuffled_vector = np.random.permutation(self.nF) if self.augment else np.arange(self.nF)
|
| 647 |
+
# return self
|
| 648 |
+
|
| 649 |
+
def __getitem__(self, index):
|
| 650 |
+
index = self.indices[index] # linear, shuffled, or image_weights
|
| 651 |
+
|
| 652 |
+
hyp = self.hyp
|
| 653 |
+
mosaic = self.mosaic and random.random() < hyp['mosaic']
|
| 654 |
+
if mosaic:
|
| 655 |
+
# Load mosaic
|
| 656 |
+
img, labels = self.load_mosaic(index)
|
| 657 |
+
shapes = None
|
| 658 |
+
|
| 659 |
+
# MixUp augmentation
|
| 660 |
+
if random.random() < hyp['mixup']:
|
| 661 |
+
img, labels = mixup(img, labels, *self.load_mosaic(random.randint(0, self.n - 1)))
|
| 662 |
+
|
| 663 |
+
else:
|
| 664 |
+
# Load image
|
| 665 |
+
img, (h0, w0), (h, w) = self.load_image(index)
|
| 666 |
+
|
| 667 |
+
# Letterbox
|
| 668 |
+
shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
|
| 669 |
+
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
|
| 670 |
+
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
|
| 671 |
+
|
| 672 |
+
labels = self.labels[index].copy()
|
| 673 |
+
if labels.size: # normalized xywh to pixel xyxy format
|
| 674 |
+
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
|
| 675 |
+
|
| 676 |
+
if self.augment:
|
| 677 |
+
img, labels = random_perspective(img,
|
| 678 |
+
labels,
|
| 679 |
+
degrees=hyp['degrees'],
|
| 680 |
+
translate=hyp['translate'],
|
| 681 |
+
scale=hyp['scale'],
|
| 682 |
+
shear=hyp['shear'],
|
| 683 |
+
perspective=hyp['perspective'])
|
| 684 |
+
|
| 685 |
+
nl = len(labels) # number of labels
|
| 686 |
+
if nl:
|
| 687 |
+
labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1E-3)
|
| 688 |
+
|
| 689 |
+
if self.augment:
|
| 690 |
+
# Albumentations
|
| 691 |
+
img, labels = self.albumentations(img, labels)
|
| 692 |
+
nl = len(labels) # update after albumentations
|
| 693 |
+
|
| 694 |
+
# HSV color-space
|
| 695 |
+
augment_hsv(img, hgain=hyp['hsv_h'], sgain=hyp['hsv_s'], vgain=hyp['hsv_v'])
|
| 696 |
+
|
| 697 |
+
# Flip up-down
|
| 698 |
+
if random.random() < hyp['flipud']:
|
| 699 |
+
img = np.flipud(img)
|
| 700 |
+
if nl:
|
| 701 |
+
labels[:, 2] = 1 - labels[:, 2]
|
| 702 |
+
|
| 703 |
+
# Flip left-right
|
| 704 |
+
if random.random() < hyp['fliplr']:
|
| 705 |
+
img = np.fliplr(img)
|
| 706 |
+
if nl:
|
| 707 |
+
labels[:, 1] = 1 - labels[:, 1]
|
| 708 |
+
|
| 709 |
+
# Cutouts
|
| 710 |
+
# labels = cutout(img, labels, p=0.5)
|
| 711 |
+
# nl = len(labels) # update after cutout
|
| 712 |
+
|
| 713 |
+
labels_out = torch.zeros((nl, 6))
|
| 714 |
+
if nl:
|
| 715 |
+
labels_out[:, 1:] = torch.from_numpy(labels)
|
| 716 |
+
|
| 717 |
+
# Convert
|
| 718 |
+
img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
| 719 |
+
img = np.ascontiguousarray(img)
|
| 720 |
+
|
| 721 |
+
return torch.from_numpy(img), labels_out, self.im_files[index], shapes
|
| 722 |
+
|
| 723 |
+
def load_image(self, i):
|
| 724 |
+
# Loads 1 image from dataset index 'i', returns (im, original hw, resized hw)
|
| 725 |
+
im, f, fn = self.ims[i], self.im_files[i], self.npy_files[i],
|
| 726 |
+
if im is None: # not cached in RAM
|
| 727 |
+
if fn.exists(): # load npy
|
| 728 |
+
im = np.load(fn)
|
| 729 |
+
else: # read image
|
| 730 |
+
im = cv2.imread(f) # BGR
|
| 731 |
+
assert im is not None, f'Image Not Found {f}'
|
| 732 |
+
h0, w0 = im.shape[:2] # orig hw
|
| 733 |
+
r = self.img_size / max(h0, w0) # ratio
|
| 734 |
+
if r != 1: # if sizes are not equal
|
| 735 |
+
interp = cv2.INTER_LINEAR if (self.augment or r > 1) else cv2.INTER_AREA
|
| 736 |
+
im = cv2.resize(im, (int(w0 * r), int(h0 * r)), interpolation=interp)
|
| 737 |
+
return im, (h0, w0), im.shape[:2] # im, hw_original, hw_resized
|
| 738 |
+
return self.ims[i], self.im_hw0[i], self.im_hw[i] # im, hw_original, hw_resized
|
| 739 |
+
|
| 740 |
+
def cache_images_to_disk(self, i):
|
| 741 |
+
# Saves an image as an *.npy file for faster loading
|
| 742 |
+
f = self.npy_files[i]
|
| 743 |
+
if not f.exists():
|
| 744 |
+
np.save(f.as_posix(), cv2.imread(self.im_files[i]))
|
| 745 |
+
|
| 746 |
+
def load_mosaic(self, index):
|
| 747 |
+
# YOLOv5 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
|
| 748 |
+
labels4, segments4 = [], []
|
| 749 |
+
s = self.img_size
|
| 750 |
+
yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border) # mosaic center x, y
|
| 751 |
+
indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
|
| 752 |
+
random.shuffle(indices)
|
| 753 |
+
for i, index in enumerate(indices):
|
| 754 |
+
# Load image
|
| 755 |
+
img, _, (h, w) = self.load_image(index)
|
| 756 |
+
|
| 757 |
+
# place img in img4
|
| 758 |
+
if i == 0: # top left
|
| 759 |
+
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
|
| 760 |
+
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
|
| 761 |
+
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
|
| 762 |
+
elif i == 1: # top right
|
| 763 |
+
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
|
| 764 |
+
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
|
| 765 |
+
elif i == 2: # bottom left
|
| 766 |
+
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
|
| 767 |
+
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
|
| 768 |
+
elif i == 3: # bottom right
|
| 769 |
+
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
|
| 770 |
+
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
|
| 771 |
+
|
| 772 |
+
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
|
| 773 |
+
padw = x1a - x1b
|
| 774 |
+
padh = y1a - y1b
|
| 775 |
+
|
| 776 |
+
# Labels
|
| 777 |
+
labels, segments = self.labels[index].copy(), self.segments[index].copy()
|
| 778 |
+
if labels.size:
|
| 779 |
+
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
|
| 780 |
+
segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
|
| 781 |
+
labels4.append(labels)
|
| 782 |
+
segments4.extend(segments)
|
| 783 |
+
|
| 784 |
+
# Concat/clip labels
|
| 785 |
+
labels4 = np.concatenate(labels4, 0)
|
| 786 |
+
for x in (labels4[:, 1:], *segments4):
|
| 787 |
+
np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
|
| 788 |
+
# img4, labels4 = replicate(img4, labels4) # replicate
|
| 789 |
+
|
| 790 |
+
# Augment
|
| 791 |
+
img4, labels4, segments4 = copy_paste(img4, labels4, segments4, p=self.hyp['copy_paste'])
|
| 792 |
+
img4, labels4 = random_perspective(img4,
|
| 793 |
+
labels4,
|
| 794 |
+
segments4,
|
| 795 |
+
degrees=self.hyp['degrees'],
|
| 796 |
+
translate=self.hyp['translate'],
|
| 797 |
+
scale=self.hyp['scale'],
|
| 798 |
+
shear=self.hyp['shear'],
|
| 799 |
+
perspective=self.hyp['perspective'],
|
| 800 |
+
border=self.mosaic_border) # border to remove
|
| 801 |
+
|
| 802 |
+
return img4, labels4
|
| 803 |
+
|
| 804 |
+
def load_mosaic9(self, index):
|
| 805 |
+
# YOLOv5 9-mosaic loader. Loads 1 image + 8 random images into a 9-image mosaic
|
| 806 |
+
labels9, segments9 = [], []
|
| 807 |
+
s = self.img_size
|
| 808 |
+
indices = [index] + random.choices(self.indices, k=8) # 8 additional image indices
|
| 809 |
+
random.shuffle(indices)
|
| 810 |
+
hp, wp = -1, -1 # height, width previous
|
| 811 |
+
for i, index in enumerate(indices):
|
| 812 |
+
# Load image
|
| 813 |
+
img, _, (h, w) = self.load_image(index)
|
| 814 |
+
|
| 815 |
+
# place img in img9
|
| 816 |
+
if i == 0: # center
|
| 817 |
+
img9 = np.full((s * 3, s * 3, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
|
| 818 |
+
h0, w0 = h, w
|
| 819 |
+
c = s, s, s + w, s + h # xmin, ymin, xmax, ymax (base) coordinates
|
| 820 |
+
elif i == 1: # top
|
| 821 |
+
c = s, s - h, s + w, s
|
| 822 |
+
elif i == 2: # top right
|
| 823 |
+
c = s + wp, s - h, s + wp + w, s
|
| 824 |
+
elif i == 3: # right
|
| 825 |
+
c = s + w0, s, s + w0 + w, s + h
|
| 826 |
+
elif i == 4: # bottom right
|
| 827 |
+
c = s + w0, s + hp, s + w0 + w, s + hp + h
|
| 828 |
+
elif i == 5: # bottom
|
| 829 |
+
c = s + w0 - w, s + h0, s + w0, s + h0 + h
|
| 830 |
+
elif i == 6: # bottom left
|
| 831 |
+
c = s + w0 - wp - w, s + h0, s + w0 - wp, s + h0 + h
|
| 832 |
+
elif i == 7: # left
|
| 833 |
+
c = s - w, s + h0 - h, s, s + h0
|
| 834 |
+
elif i == 8: # top left
|
| 835 |
+
c = s - w, s + h0 - hp - h, s, s + h0 - hp
|
| 836 |
+
|
| 837 |
+
padx, pady = c[:2]
|
| 838 |
+
x1, y1, x2, y2 = (max(x, 0) for x in c) # allocate coords
|
| 839 |
+
|
| 840 |
+
# Labels
|
| 841 |
+
labels, segments = self.labels[index].copy(), self.segments[index].copy()
|
| 842 |
+
if labels.size:
|
| 843 |
+
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padx, pady) # normalized xywh to pixel xyxy format
|
| 844 |
+
segments = [xyn2xy(x, w, h, padx, pady) for x in segments]
|
| 845 |
+
labels9.append(labels)
|
| 846 |
+
segments9.extend(segments)
|
| 847 |
+
|
| 848 |
+
# Image
|
| 849 |
+
img9[y1:y2, x1:x2] = img[y1 - pady:, x1 - padx:] # img9[ymin:ymax, xmin:xmax]
|
| 850 |
+
hp, wp = h, w # height, width previous
|
| 851 |
+
|
| 852 |
+
# Offset
|
| 853 |
+
yc, xc = (int(random.uniform(0, s)) for _ in self.mosaic_border) # mosaic center x, y
|
| 854 |
+
img9 = img9[yc:yc + 2 * s, xc:xc + 2 * s]
|
| 855 |
+
|
| 856 |
+
# Concat/clip labels
|
| 857 |
+
labels9 = np.concatenate(labels9, 0)
|
| 858 |
+
labels9[:, [1, 3]] -= xc
|
| 859 |
+
labels9[:, [2, 4]] -= yc
|
| 860 |
+
c = np.array([xc, yc]) # centers
|
| 861 |
+
segments9 = [x - c for x in segments9]
|
| 862 |
+
|
| 863 |
+
for x in (labels9[:, 1:], *segments9):
|
| 864 |
+
np.clip(x, 0, 2 * s, out=x) # clip when using random_perspective()
|
| 865 |
+
# img9, labels9 = replicate(img9, labels9) # replicate
|
| 866 |
+
|
| 867 |
+
# Augment
|
| 868 |
+
img9, labels9, segments9 = copy_paste(img9, labels9, segments9, p=self.hyp['copy_paste'])
|
| 869 |
+
img9, labels9 = random_perspective(img9,
|
| 870 |
+
labels9,
|
| 871 |
+
segments9,
|
| 872 |
+
degrees=self.hyp['degrees'],
|
| 873 |
+
translate=self.hyp['translate'],
|
| 874 |
+
scale=self.hyp['scale'],
|
| 875 |
+
shear=self.hyp['shear'],
|
| 876 |
+
perspective=self.hyp['perspective'],
|
| 877 |
+
border=self.mosaic_border) # border to remove
|
| 878 |
+
|
| 879 |
+
return img9, labels9
|
| 880 |
+
|
| 881 |
+
@staticmethod
|
| 882 |
+
def collate_fn(batch):
|
| 883 |
+
im, label, path, shapes = zip(*batch) # transposed
|
| 884 |
+
for i, lb in enumerate(label):
|
| 885 |
+
lb[:, 0] = i # add target image index for build_targets()
|
| 886 |
+
return torch.stack(im, 0), torch.cat(label, 0), path, shapes
|
| 887 |
+
|
| 888 |
+
@staticmethod
|
| 889 |
+
def collate_fn4(batch):
|
| 890 |
+
im, label, path, shapes = zip(*batch) # transposed
|
| 891 |
+
n = len(shapes) // 4
|
| 892 |
+
im4, label4, path4, shapes4 = [], [], path[:n], shapes[:n]
|
| 893 |
+
|
| 894 |
+
ho = torch.tensor([[0.0, 0, 0, 1, 0, 0]])
|
| 895 |
+
wo = torch.tensor([[0.0, 0, 1, 0, 0, 0]])
|
| 896 |
+
s = torch.tensor([[1, 1, 0.5, 0.5, 0.5, 0.5]]) # scale
|
| 897 |
+
for i in range(n): # zidane torch.zeros(16,3,720,1280) # BCHW
|
| 898 |
+
i *= 4
|
| 899 |
+
if random.random() < 0.5:
|
| 900 |
+
im1 = F.interpolate(im[i].unsqueeze(0).float(), scale_factor=2.0, mode='bilinear',
|
| 901 |
+
align_corners=False)[0].type(im[i].type())
|
| 902 |
+
lb = label[i]
|
| 903 |
+
else:
|
| 904 |
+
im1 = torch.cat((torch.cat((im[i], im[i + 1]), 1), torch.cat((im[i + 2], im[i + 3]), 1)), 2)
|
| 905 |
+
lb = torch.cat((label[i], label[i + 1] + ho, label[i + 2] + wo, label[i + 3] + ho + wo), 0) * s
|
| 906 |
+
im4.append(im1)
|
| 907 |
+
label4.append(lb)
|
| 908 |
+
|
| 909 |
+
for i, lb in enumerate(label4):
|
| 910 |
+
lb[:, 0] = i # add target image index for build_targets()
|
| 911 |
+
|
| 912 |
+
return torch.stack(im4, 0), torch.cat(label4, 0), path4, shapes4
|
| 913 |
+
|
| 914 |
+
|
| 915 |
+
# Ancillary functions --------------------------------------------------------------------------------------------------
|
| 916 |
+
def flatten_recursive(path=DATASETS_DIR / 'coco128'):
|
| 917 |
+
# Flatten a recursive directory by bringing all files to top level
|
| 918 |
+
new_path = Path(f'{str(path)}_flat')
|
| 919 |
+
if os.path.exists(new_path):
|
| 920 |
+
shutil.rmtree(new_path) # delete output folder
|
| 921 |
+
os.makedirs(new_path) # make new output folder
|
| 922 |
+
for file in tqdm(glob.glob(f'{str(Path(path))}/**/*.*', recursive=True)):
|
| 923 |
+
shutil.copyfile(file, new_path / Path(file).name)
|
| 924 |
+
|
| 925 |
+
|
| 926 |
+
def extract_boxes(path=DATASETS_DIR / 'coco128'): # from utils.dataloaders import *; extract_boxes()
|
| 927 |
+
# Convert detection dataset into classification dataset, with one directory per class
|
| 928 |
+
path = Path(path) # images dir
|
| 929 |
+
shutil.rmtree(path / 'classification') if (path / 'classification').is_dir() else None # remove existing
|
| 930 |
+
files = list(path.rglob('*.*'))
|
| 931 |
+
n = len(files) # number of files
|
| 932 |
+
for im_file in tqdm(files, total=n):
|
| 933 |
+
if im_file.suffix[1:] in IMG_FORMATS:
|
| 934 |
+
# image
|
| 935 |
+
im = cv2.imread(str(im_file))[..., ::-1] # BGR to RGB
|
| 936 |
+
h, w = im.shape[:2]
|
| 937 |
+
|
| 938 |
+
# labels
|
| 939 |
+
lb_file = Path(img2label_paths([str(im_file)])[0])
|
| 940 |
+
if Path(lb_file).exists():
|
| 941 |
+
with open(lb_file) as f:
|
| 942 |
+
lb = np.array([x.split() for x in f.read().strip().splitlines()], dtype=np.float32) # labels
|
| 943 |
+
|
| 944 |
+
for j, x in enumerate(lb):
|
| 945 |
+
c = int(x[0]) # class
|
| 946 |
+
f = (path / 'classifier') / f'{c}' / f'{path.stem}_{im_file.stem}_{j}.jpg' # new filename
|
| 947 |
+
if not f.parent.is_dir():
|
| 948 |
+
f.parent.mkdir(parents=True)
|
| 949 |
+
|
| 950 |
+
b = x[1:] * [w, h, w, h] # box
|
| 951 |
+
# b[2:] = b[2:].max() # rectangle to square
|
| 952 |
+
b[2:] = b[2:] * 1.2 + 3 # pad
|
| 953 |
+
b = xywh2xyxy(b.reshape(-1, 4)).ravel().astype(int)
|
| 954 |
+
|
| 955 |
+
b[[0, 2]] = np.clip(b[[0, 2]], 0, w) # clip boxes outside of image
|
| 956 |
+
b[[1, 3]] = np.clip(b[[1, 3]], 0, h)
|
| 957 |
+
assert cv2.imwrite(str(f), im[b[1]:b[3], b[0]:b[2]]), f'box failure in {f}'
|
| 958 |
+
|
| 959 |
+
|
| 960 |
+
def autosplit(path=DATASETS_DIR / 'coco128/images', weights=(0.9, 0.1, 0.0), annotated_only=False):
|
| 961 |
+
""" Autosplit a dataset into train/val/test splits and save path/autosplit_*.txt files
|
| 962 |
+
Usage: from utils.dataloaders import *; autosplit()
|
| 963 |
+
Arguments
|
| 964 |
+
path: Path to images directory
|
| 965 |
+
weights: Train, val, test weights (list, tuple)
|
| 966 |
+
annotated_only: Only use images with an annotated txt file
|
| 967 |
+
"""
|
| 968 |
+
path = Path(path) # images dir
|
| 969 |
+
files = sorted(x for x in path.rglob('*.*') if x.suffix[1:].lower() in IMG_FORMATS) # image files only
|
| 970 |
+
n = len(files) # number of files
|
| 971 |
+
random.seed(0) # for reproducibility
|
| 972 |
+
indices = random.choices([0, 1, 2], weights=weights, k=n) # assign each image to a split
|
| 973 |
+
|
| 974 |
+
txt = ['autosplit_train.txt', 'autosplit_val.txt', 'autosplit_test.txt'] # 3 txt files
|
| 975 |
+
for x in txt:
|
| 976 |
+
if (path.parent / x).exists():
|
| 977 |
+
(path.parent / x).unlink() # remove existing
|
| 978 |
+
|
| 979 |
+
print(f'Autosplitting images from {path}' + ', using *.txt labeled images only' * annotated_only)
|
| 980 |
+
for i, img in tqdm(zip(indices, files), total=n):
|
| 981 |
+
if not annotated_only or Path(img2label_paths([str(img)])[0]).exists(): # check label
|
| 982 |
+
with open(path.parent / txt[i], 'a') as f:
|
| 983 |
+
f.write(f'./{img.relative_to(path.parent).as_posix()}' + '\n') # add image to txt file
|
| 984 |
+
|
| 985 |
+
|
| 986 |
+
def verify_image_label(args):
|
| 987 |
+
# Verify one image-label pair
|
| 988 |
+
im_file, lb_file, prefix = args
|
| 989 |
+
nm, nf, ne, nc, msg, segments = 0, 0, 0, 0, '', [] # number (missing, found, empty, corrupt), message, segments
|
| 990 |
+
try:
|
| 991 |
+
# verify images
|
| 992 |
+
im = Image.open(im_file)
|
| 993 |
+
im.verify() # PIL verify
|
| 994 |
+
shape = exif_size(im) # image size
|
| 995 |
+
assert (shape[0] > 9) & (shape[1] > 9), f'image size {shape} <10 pixels'
|
| 996 |
+
assert im.format.lower() in IMG_FORMATS, f'invalid image format {im.format}'
|
| 997 |
+
if im.format.lower() in ('jpg', 'jpeg'):
|
| 998 |
+
with open(im_file, 'rb') as f:
|
| 999 |
+
f.seek(-2, 2)
|
| 1000 |
+
if f.read() != b'\xff\xd9': # corrupt JPEG
|
| 1001 |
+
ImageOps.exif_transpose(Image.open(im_file)).save(im_file, 'JPEG', subsampling=0, quality=100)
|
| 1002 |
+
msg = f'{prefix}WARNING ⚠️ {im_file}: corrupt JPEG restored and saved'
|
| 1003 |
+
|
| 1004 |
+
# verify labels
|
| 1005 |
+
if os.path.isfile(lb_file):
|
| 1006 |
+
nf = 1 # label found
|
| 1007 |
+
with open(lb_file) as f:
|
| 1008 |
+
lb = [x.split() for x in f.read().strip().splitlines() if len(x)]
|
| 1009 |
+
if any(len(x) > 6 for x in lb): # is segment
|
| 1010 |
+
classes = np.array([x[0] for x in lb], dtype=np.float32)
|
| 1011 |
+
segments = [np.array(x[1:], dtype=np.float32).reshape(-1, 2) for x in lb] # (cls, xy1...)
|
| 1012 |
+
lb = np.concatenate((classes.reshape(-1, 1), segments2boxes(segments)), 1) # (cls, xywh)
|
| 1013 |
+
lb = np.array(lb, dtype=np.float32)
|
| 1014 |
+
nl = len(lb)
|
| 1015 |
+
if nl:
|
| 1016 |
+
assert lb.shape[1] == 5, f'labels require 5 columns, {lb.shape[1]} columns detected'
|
| 1017 |
+
assert (lb >= 0).all(), f'negative label values {lb[lb < 0]}'
|
| 1018 |
+
assert (lb[:, 1:] <= 1).all(), f'non-normalized or out of bounds coordinates {lb[:, 1:][lb[:, 1:] > 1]}'
|
| 1019 |
+
_, i = np.unique(lb, axis=0, return_index=True)
|
| 1020 |
+
if len(i) < nl: # duplicate row check
|
| 1021 |
+
lb = lb[i] # remove duplicates
|
| 1022 |
+
if segments:
|
| 1023 |
+
segments = [segments[x] for x in i]
|
| 1024 |
+
msg = f'{prefix}WARNING ⚠️ {im_file}: {nl - len(i)} duplicate labels removed'
|
| 1025 |
+
else:
|
| 1026 |
+
ne = 1 # label empty
|
| 1027 |
+
lb = np.zeros((0, 5), dtype=np.float32)
|
| 1028 |
+
else:
|
| 1029 |
+
nm = 1 # label missing
|
| 1030 |
+
lb = np.zeros((0, 5), dtype=np.float32)
|
| 1031 |
+
return im_file, lb, shape, segments, nm, nf, ne, nc, msg
|
| 1032 |
+
except Exception as e:
|
| 1033 |
+
nc = 1
|
| 1034 |
+
msg = f'{prefix}WARNING ⚠️ {im_file}: ignoring corrupt image/label: {e}'
|
| 1035 |
+
return [None, None, None, None, nm, nf, ne, nc, msg]
|
| 1036 |
+
|
| 1037 |
+
|
| 1038 |
+
class HUBDatasetStats():
|
| 1039 |
+
""" Class for generating HUB dataset JSON and `-hub` dataset directory
|
| 1040 |
+
|
| 1041 |
+
Arguments
|
| 1042 |
+
path: Path to data.yaml or data.zip (with data.yaml inside data.zip)
|
| 1043 |
+
autodownload: Attempt to download dataset if not found locally
|
| 1044 |
+
|
| 1045 |
+
Usage
|
| 1046 |
+
from utils.dataloaders import HUBDatasetStats
|
| 1047 |
+
stats = HUBDatasetStats('coco128.yaml', autodownload=True) # usage 1
|
| 1048 |
+
stats = HUBDatasetStats('path/to/coco128.zip') # usage 2
|
| 1049 |
+
stats.get_json(save=False)
|
| 1050 |
+
stats.process_images()
|
| 1051 |
+
"""
|
| 1052 |
+
|
| 1053 |
+
def __init__(self, path='coco128.yaml', autodownload=False):
|
| 1054 |
+
# Initialize class
|
| 1055 |
+
zipped, data_dir, yaml_path = self._unzip(Path(path))
|
| 1056 |
+
try:
|
| 1057 |
+
with open(check_yaml(yaml_path), errors='ignore') as f:
|
| 1058 |
+
data = yaml.safe_load(f) # data dict
|
| 1059 |
+
if zipped:
|
| 1060 |
+
data['path'] = data_dir
|
| 1061 |
+
except Exception as e:
|
| 1062 |
+
raise Exception("error/HUB/dataset_stats/yaml_load") from e
|
| 1063 |
+
|
| 1064 |
+
check_dataset(data, autodownload) # download dataset if missing
|
| 1065 |
+
self.hub_dir = Path(data['path'] + '-hub')
|
| 1066 |
+
self.im_dir = self.hub_dir / 'images'
|
| 1067 |
+
self.im_dir.mkdir(parents=True, exist_ok=True) # makes /images
|
| 1068 |
+
self.stats = {'nc': data['nc'], 'names': list(data['names'].values())} # statistics dictionary
|
| 1069 |
+
self.data = data
|
| 1070 |
+
|
| 1071 |
+
@staticmethod
|
| 1072 |
+
def _find_yaml(dir):
|
| 1073 |
+
# Return data.yaml file
|
| 1074 |
+
files = list(dir.glob('*.yaml')) or list(dir.rglob('*.yaml')) # try root level first and then recursive
|
| 1075 |
+
assert files, f'No *.yaml file found in {dir}'
|
| 1076 |
+
if len(files) > 1:
|
| 1077 |
+
files = [f for f in files if f.stem == dir.stem] # prefer *.yaml files that match dir name
|
| 1078 |
+
assert files, f'Multiple *.yaml files found in {dir}, only 1 *.yaml file allowed'
|
| 1079 |
+
assert len(files) == 1, f'Multiple *.yaml files found: {files}, only 1 *.yaml file allowed in {dir}'
|
| 1080 |
+
return files[0]
|
| 1081 |
+
|
| 1082 |
+
def _unzip(self, path):
|
| 1083 |
+
# Unzip data.zip
|
| 1084 |
+
if not str(path).endswith('.zip'): # path is data.yaml
|
| 1085 |
+
return False, None, path
|
| 1086 |
+
assert Path(path).is_file(), f'Error unzipping {path}, file not found'
|
| 1087 |
+
unzip_file(path, path=path.parent)
|
| 1088 |
+
dir = path.with_suffix('') # dataset directory == zip name
|
| 1089 |
+
assert dir.is_dir(), f'Error unzipping {path}, {dir} not found. path/to/abc.zip MUST unzip to path/to/abc/'
|
| 1090 |
+
return True, str(dir), self._find_yaml(dir) # zipped, data_dir, yaml_path
|
| 1091 |
+
|
| 1092 |
+
def _hub_ops(self, f, max_dim=1920):
|
| 1093 |
+
# HUB ops for 1 image 'f': resize and save at reduced quality in /dataset-hub for web/app viewing
|
| 1094 |
+
f_new = self.im_dir / Path(f).name # dataset-hub image filename
|
| 1095 |
+
try: # use PIL
|
| 1096 |
+
im = Image.open(f)
|
| 1097 |
+
r = max_dim / max(im.height, im.width) # ratio
|
| 1098 |
+
if r < 1.0: # image too large
|
| 1099 |
+
im = im.resize((int(im.width * r), int(im.height * r)))
|
| 1100 |
+
im.save(f_new, 'JPEG', quality=50, optimize=True) # save
|
| 1101 |
+
except Exception as e: # use OpenCV
|
| 1102 |
+
LOGGER.info(f'WARNING ⚠️ HUB ops PIL failure {f}: {e}')
|
| 1103 |
+
im = cv2.imread(f)
|
| 1104 |
+
im_height, im_width = im.shape[:2]
|
| 1105 |
+
r = max_dim / max(im_height, im_width) # ratio
|
| 1106 |
+
if r < 1.0: # image too large
|
| 1107 |
+
im = cv2.resize(im, (int(im_width * r), int(im_height * r)), interpolation=cv2.INTER_AREA)
|
| 1108 |
+
cv2.imwrite(str(f_new), im)
|
| 1109 |
+
|
| 1110 |
+
def get_json(self, save=False, verbose=False):
|
| 1111 |
+
# Return dataset JSON for Ultralytics HUB
|
| 1112 |
+
def _round(labels):
|
| 1113 |
+
# Update labels to integer class and 6 decimal place floats
|
| 1114 |
+
return [[int(c), *(round(x, 4) for x in points)] for c, *points in labels]
|
| 1115 |
+
|
| 1116 |
+
for split in 'train', 'val', 'test':
|
| 1117 |
+
if self.data.get(split) is None:
|
| 1118 |
+
self.stats[split] = None # i.e. no test set
|
| 1119 |
+
continue
|
| 1120 |
+
dataset = LoadImagesAndLabels(self.data[split]) # load dataset
|
| 1121 |
+
x = np.array([
|
| 1122 |
+
np.bincount(label[:, 0].astype(int), minlength=self.data['nc'])
|
| 1123 |
+
for label in tqdm(dataset.labels, total=dataset.n, desc='Statistics')]) # shape(128x80)
|
| 1124 |
+
self.stats[split] = {
|
| 1125 |
+
'instance_stats': {
|
| 1126 |
+
'total': int(x.sum()),
|
| 1127 |
+
'per_class': x.sum(0).tolist()},
|
| 1128 |
+
'image_stats': {
|
| 1129 |
+
'total': dataset.n,
|
| 1130 |
+
'unlabelled': int(np.all(x == 0, 1).sum()),
|
| 1131 |
+
'per_class': (x > 0).sum(0).tolist()},
|
| 1132 |
+
'labels': [{
|
| 1133 |
+
str(Path(k).name): _round(v.tolist())} for k, v in zip(dataset.im_files, dataset.labels)]}
|
| 1134 |
+
|
| 1135 |
+
# Save, print and return
|
| 1136 |
+
if save:
|
| 1137 |
+
stats_path = self.hub_dir / 'stats.json'
|
| 1138 |
+
print(f'Saving {stats_path.resolve()}...')
|
| 1139 |
+
with open(stats_path, 'w') as f:
|
| 1140 |
+
json.dump(self.stats, f) # save stats.json
|
| 1141 |
+
if verbose:
|
| 1142 |
+
print(json.dumps(self.stats, indent=2, sort_keys=False))
|
| 1143 |
+
return self.stats
|
| 1144 |
+
|
| 1145 |
+
def process_images(self):
|
| 1146 |
+
# Compress images for Ultralytics HUB
|
| 1147 |
+
for split in 'train', 'val', 'test':
|
| 1148 |
+
if self.data.get(split) is None:
|
| 1149 |
+
continue
|
| 1150 |
+
dataset = LoadImagesAndLabels(self.data[split]) # load dataset
|
| 1151 |
+
desc = f'{split} images'
|
| 1152 |
+
for _ in tqdm(ThreadPool(NUM_THREADS).imap(self._hub_ops, dataset.im_files), total=dataset.n, desc=desc):
|
| 1153 |
+
pass
|
| 1154 |
+
print(f'Done. All images saved to {self.im_dir}')
|
| 1155 |
+
return self.im_dir
|
| 1156 |
+
|
| 1157 |
+
|
| 1158 |
+
# Classification dataloaders -------------------------------------------------------------------------------------------
|
| 1159 |
+
class ClassificationDataset(torchvision.datasets.ImageFolder):
|
| 1160 |
+
"""
|
| 1161 |
+
YOLOv5 Classification Dataset.
|
| 1162 |
+
Arguments
|
| 1163 |
+
root: Dataset path
|
| 1164 |
+
transform: torchvision transforms, used by default
|
| 1165 |
+
album_transform: Albumentations transforms, used if installed
|
| 1166 |
+
"""
|
| 1167 |
+
|
| 1168 |
+
def __init__(self, root, augment, imgsz, cache=False):
|
| 1169 |
+
super().__init__(root=root)
|
| 1170 |
+
self.torch_transforms = classify_transforms(imgsz)
|
| 1171 |
+
self.album_transforms = classify_albumentations(augment, imgsz) if augment else None
|
| 1172 |
+
self.cache_ram = cache is True or cache == 'ram'
|
| 1173 |
+
self.cache_disk = cache == 'disk'
|
| 1174 |
+
self.samples = [list(x) + [Path(x[0]).with_suffix('.npy'), None] for x in self.samples] # file, index, npy, im
|
| 1175 |
+
|
| 1176 |
+
def __getitem__(self, i):
|
| 1177 |
+
f, j, fn, im = self.samples[i] # filename, index, filename.with_suffix('.npy'), image
|
| 1178 |
+
if self.cache_ram and im is None:
|
| 1179 |
+
im = self.samples[i][3] = cv2.imread(f)
|
| 1180 |
+
elif self.cache_disk:
|
| 1181 |
+
if not fn.exists(): # load npy
|
| 1182 |
+
np.save(fn.as_posix(), cv2.imread(f))
|
| 1183 |
+
im = np.load(fn)
|
| 1184 |
+
else: # read image
|
| 1185 |
+
im = cv2.imread(f) # BGR
|
| 1186 |
+
if self.album_transforms:
|
| 1187 |
+
sample = self.album_transforms(image=cv2.cvtColor(im, cv2.COLOR_BGR2RGB))["image"]
|
| 1188 |
+
else:
|
| 1189 |
+
sample = self.torch_transforms(im)
|
| 1190 |
+
return sample, j
|
| 1191 |
+
|
| 1192 |
+
|
| 1193 |
+
def create_classification_dataloader(path,
|
| 1194 |
+
imgsz=224,
|
| 1195 |
+
batch_size=16,
|
| 1196 |
+
augment=True,
|
| 1197 |
+
cache=False,
|
| 1198 |
+
rank=-1,
|
| 1199 |
+
workers=8,
|
| 1200 |
+
shuffle=True):
|
| 1201 |
+
# Returns Dataloader object to be used with YOLOv5 Classifier
|
| 1202 |
+
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
|
| 1203 |
+
dataset = ClassificationDataset(root=path, imgsz=imgsz, augment=augment, cache=cache)
|
| 1204 |
+
batch_size = min(batch_size, len(dataset))
|
| 1205 |
+
nd = torch.cuda.device_count()
|
| 1206 |
+
nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers])
|
| 1207 |
+
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
|
| 1208 |
+
generator = torch.Generator()
|
| 1209 |
+
generator.manual_seed(6148914691236517205 + RANK)
|
| 1210 |
+
return InfiniteDataLoader(dataset,
|
| 1211 |
+
batch_size=batch_size,
|
| 1212 |
+
shuffle=shuffle and sampler is None,
|
| 1213 |
+
num_workers=nw,
|
| 1214 |
+
sampler=sampler,
|
| 1215 |
+
pin_memory=PIN_MEMORY,
|
| 1216 |
+
worker_init_fn=seed_worker,
|
| 1217 |
+
generator=generator) # or DataLoader(persistent_workers=True)
|
utils/downloads.py
ADDED
|
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import os
|
| 3 |
+
import subprocess
|
| 4 |
+
import urllib
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
|
| 7 |
+
import requests
|
| 8 |
+
import torch
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def is_url(url, check=True):
|
| 12 |
+
# Check if string is URL and check if URL exists
|
| 13 |
+
try:
|
| 14 |
+
url = str(url)
|
| 15 |
+
result = urllib.parse.urlparse(url)
|
| 16 |
+
assert all([result.scheme, result.netloc]) # check if is url
|
| 17 |
+
return (urllib.request.urlopen(url).getcode() == 200) if check else True # check if exists online
|
| 18 |
+
except (AssertionError, urllib.request.HTTPError):
|
| 19 |
+
return False
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def gsutil_getsize(url=''):
|
| 23 |
+
# gs://bucket/file size https://cloud.google.com/storage/docs/gsutil/commands/du
|
| 24 |
+
s = subprocess.check_output(f'gsutil du {url}', shell=True).decode('utf-8')
|
| 25 |
+
return eval(s.split(' ')[0]) if len(s) else 0 # bytes
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def url_getsize(url='https://ultralytics.com/images/bus.jpg'):
|
| 29 |
+
# Return downloadable file size in bytes
|
| 30 |
+
response = requests.head(url, allow_redirects=True)
|
| 31 |
+
return int(response.headers.get('content-length', -1))
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def safe_download(file, url, url2=None, min_bytes=1E0, error_msg=''):
|
| 35 |
+
# Attempts to download file from url or url2, checks and removes incomplete downloads < min_bytes
|
| 36 |
+
from utils.general import LOGGER
|
| 37 |
+
|
| 38 |
+
file = Path(file)
|
| 39 |
+
assert_msg = f"Downloaded file '{file}' does not exist or size is < min_bytes={min_bytes}"
|
| 40 |
+
try: # url1
|
| 41 |
+
LOGGER.info(f'Downloading {url} to {file}...')
|
| 42 |
+
torch.hub.download_url_to_file(url, str(file), progress=LOGGER.level <= logging.INFO)
|
| 43 |
+
assert file.exists() and file.stat().st_size > min_bytes, assert_msg # check
|
| 44 |
+
except Exception as e: # url2
|
| 45 |
+
if file.exists():
|
| 46 |
+
file.unlink() # remove partial downloads
|
| 47 |
+
LOGGER.info(f'ERROR: {e}\nRe-attempting {url2 or url} to {file}...')
|
| 48 |
+
os.system(f"curl -# -L '{url2 or url}' -o '{file}' --retry 3 -C -") # curl download, retry and resume on fail
|
| 49 |
+
finally:
|
| 50 |
+
if not file.exists() or file.stat().st_size < min_bytes: # check
|
| 51 |
+
if file.exists():
|
| 52 |
+
file.unlink() # remove partial downloads
|
| 53 |
+
LOGGER.info(f"ERROR: {assert_msg}\n{error_msg}")
|
| 54 |
+
LOGGER.info('')
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
def attempt_download(file, repo='ultralytics/yolov5', release='v7.0'):
|
| 58 |
+
# Attempt file download from GitHub release assets if not found locally. release = 'latest', 'v7.0', etc.
|
| 59 |
+
from utils.general import LOGGER
|
| 60 |
+
|
| 61 |
+
def github_assets(repository, version='latest'):
|
| 62 |
+
# Return GitHub repo tag (i.e. 'v7.0') and assets (i.e. ['yolov5s.pt', 'yolov5m.pt', ...])
|
| 63 |
+
if version != 'latest':
|
| 64 |
+
version = f'tags/{version}' # i.e. tags/v7.0
|
| 65 |
+
response = requests.get(f'https://api.github.com/repos/{repository}/releases/{version}').json() # github api
|
| 66 |
+
return response['tag_name'], [x['name'] for x in response['assets']] # tag, assets
|
| 67 |
+
|
| 68 |
+
file = Path(str(file).strip().replace("'", ''))
|
| 69 |
+
if not file.exists():
|
| 70 |
+
# URL specified
|
| 71 |
+
name = Path(urllib.parse.unquote(str(file))).name # decode '%2F' to '/' etc.
|
| 72 |
+
if str(file).startswith(('http:/', 'https:/')): # download
|
| 73 |
+
url = str(file).replace(':/', '://') # Pathlib turns :// -> :/
|
| 74 |
+
file = name.split('?')[0] # parse authentication https://url.com/file.txt?auth...
|
| 75 |
+
if Path(file).is_file():
|
| 76 |
+
LOGGER.info(f'Found {url} locally at {file}') # file already exists
|
| 77 |
+
else:
|
| 78 |
+
safe_download(file=file, url=url, min_bytes=1E5)
|
| 79 |
+
return file
|
| 80 |
+
|
| 81 |
+
# GitHub assets
|
| 82 |
+
assets = [f'yolov5{size}{suffix}.pt' for size in 'nsmlx' for suffix in ('', '6', '-cls', '-seg')] # default
|
| 83 |
+
try:
|
| 84 |
+
tag, assets = github_assets(repo, release)
|
| 85 |
+
except Exception:
|
| 86 |
+
try:
|
| 87 |
+
tag, assets = github_assets(repo) # latest release
|
| 88 |
+
except Exception:
|
| 89 |
+
try:
|
| 90 |
+
tag = subprocess.check_output('git tag', shell=True, stderr=subprocess.STDOUT).decode().split()[-1]
|
| 91 |
+
except Exception:
|
| 92 |
+
tag = release
|
| 93 |
+
|
| 94 |
+
file.parent.mkdir(parents=True, exist_ok=True) # make parent dir (if required)
|
| 95 |
+
if name in assets:
|
| 96 |
+
url3 = 'https://drive.google.com/drive/folders/1EFQTEUeXWSFww0luse2jB9M1QNZQGwNl' # backup gdrive mirror
|
| 97 |
+
safe_download(
|
| 98 |
+
file,
|
| 99 |
+
url=f'https://github.com/{repo}/releases/download/{tag}/{name}',
|
| 100 |
+
min_bytes=1E5,
|
| 101 |
+
error_msg=f'{file} missing, try downloading from https://github.com/{repo}/releases/{tag} or {url3}')
|
| 102 |
+
|
| 103 |
+
return str(file)
|
utils/general.py
ADDED
|
@@ -0,0 +1,1227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import contextlib
|
| 2 |
+
import glob
|
| 3 |
+
import inspect
|
| 4 |
+
import logging
|
| 5 |
+
import logging.config
|
| 6 |
+
import math
|
| 7 |
+
import os
|
| 8 |
+
import platform
|
| 9 |
+
import random
|
| 10 |
+
import re
|
| 11 |
+
import signal
|
| 12 |
+
import sys
|
| 13 |
+
import time
|
| 14 |
+
import urllib
|
| 15 |
+
from copy import deepcopy
|
| 16 |
+
from datetime import datetime
|
| 17 |
+
from itertools import repeat
|
| 18 |
+
from multiprocessing.pool import ThreadPool
|
| 19 |
+
from pathlib import Path
|
| 20 |
+
from subprocess import check_output
|
| 21 |
+
from tarfile import is_tarfile
|
| 22 |
+
from typing import Optional
|
| 23 |
+
from zipfile import ZipFile, is_zipfile
|
| 24 |
+
|
| 25 |
+
import cv2
|
| 26 |
+
import IPython
|
| 27 |
+
import numpy as np
|
| 28 |
+
import pandas as pd
|
| 29 |
+
import pkg_resources as pkg
|
| 30 |
+
import torch
|
| 31 |
+
import torchvision
|
| 32 |
+
import yaml
|
| 33 |
+
|
| 34 |
+
from utils import TryExcept, emojis
|
| 35 |
+
from utils.downloads import gsutil_getsize
|
| 36 |
+
from utils.metrics import box_iou, fitness
|
| 37 |
+
|
| 38 |
+
FILE = Path(__file__).resolve()
|
| 39 |
+
ROOT = FILE.parents[1] # YOLO root directory
|
| 40 |
+
RANK = int(os.getenv('RANK', -1))
|
| 41 |
+
|
| 42 |
+
# Settings
|
| 43 |
+
NUM_THREADS = min(8, max(1, os.cpu_count() - 1)) # number of YOLOv5 multiprocessing threads
|
| 44 |
+
DATASETS_DIR = Path(os.getenv('YOLOv5_DATASETS_DIR', ROOT.parent / 'datasets')) # global datasets directory
|
| 45 |
+
AUTOINSTALL = str(os.getenv('YOLOv5_AUTOINSTALL', True)).lower() == 'true' # global auto-install mode
|
| 46 |
+
VERBOSE = str(os.getenv('YOLOv5_VERBOSE', True)).lower() == 'true' # global verbose mode
|
| 47 |
+
TQDM_BAR_FORMAT = '{l_bar}{bar:10}| {n_fmt}/{total_fmt} {elapsed}' # tqdm bar format
|
| 48 |
+
FONT = 'Arial.ttf' # https://ultralytics.com/assets/Arial.ttf
|
| 49 |
+
|
| 50 |
+
torch.set_printoptions(linewidth=320, precision=5, profile='long')
|
| 51 |
+
np.set_printoptions(linewidth=320, formatter={'float_kind': '{:11.5g}'.format}) # format short g, %precision=5
|
| 52 |
+
pd.options.display.max_columns = 10
|
| 53 |
+
cv2.setNumThreads(0) # prevent OpenCV from multithreading (incompatible with PyTorch DataLoader)
|
| 54 |
+
os.environ['NUMEXPR_MAX_THREADS'] = str(NUM_THREADS) # NumExpr max threads
|
| 55 |
+
os.environ['OMP_NUM_THREADS'] = '1' if platform.system() == 'darwin' else str(NUM_THREADS) # OpenMP (PyTorch and SciPy)
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def is_ascii(s=''):
|
| 59 |
+
# Is string composed of all ASCII (no UTF) characters? (note str().isascii() introduced in python 3.7)
|
| 60 |
+
s = str(s) # convert list, tuple, None, etc. to str
|
| 61 |
+
return len(s.encode().decode('ascii', 'ignore')) == len(s)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def is_chinese(s='人工智能'):
|
| 65 |
+
# Is string composed of any Chinese characters?
|
| 66 |
+
return bool(re.search('[\u4e00-\u9fff]', str(s)))
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def is_colab():
|
| 70 |
+
# Is environment a Google Colab instance?
|
| 71 |
+
return 'google.colab' in sys.modules
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def is_notebook():
|
| 75 |
+
# Is environment a Jupyter notebook? Verified on Colab, Jupyterlab, Kaggle, Paperspace
|
| 76 |
+
ipython_type = str(type(IPython.get_ipython()))
|
| 77 |
+
return 'colab' in ipython_type or 'zmqshell' in ipython_type
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def is_kaggle():
|
| 81 |
+
# Is environment a Kaggle Notebook?
|
| 82 |
+
return os.environ.get('PWD') == '/kaggle/working' and os.environ.get('KAGGLE_URL_BASE') == 'https://www.kaggle.com'
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def is_docker() -> bool:
|
| 86 |
+
"""Check if the process runs inside a docker container."""
|
| 87 |
+
if Path("/.dockerenv").exists():
|
| 88 |
+
return True
|
| 89 |
+
try: # check if docker is in control groups
|
| 90 |
+
with open("/proc/self/cgroup") as file:
|
| 91 |
+
return any("docker" in line for line in file)
|
| 92 |
+
except OSError:
|
| 93 |
+
return False
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def is_writeable(dir, test=False):
|
| 97 |
+
# Return True if directory has write permissions, test opening a file with write permissions if test=True
|
| 98 |
+
if not test:
|
| 99 |
+
return os.access(dir, os.W_OK) # possible issues on Windows
|
| 100 |
+
file = Path(dir) / 'tmp.txt'
|
| 101 |
+
try:
|
| 102 |
+
with open(file, 'w'): # open file with write permissions
|
| 103 |
+
pass
|
| 104 |
+
file.unlink() # remove file
|
| 105 |
+
return True
|
| 106 |
+
except OSError:
|
| 107 |
+
return False
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
LOGGING_NAME = "yolov5"
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def set_logging(name=LOGGING_NAME, verbose=True):
|
| 114 |
+
# sets up logging for the given name
|
| 115 |
+
rank = int(os.getenv('RANK', -1)) # rank in world for Multi-GPU trainings
|
| 116 |
+
level = logging.INFO if verbose and rank in {-1, 0} else logging.ERROR
|
| 117 |
+
logging.config.dictConfig({
|
| 118 |
+
"version": 1,
|
| 119 |
+
"disable_existing_loggers": False,
|
| 120 |
+
"formatters": {
|
| 121 |
+
name: {
|
| 122 |
+
"format": "%(message)s"}},
|
| 123 |
+
"handlers": {
|
| 124 |
+
name: {
|
| 125 |
+
"class": "logging.StreamHandler",
|
| 126 |
+
"formatter": name,
|
| 127 |
+
"level": level,}},
|
| 128 |
+
"loggers": {
|
| 129 |
+
name: {
|
| 130 |
+
"level": level,
|
| 131 |
+
"handlers": [name],
|
| 132 |
+
"propagate": False,}}})
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
set_logging(LOGGING_NAME) # run before defining LOGGER
|
| 136 |
+
LOGGER = logging.getLogger(LOGGING_NAME) # define globally (used in train.py, val.py, detect.py, etc.)
|
| 137 |
+
if platform.system() == 'Windows':
|
| 138 |
+
for fn in LOGGER.info, LOGGER.warning:
|
| 139 |
+
setattr(LOGGER, fn.__name__, lambda x: fn(emojis(x))) # emoji safe logging
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
def user_config_dir(dir='Ultralytics', env_var='YOLOV5_CONFIG_DIR'):
|
| 143 |
+
# Return path of user configuration directory. Prefer environment variable if exists. Make dir if required.
|
| 144 |
+
env = os.getenv(env_var)
|
| 145 |
+
if env:
|
| 146 |
+
path = Path(env) # use environment variable
|
| 147 |
+
else:
|
| 148 |
+
cfg = {'Windows': 'AppData/Roaming', 'Linux': '.config', 'Darwin': 'Library/Application Support'} # 3 OS dirs
|
| 149 |
+
path = Path.home() / cfg.get(platform.system(), '') # OS-specific config dir
|
| 150 |
+
path = (path if is_writeable(path) else Path('/tmp')) / dir # GCP and AWS lambda fix, only /tmp is writeable
|
| 151 |
+
path.mkdir(exist_ok=True) # make if required
|
| 152 |
+
return path
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
CONFIG_DIR = user_config_dir() # Ultralytics settings dir
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
class Profile(contextlib.ContextDecorator):
|
| 159 |
+
# YOLO Profile class. Usage: @Profile() decorator or 'with Profile():' context manager
|
| 160 |
+
def __init__(self, t=0.0):
|
| 161 |
+
self.t = t
|
| 162 |
+
self.cuda = torch.cuda.is_available()
|
| 163 |
+
|
| 164 |
+
def __enter__(self):
|
| 165 |
+
self.start = self.time()
|
| 166 |
+
return self
|
| 167 |
+
|
| 168 |
+
def __exit__(self, type, value, traceback):
|
| 169 |
+
self.dt = self.time() - self.start # delta-time
|
| 170 |
+
self.t += self.dt # accumulate dt
|
| 171 |
+
|
| 172 |
+
def time(self):
|
| 173 |
+
if self.cuda:
|
| 174 |
+
torch.cuda.synchronize()
|
| 175 |
+
return time.time()
|
| 176 |
+
|
| 177 |
+
|
| 178 |
+
class Timeout(contextlib.ContextDecorator):
|
| 179 |
+
# YOLO Timeout class. Usage: @Timeout(seconds) decorator or 'with Timeout(seconds):' context manager
|
| 180 |
+
def __init__(self, seconds, *, timeout_msg='', suppress_timeout_errors=True):
|
| 181 |
+
self.seconds = int(seconds)
|
| 182 |
+
self.timeout_message = timeout_msg
|
| 183 |
+
self.suppress = bool(suppress_timeout_errors)
|
| 184 |
+
|
| 185 |
+
def _timeout_handler(self, signum, frame):
|
| 186 |
+
raise TimeoutError(self.timeout_message)
|
| 187 |
+
|
| 188 |
+
def __enter__(self):
|
| 189 |
+
if platform.system() != 'Windows': # not supported on Windows
|
| 190 |
+
signal.signal(signal.SIGALRM, self._timeout_handler) # Set handler for SIGALRM
|
| 191 |
+
signal.alarm(self.seconds) # start countdown for SIGALRM to be raised
|
| 192 |
+
|
| 193 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
| 194 |
+
if platform.system() != 'Windows':
|
| 195 |
+
signal.alarm(0) # Cancel SIGALRM if it's scheduled
|
| 196 |
+
if self.suppress and exc_type is TimeoutError: # Suppress TimeoutError
|
| 197 |
+
return True
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
class WorkingDirectory(contextlib.ContextDecorator):
|
| 201 |
+
# Usage: @WorkingDirectory(dir) decorator or 'with WorkingDirectory(dir):' context manager
|
| 202 |
+
def __init__(self, new_dir):
|
| 203 |
+
self.dir = new_dir # new dir
|
| 204 |
+
self.cwd = Path.cwd().resolve() # current dir
|
| 205 |
+
|
| 206 |
+
def __enter__(self):
|
| 207 |
+
os.chdir(self.dir)
|
| 208 |
+
|
| 209 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
| 210 |
+
os.chdir(self.cwd)
|
| 211 |
+
|
| 212 |
+
|
| 213 |
+
def methods(instance):
|
| 214 |
+
# Get class/instance methods
|
| 215 |
+
return [f for f in dir(instance) if callable(getattr(instance, f)) and not f.startswith("__")]
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
def print_args(args: Optional[dict] = None, show_file=True, show_func=False):
|
| 219 |
+
# Print function arguments (optional args dict)
|
| 220 |
+
x = inspect.currentframe().f_back # previous frame
|
| 221 |
+
file, _, func, _, _ = inspect.getframeinfo(x)
|
| 222 |
+
if args is None: # get args automatically
|
| 223 |
+
args, _, _, frm = inspect.getargvalues(x)
|
| 224 |
+
args = {k: v for k, v in frm.items() if k in args}
|
| 225 |
+
try:
|
| 226 |
+
file = Path(file).resolve().relative_to(ROOT).with_suffix('')
|
| 227 |
+
except ValueError:
|
| 228 |
+
file = Path(file).stem
|
| 229 |
+
s = (f'{file}: ' if show_file else '') + (f'{func}: ' if show_func else '')
|
| 230 |
+
LOGGER.info(colorstr(s) + ', '.join(f'{k}={v}' for k, v in args.items()))
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
def init_seeds(seed=0, deterministic=False):
|
| 234 |
+
# Initialize random number generator (RNG) seeds https://pytorch.org/docs/stable/notes/randomness.html
|
| 235 |
+
random.seed(seed)
|
| 236 |
+
np.random.seed(seed)
|
| 237 |
+
torch.manual_seed(seed)
|
| 238 |
+
torch.cuda.manual_seed(seed)
|
| 239 |
+
torch.cuda.manual_seed_all(seed) # for Multi-GPU, exception safe
|
| 240 |
+
# torch.backends.cudnn.benchmark = True # AutoBatch problem https://github.com/ultralytics/yolov5/issues/9287
|
| 241 |
+
if deterministic and check_version(torch.__version__, '1.12.0'): # https://github.com/ultralytics/yolov5/pull/8213
|
| 242 |
+
torch.use_deterministic_algorithms(True)
|
| 243 |
+
torch.backends.cudnn.deterministic = True
|
| 244 |
+
os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
|
| 245 |
+
os.environ['PYTHONHASHSEED'] = str(seed)
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
def intersect_dicts(da, db, exclude=()):
|
| 249 |
+
# Dictionary intersection of matching keys and shapes, omitting 'exclude' keys, using da values
|
| 250 |
+
return {k: v for k, v in da.items() if k in db and all(x not in k for x in exclude) and v.shape == db[k].shape}
|
| 251 |
+
|
| 252 |
+
|
| 253 |
+
def get_default_args(func):
|
| 254 |
+
# Get func() default arguments
|
| 255 |
+
signature = inspect.signature(func)
|
| 256 |
+
return {k: v.default for k, v in signature.parameters.items() if v.default is not inspect.Parameter.empty}
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
def get_latest_run(search_dir='.'):
|
| 260 |
+
# Return path to most recent 'last.pt' in /runs (i.e. to --resume from)
|
| 261 |
+
last_list = glob.glob(f'{search_dir}/**/last*.pt', recursive=True)
|
| 262 |
+
return max(last_list, key=os.path.getctime) if last_list else ''
|
| 263 |
+
|
| 264 |
+
|
| 265 |
+
def file_age(path=__file__):
|
| 266 |
+
# Return days since last file update
|
| 267 |
+
dt = (datetime.now() - datetime.fromtimestamp(Path(path).stat().st_mtime)) # delta
|
| 268 |
+
return dt.days # + dt.seconds / 86400 # fractional days
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
def file_date(path=__file__):
|
| 272 |
+
# Return human-readable file modification date, i.e. '2021-3-26'
|
| 273 |
+
t = datetime.fromtimestamp(Path(path).stat().st_mtime)
|
| 274 |
+
return f'{t.year}-{t.month}-{t.day}'
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
def file_size(path):
|
| 278 |
+
# Return file/dir size (MB)
|
| 279 |
+
mb = 1 << 20 # bytes to MiB (1024 ** 2)
|
| 280 |
+
path = Path(path)
|
| 281 |
+
if path.is_file():
|
| 282 |
+
return path.stat().st_size / mb
|
| 283 |
+
elif path.is_dir():
|
| 284 |
+
return sum(f.stat().st_size for f in path.glob('**/*') if f.is_file()) / mb
|
| 285 |
+
else:
|
| 286 |
+
return 0.0
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
def check_online():
|
| 290 |
+
# Check internet connectivity
|
| 291 |
+
import socket
|
| 292 |
+
|
| 293 |
+
def run_once():
|
| 294 |
+
# Check once
|
| 295 |
+
try:
|
| 296 |
+
socket.create_connection(("1.1.1.1", 443), 5) # check host accessibility
|
| 297 |
+
return True
|
| 298 |
+
except OSError:
|
| 299 |
+
return False
|
| 300 |
+
|
| 301 |
+
return run_once() or run_once() # check twice to increase robustness to intermittent connectivity issues
|
| 302 |
+
|
| 303 |
+
|
| 304 |
+
def git_describe(path=ROOT): # path must be a directory
|
| 305 |
+
# Return human-readable git description, i.e. v5.0-5-g3e25f1e https://git-scm.com/docs/git-describe
|
| 306 |
+
try:
|
| 307 |
+
assert (Path(path) / '.git').is_dir()
|
| 308 |
+
return check_output(f'git -C {path} describe --tags --long --always', shell=True).decode()[:-1]
|
| 309 |
+
except Exception:
|
| 310 |
+
return ''
|
| 311 |
+
|
| 312 |
+
|
| 313 |
+
@TryExcept()
|
| 314 |
+
@WorkingDirectory(ROOT)
|
| 315 |
+
def check_git_status(repo='WongKinYiu/yolov9', branch='main'):
|
| 316 |
+
# YOLO status check, recommend 'git pull' if code is out of date
|
| 317 |
+
url = f'https://github.com/{repo}'
|
| 318 |
+
msg = f', for updates see {url}'
|
| 319 |
+
s = colorstr('github: ') # string
|
| 320 |
+
assert Path('.git').exists(), s + 'skipping check (not a git repository)' + msg
|
| 321 |
+
assert check_online(), s + 'skipping check (offline)' + msg
|
| 322 |
+
|
| 323 |
+
splits = re.split(pattern=r'\s', string=check_output('git remote -v', shell=True).decode())
|
| 324 |
+
matches = [repo in s for s in splits]
|
| 325 |
+
if any(matches):
|
| 326 |
+
remote = splits[matches.index(True) - 1]
|
| 327 |
+
else:
|
| 328 |
+
remote = 'ultralytics'
|
| 329 |
+
check_output(f'git remote add {remote} {url}', shell=True)
|
| 330 |
+
check_output(f'git fetch {remote}', shell=True, timeout=5) # git fetch
|
| 331 |
+
local_branch = check_output('git rev-parse --abbrev-ref HEAD', shell=True).decode().strip() # checked out
|
| 332 |
+
n = int(check_output(f'git rev-list {local_branch}..{remote}/{branch} --count', shell=True)) # commits behind
|
| 333 |
+
if n > 0:
|
| 334 |
+
pull = 'git pull' if remote == 'origin' else f'git pull {remote} {branch}'
|
| 335 |
+
s += f"⚠️ YOLO is out of date by {n} commit{'s' * (n > 1)}. Use `{pull}` or `git clone {url}` to update."
|
| 336 |
+
else:
|
| 337 |
+
s += f'up to date with {url} ✅'
|
| 338 |
+
LOGGER.info(s)
|
| 339 |
+
|
| 340 |
+
|
| 341 |
+
@WorkingDirectory(ROOT)
|
| 342 |
+
def check_git_info(path='.'):
|
| 343 |
+
# YOLO git info check, return {remote, branch, commit}
|
| 344 |
+
check_requirements('gitpython')
|
| 345 |
+
import git
|
| 346 |
+
try:
|
| 347 |
+
repo = git.Repo(path)
|
| 348 |
+
remote = repo.remotes.origin.url.replace('.git', '') # i.e. 'https://github.com/WongKinYiu/yolov9'
|
| 349 |
+
commit = repo.head.commit.hexsha # i.e. '3134699c73af83aac2a481435550b968d5792c0d'
|
| 350 |
+
try:
|
| 351 |
+
branch = repo.active_branch.name # i.e. 'main'
|
| 352 |
+
except TypeError: # not on any branch
|
| 353 |
+
branch = None # i.e. 'detached HEAD' state
|
| 354 |
+
return {'remote': remote, 'branch': branch, 'commit': commit}
|
| 355 |
+
except git.exc.InvalidGitRepositoryError: # path is not a git dir
|
| 356 |
+
return {'remote': None, 'branch': None, 'commit': None}
|
| 357 |
+
|
| 358 |
+
|
| 359 |
+
def check_python(minimum='3.7.0'):
|
| 360 |
+
# Check current python version vs. required python version
|
| 361 |
+
check_version(platform.python_version(), minimum, name='Python ', hard=True)
|
| 362 |
+
|
| 363 |
+
|
| 364 |
+
def check_version(current='0.0.0', minimum='0.0.0', name='version ', pinned=False, hard=False, verbose=False):
|
| 365 |
+
# Check version vs. required version
|
| 366 |
+
current, minimum = (pkg.parse_version(x) for x in (current, minimum))
|
| 367 |
+
result = (current == minimum) if pinned else (current >= minimum) # bool
|
| 368 |
+
s = f'WARNING ⚠️ {name}{minimum} is required by YOLO, but {name}{current} is currently installed' # string
|
| 369 |
+
if hard:
|
| 370 |
+
assert result, emojis(s) # assert min requirements met
|
| 371 |
+
if verbose and not result:
|
| 372 |
+
LOGGER.warning(s)
|
| 373 |
+
return result
|
| 374 |
+
|
| 375 |
+
|
| 376 |
+
@TryExcept()
|
| 377 |
+
def check_requirements(requirements=ROOT / 'requirements.txt', exclude=(), install=True, cmds=''):
|
| 378 |
+
# Check installed dependencies meet YOLO requirements (pass *.txt file or list of packages or single package str)
|
| 379 |
+
prefix = colorstr('red', 'bold', 'requirements:')
|
| 380 |
+
check_python() # check python version
|
| 381 |
+
if isinstance(requirements, Path): # requirements.txt file
|
| 382 |
+
file = requirements.resolve()
|
| 383 |
+
assert file.exists(), f"{prefix} {file} not found, check failed."
|
| 384 |
+
with file.open() as f:
|
| 385 |
+
requirements = [f'{x.name}{x.specifier}' for x in pkg.parse_requirements(f) if x.name not in exclude]
|
| 386 |
+
elif isinstance(requirements, str):
|
| 387 |
+
requirements = [requirements]
|
| 388 |
+
|
| 389 |
+
s = ''
|
| 390 |
+
n = 0
|
| 391 |
+
for r in requirements:
|
| 392 |
+
try:
|
| 393 |
+
pkg.require(r)
|
| 394 |
+
except (pkg.VersionConflict, pkg.DistributionNotFound): # exception if requirements not met
|
| 395 |
+
s += f'"{r}" '
|
| 396 |
+
n += 1
|
| 397 |
+
|
| 398 |
+
if s and install and AUTOINSTALL: # check environment variable
|
| 399 |
+
LOGGER.info(f"{prefix} YOLO requirement{'s' * (n > 1)} {s}not found, attempting AutoUpdate...")
|
| 400 |
+
try:
|
| 401 |
+
# assert check_online(), "AutoUpdate skipped (offline)"
|
| 402 |
+
LOGGER.info(check_output(f'pip install {s} {cmds}', shell=True).decode())
|
| 403 |
+
source = file if 'file' in locals() else requirements
|
| 404 |
+
s = f"{prefix} {n} package{'s' * (n > 1)} updated per {source}\n" \
|
| 405 |
+
f"{prefix} ⚠️ {colorstr('bold', 'Restart runtime or rerun command for updates to take effect')}\n"
|
| 406 |
+
LOGGER.info(s)
|
| 407 |
+
except Exception as e:
|
| 408 |
+
LOGGER.warning(f'{prefix} ❌ {e}')
|
| 409 |
+
|
| 410 |
+
|
| 411 |
+
def check_img_size(imgsz, s=32, floor=0):
|
| 412 |
+
# Verify image size is a multiple of stride s in each dimension
|
| 413 |
+
if isinstance(imgsz, int): # integer i.e. img_size=640
|
| 414 |
+
new_size = max(make_divisible(imgsz, int(s)), floor)
|
| 415 |
+
else: # list i.e. img_size=[640, 480]
|
| 416 |
+
imgsz = list(imgsz) # convert to list if tuple
|
| 417 |
+
new_size = [max(make_divisible(x, int(s)), floor) for x in imgsz]
|
| 418 |
+
if new_size != imgsz:
|
| 419 |
+
LOGGER.warning(f'WARNING ⚠️ --img-size {imgsz} must be multiple of max stride {s}, updating to {new_size}')
|
| 420 |
+
return new_size
|
| 421 |
+
|
| 422 |
+
|
| 423 |
+
def check_imshow(warn=False):
|
| 424 |
+
# Check if environment supports image displays
|
| 425 |
+
try:
|
| 426 |
+
assert not is_notebook()
|
| 427 |
+
assert not is_docker()
|
| 428 |
+
cv2.imshow('test', np.zeros((1, 1, 3)))
|
| 429 |
+
cv2.waitKey(1)
|
| 430 |
+
cv2.destroyAllWindows()
|
| 431 |
+
cv2.waitKey(1)
|
| 432 |
+
return True
|
| 433 |
+
except Exception as e:
|
| 434 |
+
if warn:
|
| 435 |
+
LOGGER.warning(f'WARNING ⚠️ Environment does not support cv2.imshow() or PIL Image.show()\n{e}')
|
| 436 |
+
return False
|
| 437 |
+
|
| 438 |
+
|
| 439 |
+
def check_suffix(file='yolo.pt', suffix=('.pt',), msg=''):
|
| 440 |
+
# Check file(s) for acceptable suffix
|
| 441 |
+
if file and suffix:
|
| 442 |
+
if isinstance(suffix, str):
|
| 443 |
+
suffix = [suffix]
|
| 444 |
+
for f in file if isinstance(file, (list, tuple)) else [file]:
|
| 445 |
+
s = Path(f).suffix.lower() # file suffix
|
| 446 |
+
if len(s):
|
| 447 |
+
assert s in suffix, f"{msg}{f} acceptable suffix is {suffix}"
|
| 448 |
+
|
| 449 |
+
|
| 450 |
+
def check_yaml(file, suffix=('.yaml', '.yml')):
|
| 451 |
+
# Search/download YAML file (if necessary) and return path, checking suffix
|
| 452 |
+
return check_file(file, suffix)
|
| 453 |
+
|
| 454 |
+
|
| 455 |
+
def check_file(file, suffix=''):
|
| 456 |
+
# Search/download file (if necessary) and return path
|
| 457 |
+
check_suffix(file, suffix) # optional
|
| 458 |
+
file = str(file) # convert to str()
|
| 459 |
+
if os.path.isfile(file) or not file: # exists
|
| 460 |
+
return file
|
| 461 |
+
elif file.startswith(('http:/', 'https:/')): # download
|
| 462 |
+
url = file # warning: Pathlib turns :// -> :/
|
| 463 |
+
file = Path(urllib.parse.unquote(file).split('?')[0]).name # '%2F' to '/', split https://url.com/file.txt?auth
|
| 464 |
+
if os.path.isfile(file):
|
| 465 |
+
LOGGER.info(f'Found {url} locally at {file}') # file already exists
|
| 466 |
+
else:
|
| 467 |
+
LOGGER.info(f'Downloading {url} to {file}...')
|
| 468 |
+
torch.hub.download_url_to_file(url, file)
|
| 469 |
+
assert Path(file).exists() and Path(file).stat().st_size > 0, f'File download failed: {url}' # check
|
| 470 |
+
return file
|
| 471 |
+
elif file.startswith('clearml://'): # ClearML Dataset ID
|
| 472 |
+
assert 'clearml' in sys.modules, "ClearML is not installed, so cannot use ClearML dataset. Try running 'pip install clearml'."
|
| 473 |
+
return file
|
| 474 |
+
else: # search
|
| 475 |
+
files = []
|
| 476 |
+
for d in 'data', 'models', 'utils': # search directories
|
| 477 |
+
files.extend(glob.glob(str(ROOT / d / '**' / file), recursive=True)) # find file
|
| 478 |
+
assert len(files), f'File not found: {file}' # assert file was found
|
| 479 |
+
assert len(files) == 1, f"Multiple files match '{file}', specify exact path: {files}" # assert unique
|
| 480 |
+
return files[0] # return file
|
| 481 |
+
|
| 482 |
+
|
| 483 |
+
def check_font(font=FONT, progress=False):
|
| 484 |
+
# Download font to CONFIG_DIR if necessary
|
| 485 |
+
font = Path(font)
|
| 486 |
+
file = CONFIG_DIR / font.name
|
| 487 |
+
if not font.exists() and not file.exists():
|
| 488 |
+
url = f'https://ultralytics.com/assets/{font.name}'
|
| 489 |
+
LOGGER.info(f'Downloading {url} to {file}...')
|
| 490 |
+
torch.hub.download_url_to_file(url, str(file), progress=progress)
|
| 491 |
+
|
| 492 |
+
|
| 493 |
+
def check_dataset(data, autodownload=True):
|
| 494 |
+
# Download, check and/or unzip dataset if not found locally
|
| 495 |
+
|
| 496 |
+
# Download (optional)
|
| 497 |
+
extract_dir = ''
|
| 498 |
+
if isinstance(data, (str, Path)) and (is_zipfile(data) or is_tarfile(data)):
|
| 499 |
+
download(data, dir=f'{DATASETS_DIR}/{Path(data).stem}', unzip=True, delete=False, curl=False, threads=1)
|
| 500 |
+
data = next((DATASETS_DIR / Path(data).stem).rglob('*.yaml'))
|
| 501 |
+
extract_dir, autodownload = data.parent, False
|
| 502 |
+
|
| 503 |
+
# Read yaml (optional)
|
| 504 |
+
if isinstance(data, (str, Path)):
|
| 505 |
+
data = yaml_load(data) # dictionary
|
| 506 |
+
|
| 507 |
+
# Checks
|
| 508 |
+
for k in 'train', 'val', 'names':
|
| 509 |
+
assert k in data, emojis(f"data.yaml '{k}:' field missing ❌")
|
| 510 |
+
if isinstance(data['names'], (list, tuple)): # old array format
|
| 511 |
+
data['names'] = dict(enumerate(data['names'])) # convert to dict
|
| 512 |
+
assert all(isinstance(k, int) for k in data['names'].keys()), 'data.yaml names keys must be integers, i.e. 2: car'
|
| 513 |
+
data['nc'] = len(data['names'])
|
| 514 |
+
|
| 515 |
+
# Resolve paths
|
| 516 |
+
path = Path(extract_dir or data.get('path') or '') # optional 'path' default to '.'
|
| 517 |
+
if not path.is_absolute():
|
| 518 |
+
path = (ROOT / path).resolve()
|
| 519 |
+
data['path'] = path # download scripts
|
| 520 |
+
for k in 'train', 'val', 'test':
|
| 521 |
+
if data.get(k): # prepend path
|
| 522 |
+
if isinstance(data[k], str):
|
| 523 |
+
x = (path / data[k]).resolve()
|
| 524 |
+
if not x.exists() and data[k].startswith('../'):
|
| 525 |
+
x = (path / data[k][3:]).resolve()
|
| 526 |
+
data[k] = str(x)
|
| 527 |
+
else:
|
| 528 |
+
data[k] = [str((path / x).resolve()) for x in data[k]]
|
| 529 |
+
|
| 530 |
+
# Parse yaml
|
| 531 |
+
train, val, test, s = (data.get(x) for x in ('train', 'val', 'test', 'download'))
|
| 532 |
+
if val:
|
| 533 |
+
val = [Path(x).resolve() for x in (val if isinstance(val, list) else [val])] # val path
|
| 534 |
+
if not all(x.exists() for x in val):
|
| 535 |
+
LOGGER.info('\nDataset not found ⚠️, missing paths %s' % [str(x) for x in val if not x.exists()])
|
| 536 |
+
if not s or not autodownload:
|
| 537 |
+
raise Exception('Dataset not found ❌')
|
| 538 |
+
t = time.time()
|
| 539 |
+
if s.startswith('http') and s.endswith('.zip'): # URL
|
| 540 |
+
f = Path(s).name # filename
|
| 541 |
+
LOGGER.info(f'Downloading {s} to {f}...')
|
| 542 |
+
torch.hub.download_url_to_file(s, f)
|
| 543 |
+
Path(DATASETS_DIR).mkdir(parents=True, exist_ok=True) # create root
|
| 544 |
+
unzip_file(f, path=DATASETS_DIR) # unzip
|
| 545 |
+
Path(f).unlink() # remove zip
|
| 546 |
+
r = None # success
|
| 547 |
+
elif s.startswith('bash '): # bash script
|
| 548 |
+
LOGGER.info(f'Running {s} ...')
|
| 549 |
+
r = os.system(s)
|
| 550 |
+
else: # python script
|
| 551 |
+
r = exec(s, {'yaml': data}) # return None
|
| 552 |
+
dt = f'({round(time.time() - t, 1)}s)'
|
| 553 |
+
s = f"success ✅ {dt}, saved to {colorstr('bold', DATASETS_DIR)}" if r in (0, None) else f"failure {dt} ❌"
|
| 554 |
+
LOGGER.info(f"Dataset download {s}")
|
| 555 |
+
check_font('Arial.ttf' if is_ascii(data['names']) else 'Arial.Unicode.ttf', progress=True) # download fonts
|
| 556 |
+
return data # dictionary
|
| 557 |
+
|
| 558 |
+
|
| 559 |
+
def check_amp(model):
|
| 560 |
+
# Check PyTorch Automatic Mixed Precision (AMP) functionality. Return True on correct operation
|
| 561 |
+
from models.common import AutoShape, DetectMultiBackend
|
| 562 |
+
|
| 563 |
+
def amp_allclose(model, im):
|
| 564 |
+
# All close FP32 vs AMP results
|
| 565 |
+
m = AutoShape(model, verbose=False) # model
|
| 566 |
+
a = m(im).xywhn[0] # FP32 inference
|
| 567 |
+
m.amp = True
|
| 568 |
+
b = m(im).xywhn[0] # AMP inference
|
| 569 |
+
return a.shape == b.shape and torch.allclose(a, b, atol=0.1) # close to 10% absolute tolerance
|
| 570 |
+
|
| 571 |
+
prefix = colorstr('AMP: ')
|
| 572 |
+
device = next(model.parameters()).device # get model device
|
| 573 |
+
if device.type in ('cpu', 'mps'):
|
| 574 |
+
return False # AMP only used on CUDA devices
|
| 575 |
+
f = ROOT / 'data' / 'images' / 'bus.jpg' # image to check
|
| 576 |
+
im = f if f.exists() else 'https://ultralytics.com/images/bus.jpg' if check_online() else np.ones((640, 640, 3))
|
| 577 |
+
try:
|
| 578 |
+
#assert amp_allclose(deepcopy(model), im) or amp_allclose(DetectMultiBackend('yolo.pt', device), im)
|
| 579 |
+
LOGGER.info(f'{prefix}checks passed ✅')
|
| 580 |
+
return True
|
| 581 |
+
except Exception:
|
| 582 |
+
help_url = 'https://github.com/ultralytics/yolov5/issues/7908'
|
| 583 |
+
LOGGER.warning(f'{prefix}checks failed ❌, disabling Automatic Mixed Precision. See {help_url}')
|
| 584 |
+
return False
|
| 585 |
+
|
| 586 |
+
|
| 587 |
+
def yaml_load(file='data.yaml'):
|
| 588 |
+
# Single-line safe yaml loading
|
| 589 |
+
with open(file, errors='ignore') as f:
|
| 590 |
+
return yaml.safe_load(f)
|
| 591 |
+
|
| 592 |
+
|
| 593 |
+
def yaml_save(file='data.yaml', data={}):
|
| 594 |
+
# Single-line safe yaml saving
|
| 595 |
+
with open(file, 'w') as f:
|
| 596 |
+
yaml.safe_dump({k: str(v) if isinstance(v, Path) else v for k, v in data.items()}, f, sort_keys=False)
|
| 597 |
+
|
| 598 |
+
|
| 599 |
+
def unzip_file(file, path=None, exclude=('.DS_Store', '__MACOSX')):
|
| 600 |
+
# Unzip a *.zip file to path/, excluding files containing strings in exclude list
|
| 601 |
+
if path is None:
|
| 602 |
+
path = Path(file).parent # default path
|
| 603 |
+
with ZipFile(file) as zipObj:
|
| 604 |
+
for f in zipObj.namelist(): # list all archived filenames in the zip
|
| 605 |
+
if all(x not in f for x in exclude):
|
| 606 |
+
zipObj.extract(f, path=path)
|
| 607 |
+
|
| 608 |
+
|
| 609 |
+
def url2file(url):
|
| 610 |
+
# Convert URL to filename, i.e. https://url.com/file.txt?auth -> file.txt
|
| 611 |
+
url = str(Path(url)).replace(':/', '://') # Pathlib turns :// -> :/
|
| 612 |
+
return Path(urllib.parse.unquote(url)).name.split('?')[0] # '%2F' to '/', split https://url.com/file.txt?auth
|
| 613 |
+
|
| 614 |
+
|
| 615 |
+
def download(url, dir='.', unzip=True, delete=True, curl=False, threads=1, retry=3):
|
| 616 |
+
# Multithreaded file download and unzip function, used in data.yaml for autodownload
|
| 617 |
+
def download_one(url, dir):
|
| 618 |
+
# Download 1 file
|
| 619 |
+
success = True
|
| 620 |
+
if os.path.isfile(url):
|
| 621 |
+
f = Path(url) # filename
|
| 622 |
+
else: # does not exist
|
| 623 |
+
f = dir / Path(url).name
|
| 624 |
+
LOGGER.info(f'Downloading {url} to {f}...')
|
| 625 |
+
for i in range(retry + 1):
|
| 626 |
+
if curl:
|
| 627 |
+
s = 'sS' if threads > 1 else '' # silent
|
| 628 |
+
r = os.system(
|
| 629 |
+
f'curl -# -{s}L "{url}" -o "{f}" --retry 9 -C -') # curl download with retry, continue
|
| 630 |
+
success = r == 0
|
| 631 |
+
else:
|
| 632 |
+
torch.hub.download_url_to_file(url, f, progress=threads == 1) # torch download
|
| 633 |
+
success = f.is_file()
|
| 634 |
+
if success:
|
| 635 |
+
break
|
| 636 |
+
elif i < retry:
|
| 637 |
+
LOGGER.warning(f'⚠️ Download failure, retrying {i + 1}/{retry} {url}...')
|
| 638 |
+
else:
|
| 639 |
+
LOGGER.warning(f'❌ Failed to download {url}...')
|
| 640 |
+
|
| 641 |
+
if unzip and success and (f.suffix == '.gz' or is_zipfile(f) or is_tarfile(f)):
|
| 642 |
+
LOGGER.info(f'Unzipping {f}...')
|
| 643 |
+
if is_zipfile(f):
|
| 644 |
+
unzip_file(f, dir) # unzip
|
| 645 |
+
elif is_tarfile(f):
|
| 646 |
+
os.system(f'tar xf {f} --directory {f.parent}') # unzip
|
| 647 |
+
elif f.suffix == '.gz':
|
| 648 |
+
os.system(f'tar xfz {f} --directory {f.parent}') # unzip
|
| 649 |
+
if delete:
|
| 650 |
+
f.unlink() # remove zip
|
| 651 |
+
|
| 652 |
+
dir = Path(dir)
|
| 653 |
+
dir.mkdir(parents=True, exist_ok=True) # make directory
|
| 654 |
+
if threads > 1:
|
| 655 |
+
pool = ThreadPool(threads)
|
| 656 |
+
pool.imap(lambda x: download_one(*x), zip(url, repeat(dir))) # multithreaded
|
| 657 |
+
pool.close()
|
| 658 |
+
pool.join()
|
| 659 |
+
else:
|
| 660 |
+
for u in [url] if isinstance(url, (str, Path)) else url:
|
| 661 |
+
download_one(u, dir)
|
| 662 |
+
|
| 663 |
+
|
| 664 |
+
def make_divisible(x, divisor):
|
| 665 |
+
# Returns nearest x divisible by divisor
|
| 666 |
+
if isinstance(divisor, torch.Tensor):
|
| 667 |
+
divisor = int(divisor.max()) # to int
|
| 668 |
+
return math.ceil(x / divisor) * divisor
|
| 669 |
+
|
| 670 |
+
|
| 671 |
+
def clean_str(s):
|
| 672 |
+
# Cleans a string by replacing special characters with underscore _
|
| 673 |
+
return re.sub(pattern="[|@#!¡·$€%&()=?¿^*;:,¨´><+]", repl="_", string=s)
|
| 674 |
+
|
| 675 |
+
|
| 676 |
+
def one_cycle(y1=0.0, y2=1.0, steps=100):
|
| 677 |
+
# lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf
|
| 678 |
+
return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
|
| 679 |
+
|
| 680 |
+
|
| 681 |
+
def one_flat_cycle(y1=0.0, y2=1.0, steps=100):
|
| 682 |
+
# lambda function for sinusoidal ramp from y1 to y2 https://arxiv.org/pdf/1812.01187.pdf
|
| 683 |
+
#return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
|
| 684 |
+
return lambda x: ((1 - math.cos((x - (steps // 2)) * math.pi / (steps // 2))) / 2) * (y2 - y1) + y1 if (x > (steps // 2)) else y1
|
| 685 |
+
|
| 686 |
+
|
| 687 |
+
def colorstr(*input):
|
| 688 |
+
# Colors a string https://en.wikipedia.org/wiki/ANSI_escape_code, i.e. colorstr('blue', 'hello world')
|
| 689 |
+
*args, string = input if len(input) > 1 else ('blue', 'bold', input[0]) # color arguments, string
|
| 690 |
+
colors = {
|
| 691 |
+
'black': '\033[30m', # basic colors
|
| 692 |
+
'red': '\033[31m',
|
| 693 |
+
'green': '\033[32m',
|
| 694 |
+
'yellow': '\033[33m',
|
| 695 |
+
'blue': '\033[34m',
|
| 696 |
+
'magenta': '\033[35m',
|
| 697 |
+
'cyan': '\033[36m',
|
| 698 |
+
'white': '\033[37m',
|
| 699 |
+
'bright_black': '\033[90m', # bright colors
|
| 700 |
+
'bright_red': '\033[91m',
|
| 701 |
+
'bright_green': '\033[92m',
|
| 702 |
+
'bright_yellow': '\033[93m',
|
| 703 |
+
'bright_blue': '\033[94m',
|
| 704 |
+
'bright_magenta': '\033[95m',
|
| 705 |
+
'bright_cyan': '\033[96m',
|
| 706 |
+
'bright_white': '\033[97m',
|
| 707 |
+
'end': '\033[0m', # misc
|
| 708 |
+
'bold': '\033[1m',
|
| 709 |
+
'underline': '\033[4m'}
|
| 710 |
+
return ''.join(colors[x] for x in args) + f'{string}' + colors['end']
|
| 711 |
+
|
| 712 |
+
|
| 713 |
+
def labels_to_class_weights(labels, nc=80):
|
| 714 |
+
# Get class weights (inverse frequency) from training labels
|
| 715 |
+
if labels[0] is None: # no labels loaded
|
| 716 |
+
return torch.Tensor()
|
| 717 |
+
|
| 718 |
+
labels = np.concatenate(labels, 0) # labels.shape = (866643, 5) for COCO
|
| 719 |
+
classes = labels[:, 0].astype(int) # labels = [class xywh]
|
| 720 |
+
weights = np.bincount(classes, minlength=nc) # occurrences per class
|
| 721 |
+
|
| 722 |
+
# Prepend gridpoint count (for uCE training)
|
| 723 |
+
# gpi = ((320 / 32 * np.array([1, 2, 4])) ** 2 * 3).sum() # gridpoints per image
|
| 724 |
+
# weights = np.hstack([gpi * len(labels) - weights.sum() * 9, weights * 9]) ** 0.5 # prepend gridpoints to start
|
| 725 |
+
|
| 726 |
+
weights[weights == 0] = 1 # replace empty bins with 1
|
| 727 |
+
weights = 1 / weights # number of targets per class
|
| 728 |
+
weights /= weights.sum() # normalize
|
| 729 |
+
return torch.from_numpy(weights).float()
|
| 730 |
+
|
| 731 |
+
|
| 732 |
+
def labels_to_image_weights(labels, nc=80, class_weights=np.ones(80)):
|
| 733 |
+
# Produces image weights based on class_weights and image contents
|
| 734 |
+
# Usage: index = random.choices(range(n), weights=image_weights, k=1) # weighted image sample
|
| 735 |
+
class_counts = np.array([np.bincount(x[:, 0].astype(int), minlength=nc) for x in labels])
|
| 736 |
+
return (class_weights.reshape(1, nc) * class_counts).sum(1)
|
| 737 |
+
|
| 738 |
+
|
| 739 |
+
def coco80_to_coco91_class(): # converts 80-index (val2014) to 91-index (paper)
|
| 740 |
+
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
|
| 741 |
+
# a = np.loadtxt('data/coco.names', dtype='str', delimiter='\n')
|
| 742 |
+
# b = np.loadtxt('data/coco_paper.names', dtype='str', delimiter='\n')
|
| 743 |
+
# x1 = [list(a[i] == b).index(True) + 1 for i in range(80)] # darknet to coco
|
| 744 |
+
# x2 = [list(b[i] == a).index(True) if any(b[i] == a) else None for i in range(91)] # coco to darknet
|
| 745 |
+
return [
|
| 746 |
+
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 31, 32, 33, 34,
|
| 747 |
+
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
|
| 748 |
+
64, 65, 67, 70, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 84, 85, 86, 87, 88, 89, 90]
|
| 749 |
+
|
| 750 |
+
|
| 751 |
+
def xyxy2xywh(x):
|
| 752 |
+
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right
|
| 753 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
| 754 |
+
y[..., 0] = (x[..., 0] + x[..., 2]) / 2 # x center
|
| 755 |
+
y[..., 1] = (x[..., 1] + x[..., 3]) / 2 # y center
|
| 756 |
+
y[..., 2] = x[..., 2] - x[..., 0] # width
|
| 757 |
+
y[..., 3] = x[..., 3] - x[..., 1] # height
|
| 758 |
+
return y
|
| 759 |
+
|
| 760 |
+
|
| 761 |
+
def xywh2xyxy(x):
|
| 762 |
+
# Convert nx4 boxes from [x, y, w, h] to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
| 763 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
| 764 |
+
y[..., 0] = x[..., 0] - x[..., 2] / 2 # top left x
|
| 765 |
+
y[..., 1] = x[..., 1] - x[..., 3] / 2 # top left y
|
| 766 |
+
y[..., 2] = x[..., 0] + x[..., 2] / 2 # bottom right x
|
| 767 |
+
y[..., 3] = x[..., 1] + x[..., 3] / 2 # bottom right y
|
| 768 |
+
return y
|
| 769 |
+
|
| 770 |
+
|
| 771 |
+
def xywhn2xyxy(x, w=640, h=640, padw=0, padh=0):
|
| 772 |
+
# Convert nx4 boxes from [x, y, w, h] normalized to [x1, y1, x2, y2] where xy1=top-left, xy2=bottom-right
|
| 773 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
| 774 |
+
y[..., 0] = w * (x[..., 0] - x[..., 2] / 2) + padw # top left x
|
| 775 |
+
y[..., 1] = h * (x[..., 1] - x[..., 3] / 2) + padh # top left y
|
| 776 |
+
y[..., 2] = w * (x[..., 0] + x[..., 2] / 2) + padw # bottom right x
|
| 777 |
+
y[..., 3] = h * (x[..., 1] + x[..., 3] / 2) + padh # bottom right y
|
| 778 |
+
return y
|
| 779 |
+
|
| 780 |
+
|
| 781 |
+
def xyxy2xywhn(x, w=640, h=640, clip=False, eps=0.0):
|
| 782 |
+
# Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] normalized where xy1=top-left, xy2=bottom-right
|
| 783 |
+
if clip:
|
| 784 |
+
clip_boxes(x, (h - eps, w - eps)) # warning: inplace clip
|
| 785 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
| 786 |
+
y[..., 0] = ((x[..., 0] + x[..., 2]) / 2) / w # x center
|
| 787 |
+
y[..., 1] = ((x[..., 1] + x[..., 3]) / 2) / h # y center
|
| 788 |
+
y[..., 2] = (x[..., 2] - x[..., 0]) / w # width
|
| 789 |
+
y[..., 3] = (x[..., 3] - x[..., 1]) / h # height
|
| 790 |
+
return y
|
| 791 |
+
|
| 792 |
+
|
| 793 |
+
def xyn2xy(x, w=640, h=640, padw=0, padh=0):
|
| 794 |
+
# Convert normalized segments into pixel segments, shape (n,2)
|
| 795 |
+
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
|
| 796 |
+
y[..., 0] = w * x[..., 0] + padw # top left x
|
| 797 |
+
y[..., 1] = h * x[..., 1] + padh # top left y
|
| 798 |
+
return y
|
| 799 |
+
|
| 800 |
+
|
| 801 |
+
def segment2box(segment, width=640, height=640):
|
| 802 |
+
# Convert 1 segment label to 1 box label, applying inside-image constraint, i.e. (xy1, xy2, ...) to (xyxy)
|
| 803 |
+
x, y = segment.T # segment xy
|
| 804 |
+
inside = (x >= 0) & (y >= 0) & (x <= width) & (y <= height)
|
| 805 |
+
x, y, = x[inside], y[inside]
|
| 806 |
+
return np.array([x.min(), y.min(), x.max(), y.max()]) if any(x) else np.zeros((1, 4)) # xyxy
|
| 807 |
+
|
| 808 |
+
|
| 809 |
+
def segments2boxes(segments):
|
| 810 |
+
# Convert segment labels to box labels, i.e. (cls, xy1, xy2, ...) to (cls, xywh)
|
| 811 |
+
boxes = []
|
| 812 |
+
for s in segments:
|
| 813 |
+
x, y = s.T # segment xy
|
| 814 |
+
boxes.append([x.min(), y.min(), x.max(), y.max()]) # cls, xyxy
|
| 815 |
+
return xyxy2xywh(np.array(boxes)) # cls, xywh
|
| 816 |
+
|
| 817 |
+
|
| 818 |
+
def resample_segments(segments, n=1000):
|
| 819 |
+
# Up-sample an (n,2) segment
|
| 820 |
+
for i, s in enumerate(segments):
|
| 821 |
+
s = np.concatenate((s, s[0:1, :]), axis=0)
|
| 822 |
+
x = np.linspace(0, len(s) - 1, n)
|
| 823 |
+
xp = np.arange(len(s))
|
| 824 |
+
segments[i] = np.concatenate([np.interp(x, xp, s[:, i]) for i in range(2)]).reshape(2, -1).T # segment xy
|
| 825 |
+
return segments
|
| 826 |
+
|
| 827 |
+
|
| 828 |
+
def scale_boxes(img1_shape, boxes, img0_shape, ratio_pad=None):
|
| 829 |
+
# Rescale boxes (xyxy) from img1_shape to img0_shape
|
| 830 |
+
if ratio_pad is None: # calculate from img0_shape
|
| 831 |
+
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
| 832 |
+
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
| 833 |
+
else:
|
| 834 |
+
gain = ratio_pad[0][0]
|
| 835 |
+
pad = ratio_pad[1]
|
| 836 |
+
|
| 837 |
+
boxes[:, [0, 2]] -= pad[0] # x padding
|
| 838 |
+
boxes[:, [1, 3]] -= pad[1] # y padding
|
| 839 |
+
boxes[:, :4] /= gain
|
| 840 |
+
clip_boxes(boxes, img0_shape)
|
| 841 |
+
return boxes
|
| 842 |
+
|
| 843 |
+
|
| 844 |
+
def scale_segments(img1_shape, segments, img0_shape, ratio_pad=None, normalize=False):
|
| 845 |
+
# Rescale coords (xyxy) from img1_shape to img0_shape
|
| 846 |
+
if ratio_pad is None: # calculate from img0_shape
|
| 847 |
+
gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new
|
| 848 |
+
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
|
| 849 |
+
else:
|
| 850 |
+
gain = ratio_pad[0][0]
|
| 851 |
+
pad = ratio_pad[1]
|
| 852 |
+
|
| 853 |
+
segments[:, 0] -= pad[0] # x padding
|
| 854 |
+
segments[:, 1] -= pad[1] # y padding
|
| 855 |
+
segments /= gain
|
| 856 |
+
clip_segments(segments, img0_shape)
|
| 857 |
+
if normalize:
|
| 858 |
+
segments[:, 0] /= img0_shape[1] # width
|
| 859 |
+
segments[:, 1] /= img0_shape[0] # height
|
| 860 |
+
return segments
|
| 861 |
+
|
| 862 |
+
|
| 863 |
+
def clip_boxes(boxes, shape):
|
| 864 |
+
# Clip boxes (xyxy) to image shape (height, width)
|
| 865 |
+
if isinstance(boxes, torch.Tensor): # faster individually
|
| 866 |
+
boxes[:, 0].clamp_(0, shape[1]) # x1
|
| 867 |
+
boxes[:, 1].clamp_(0, shape[0]) # y1
|
| 868 |
+
boxes[:, 2].clamp_(0, shape[1]) # x2
|
| 869 |
+
boxes[:, 3].clamp_(0, shape[0]) # y2
|
| 870 |
+
else: # np.array (faster grouped)
|
| 871 |
+
boxes[:, [0, 2]] = boxes[:, [0, 2]].clip(0, shape[1]) # x1, x2
|
| 872 |
+
boxes[:, [1, 3]] = boxes[:, [1, 3]].clip(0, shape[0]) # y1, y2
|
| 873 |
+
|
| 874 |
+
|
| 875 |
+
def clip_segments(segments, shape):
|
| 876 |
+
# Clip segments (xy1,xy2,...) to image shape (height, width)
|
| 877 |
+
if isinstance(segments, torch.Tensor): # faster individually
|
| 878 |
+
segments[:, 0].clamp_(0, shape[1]) # x
|
| 879 |
+
segments[:, 1].clamp_(0, shape[0]) # y
|
| 880 |
+
else: # np.array (faster grouped)
|
| 881 |
+
segments[:, 0] = segments[:, 0].clip(0, shape[1]) # x
|
| 882 |
+
segments[:, 1] = segments[:, 1].clip(0, shape[0]) # y
|
| 883 |
+
|
| 884 |
+
def box_iou_for_nms(box1, box2, GIoU=False, DIoU=False, CIoU=False, SIoU=False, EIou=False, eps=1e-7):
|
| 885 |
+
# Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)
|
| 886 |
+
|
| 887 |
+
b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
|
| 888 |
+
b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
|
| 889 |
+
w1, h1 = b1_x2 - b1_x1, (b1_y2 - b1_y1).clamp(eps)
|
| 890 |
+
w2, h2 = b2_x2 - b2_x1, (b2_y2 - b2_y1).clamp(eps)
|
| 891 |
+
|
| 892 |
+
# Intersection area
|
| 893 |
+
inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \
|
| 894 |
+
(b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0)
|
| 895 |
+
|
| 896 |
+
# Union Area
|
| 897 |
+
union = w1 * h1 + w2 * h2 - inter + eps
|
| 898 |
+
|
| 899 |
+
# IoU
|
| 900 |
+
iou = inter / union
|
| 901 |
+
if CIoU or DIoU or GIoU or EIou:
|
| 902 |
+
cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1) # convex (smallest enclosing box) width
|
| 903 |
+
ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height
|
| 904 |
+
if CIoU or DIoU or EIou: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
|
| 905 |
+
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
|
| 906 |
+
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center dist ** 2
|
| 907 |
+
if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
|
| 908 |
+
v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)
|
| 909 |
+
with torch.no_grad():
|
| 910 |
+
alpha = v / (v - iou + (1 + eps))
|
| 911 |
+
return iou - (rho2 / c2 + v * alpha) # CIoU
|
| 912 |
+
elif EIou:
|
| 913 |
+
rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2
|
| 914 |
+
rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2
|
| 915 |
+
cw2 = cw ** 2 + eps
|
| 916 |
+
ch2 = ch ** 2 + eps
|
| 917 |
+
return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2)
|
| 918 |
+
return iou - rho2 / c2 # DIoU
|
| 919 |
+
c_area = cw * ch + eps # convex area
|
| 920 |
+
return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf
|
| 921 |
+
elif SIoU:
|
| 922 |
+
cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1) # convex (smallest enclosing box) width
|
| 923 |
+
ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height
|
| 924 |
+
# SIoU Loss https://arxiv.org/pdf/2205.12740.pdf
|
| 925 |
+
s_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + eps
|
| 926 |
+
s_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + eps
|
| 927 |
+
sigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)
|
| 928 |
+
sin_alpha_1 = torch.abs(s_cw) / sigma
|
| 929 |
+
sin_alpha_2 = torch.abs(s_ch) / sigma
|
| 930 |
+
threshold = pow(2, 0.5) / 2
|
| 931 |
+
sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)
|
| 932 |
+
angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2)
|
| 933 |
+
rho_x = (s_cw / cw) ** 2
|
| 934 |
+
rho_y = (s_ch / ch) ** 2
|
| 935 |
+
gamma = angle_cost - 2
|
| 936 |
+
distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)
|
| 937 |
+
omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)
|
| 938 |
+
omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)
|
| 939 |
+
shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)
|
| 940 |
+
return iou - 0.5 * (distance_cost + shape_cost)
|
| 941 |
+
return iou # IoU
|
| 942 |
+
|
| 943 |
+
|
| 944 |
+
def soft_nms(bboxes, scores, iou_thresh=0.5,sigma=0.5,score_threshold=0.25):
|
| 945 |
+
order = scores.argsort(descending=True).to(bboxes.device)
|
| 946 |
+
keep = []
|
| 947 |
+
|
| 948 |
+
while order.numel() > 1:
|
| 949 |
+
if order.numel() == 1:
|
| 950 |
+
keep.append(order[0])
|
| 951 |
+
break
|
| 952 |
+
else:
|
| 953 |
+
i = order[0]
|
| 954 |
+
keep.append(i)
|
| 955 |
+
|
| 956 |
+
iou = box_iou_for_nms(bboxes[i], bboxes[order[1:]]).squeeze()
|
| 957 |
+
|
| 958 |
+
idx = (iou > iou_thresh).nonzero().squeeze()
|
| 959 |
+
if idx.numel() > 0:
|
| 960 |
+
iou = iou[idx]
|
| 961 |
+
newScores = torch.exp(-torch.pow(iou,2)/sigma)
|
| 962 |
+
scores[order[idx+1]] *= newScores
|
| 963 |
+
|
| 964 |
+
newOrder = (scores[order[1:]] > score_threshold).nonzero().squeeze()
|
| 965 |
+
if newOrder.numel() == 0:
|
| 966 |
+
break
|
| 967 |
+
else:
|
| 968 |
+
maxScoreIndex = torch.argmax(scores[order[newOrder+1]])
|
| 969 |
+
if maxScoreIndex != 0:
|
| 970 |
+
newOrder[[0,maxScoreIndex],] = newOrder[[maxScoreIndex,0],]
|
| 971 |
+
order = order[newOrder+1]
|
| 972 |
+
|
| 973 |
+
return torch.LongTensor(keep)
|
| 974 |
+
|
| 975 |
+
def non_max_suppression(
|
| 976 |
+
prediction,
|
| 977 |
+
conf_thres=0.25,
|
| 978 |
+
iou_thres=0.45,
|
| 979 |
+
classes=None,
|
| 980 |
+
agnostic=False,
|
| 981 |
+
multi_label=False,
|
| 982 |
+
labels=(),
|
| 983 |
+
max_det=300,
|
| 984 |
+
nm=0, # number of masks
|
| 985 |
+
):
|
| 986 |
+
"""Non-Maximum Suppression (NMS) on inference results to reject overlapping detections
|
| 987 |
+
|
| 988 |
+
Returns:
|
| 989 |
+
list of detections, on (n,6) tensor per image [xyxy, conf, cls]
|
| 990 |
+
"""
|
| 991 |
+
|
| 992 |
+
if isinstance(prediction, (list, tuple)): # YOLO model in validation model, output = (inference_out, loss_out)
|
| 993 |
+
prediction = prediction[0] # select only inference output
|
| 994 |
+
|
| 995 |
+
|
| 996 |
+
device = prediction.device
|
| 997 |
+
mps = 'mps' in device.type # Apple MPS
|
| 998 |
+
if mps: # MPS not fully supported yet, convert tensors to CPU before NMS
|
| 999 |
+
prediction = prediction.cpu()
|
| 1000 |
+
bs = prediction.shape[0] # batch size
|
| 1001 |
+
nc = prediction.shape[1] - nm - 4 # number of classes
|
| 1002 |
+
mi = 4 + nc # mask start index
|
| 1003 |
+
xc = prediction[:, 4:mi].amax(1) > conf_thres # candidates
|
| 1004 |
+
|
| 1005 |
+
# Checks
|
| 1006 |
+
assert 0 <= conf_thres <= 1, f'Invalid Confidence threshold {conf_thres}, valid values are between 0.0 and 1.0'
|
| 1007 |
+
assert 0 <= iou_thres <= 1, f'Invalid IoU {iou_thres}, valid values are between 0.0 and 1.0'
|
| 1008 |
+
|
| 1009 |
+
# Settings
|
| 1010 |
+
# min_wh = 2 # (pixels) minimum box width and height
|
| 1011 |
+
max_wh = 7680 # (pixels) maximum box width and height
|
| 1012 |
+
max_nms = 30000 # maximum number of boxes into torchvision.ops.nms()
|
| 1013 |
+
time_limit = 2.5 + 0.05 * bs # seconds to quit after
|
| 1014 |
+
redundant = True # require redundant detections
|
| 1015 |
+
multi_label &= nc > 1 # multiple labels per box (adds 0.5ms/img)
|
| 1016 |
+
merge = False # use merge-NMS
|
| 1017 |
+
|
| 1018 |
+
t = time.time()
|
| 1019 |
+
output = [torch.zeros((0, 6 + nm), device=prediction.device)] * bs
|
| 1020 |
+
for xi, x in enumerate(prediction): # image index, image inference
|
| 1021 |
+
# Apply constraints
|
| 1022 |
+
# x[((x[:, 2:4] < min_wh) | (x[:, 2:4] > max_wh)).any(1), 4] = 0 # width-height
|
| 1023 |
+
x = x.T[xc[xi]] # confidence
|
| 1024 |
+
|
| 1025 |
+
# Cat apriori labels if autolabelling
|
| 1026 |
+
if labels and len(labels[xi]):
|
| 1027 |
+
lb = labels[xi]
|
| 1028 |
+
v = torch.zeros((len(lb), nc + nm + 5), device=x.device)
|
| 1029 |
+
v[:, :4] = lb[:, 1:5] # box
|
| 1030 |
+
v[range(len(lb)), lb[:, 0].long() + 4] = 1.0 # cls
|
| 1031 |
+
x = torch.cat((x, v), 0)
|
| 1032 |
+
|
| 1033 |
+
# If none remain process next image
|
| 1034 |
+
if not x.shape[0]:
|
| 1035 |
+
continue
|
| 1036 |
+
|
| 1037 |
+
# Detections matrix nx6 (xyxy, conf, cls)
|
| 1038 |
+
box, cls, mask = x.split((4, nc, nm), 1)
|
| 1039 |
+
box = xywh2xyxy(box) # center_x, center_y, width, height) to (x1, y1, x2, y2)
|
| 1040 |
+
if multi_label:
|
| 1041 |
+
i, j = (cls > conf_thres).nonzero(as_tuple=False).T
|
| 1042 |
+
x = torch.cat((box[i], x[i, 4 + j, None], j[:, None].float(), mask[i]), 1)
|
| 1043 |
+
else: # best class only
|
| 1044 |
+
conf, j = cls.max(1, keepdim=True)
|
| 1045 |
+
x = torch.cat((box, conf, j.float(), mask), 1)[conf.view(-1) > conf_thres]
|
| 1046 |
+
|
| 1047 |
+
# Filter by class
|
| 1048 |
+
if classes is not None:
|
| 1049 |
+
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
|
| 1050 |
+
|
| 1051 |
+
# Apply finite constraint
|
| 1052 |
+
# if not torch.isfinite(x).all():
|
| 1053 |
+
# x = x[torch.isfinite(x).all(1)]
|
| 1054 |
+
|
| 1055 |
+
# Check shape
|
| 1056 |
+
n = x.shape[0] # number of boxes
|
| 1057 |
+
if not n: # no boxes
|
| 1058 |
+
continue
|
| 1059 |
+
elif n > max_nms: # excess boxes
|
| 1060 |
+
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
|
| 1061 |
+
else:
|
| 1062 |
+
x = x[x[:, 4].argsort(descending=True)] # sort by confidence
|
| 1063 |
+
|
| 1064 |
+
# Batched NMS
|
| 1065 |
+
c = x[:, 5:6] * (0 if agnostic else max_wh) # classes
|
| 1066 |
+
boxes, scores = x[:, :4] + c, x[:, 4] # boxes (offset by class), scores
|
| 1067 |
+
i = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
|
| 1068 |
+
# i = soft_nms(boxes, scores, iou_thres)
|
| 1069 |
+
if i.shape[0] > max_det: # limit detections
|
| 1070 |
+
i = i[:max_det]
|
| 1071 |
+
if merge and (1 < n < 3E3): # Merge NMS (boxes merged using weighted mean)
|
| 1072 |
+
# update boxes as boxes(i,4) = weights(i,n) * boxes(n,4)
|
| 1073 |
+
iou = box_iou(boxes[i], boxes) > iou_thres # iou matrix
|
| 1074 |
+
weights = iou * scores[None] # box weights
|
| 1075 |
+
x[i, :4] = torch.mm(weights, x[:, :4]).float() / weights.sum(1, keepdim=True) # merged boxes
|
| 1076 |
+
if redundant:
|
| 1077 |
+
i = i[iou.sum(1) > 1] # require redundancy
|
| 1078 |
+
|
| 1079 |
+
output[xi] = x[i]
|
| 1080 |
+
if mps:
|
| 1081 |
+
output[xi] = output[xi].to(device)
|
| 1082 |
+
if (time.time() - t) > time_limit:
|
| 1083 |
+
LOGGER.warning(f'WARNING ⚠️ NMS time limit {time_limit:.3f}s exceeded')
|
| 1084 |
+
break # time limit exceeded
|
| 1085 |
+
|
| 1086 |
+
return output
|
| 1087 |
+
|
| 1088 |
+
|
| 1089 |
+
def strip_optimizer(f='best.pt', s=''): # from utils.general import *; strip_optimizer()
|
| 1090 |
+
# Strip optimizer from 'f' to finalize training, optionally save as 's'
|
| 1091 |
+
x = torch.load(f, map_location=torch.device('cpu'))
|
| 1092 |
+
if x.get('ema'):
|
| 1093 |
+
x['model'] = x['ema'] # replace model with ema
|
| 1094 |
+
for k in 'optimizer', 'best_fitness', 'ema', 'updates': # keys
|
| 1095 |
+
x[k] = None
|
| 1096 |
+
x['epoch'] = -1
|
| 1097 |
+
x['model'].half() # to FP16
|
| 1098 |
+
for p in x['model'].parameters():
|
| 1099 |
+
p.requires_grad = False
|
| 1100 |
+
torch.save(x, s or f)
|
| 1101 |
+
mb = os.path.getsize(s or f) / 1E6 # filesize
|
| 1102 |
+
LOGGER.info(f"Optimizer stripped from {f},{f' saved as {s},' if s else ''} {mb:.1f}MB")
|
| 1103 |
+
|
| 1104 |
+
|
| 1105 |
+
def print_mutation(keys, results, hyp, save_dir, bucket, prefix=colorstr('evolve: ')):
|
| 1106 |
+
evolve_csv = save_dir / 'evolve.csv'
|
| 1107 |
+
evolve_yaml = save_dir / 'hyp_evolve.yaml'
|
| 1108 |
+
keys = tuple(keys) + tuple(hyp.keys()) # [results + hyps]
|
| 1109 |
+
keys = tuple(x.strip() for x in keys)
|
| 1110 |
+
vals = results + tuple(hyp.values())
|
| 1111 |
+
n = len(keys)
|
| 1112 |
+
|
| 1113 |
+
# Download (optional)
|
| 1114 |
+
if bucket:
|
| 1115 |
+
url = f'gs://{bucket}/evolve.csv'
|
| 1116 |
+
if gsutil_getsize(url) > (evolve_csv.stat().st_size if evolve_csv.exists() else 0):
|
| 1117 |
+
os.system(f'gsutil cp {url} {save_dir}') # download evolve.csv if larger than local
|
| 1118 |
+
|
| 1119 |
+
# Log to evolve.csv
|
| 1120 |
+
s = '' if evolve_csv.exists() else (('%20s,' * n % keys).rstrip(',') + '\n') # add header
|
| 1121 |
+
with open(evolve_csv, 'a') as f:
|
| 1122 |
+
f.write(s + ('%20.5g,' * n % vals).rstrip(',') + '\n')
|
| 1123 |
+
|
| 1124 |
+
# Save yaml
|
| 1125 |
+
with open(evolve_yaml, 'w') as f:
|
| 1126 |
+
data = pd.read_csv(evolve_csv)
|
| 1127 |
+
data = data.rename(columns=lambda x: x.strip()) # strip keys
|
| 1128 |
+
i = np.argmax(fitness(data.values[:, :4])) #
|
| 1129 |
+
generations = len(data)
|
| 1130 |
+
f.write('# YOLO Hyperparameter Evolution Results\n' + f'# Best generation: {i}\n' +
|
| 1131 |
+
f'# Last generation: {generations - 1}\n' + '# ' + ', '.join(f'{x.strip():>20s}' for x in keys[:7]) +
|
| 1132 |
+
'\n' + '# ' + ', '.join(f'{x:>20.5g}' for x in data.values[i, :7]) + '\n\n')
|
| 1133 |
+
yaml.safe_dump(data.loc[i][7:].to_dict(), f, sort_keys=False)
|
| 1134 |
+
|
| 1135 |
+
# Print to screen
|
| 1136 |
+
LOGGER.info(prefix + f'{generations} generations finished, current result:\n' + prefix +
|
| 1137 |
+
', '.join(f'{x.strip():>20s}' for x in keys) + '\n' + prefix + ', '.join(f'{x:20.5g}'
|
| 1138 |
+
for x in vals) + '\n\n')
|
| 1139 |
+
|
| 1140 |
+
if bucket:
|
| 1141 |
+
os.system(f'gsutil cp {evolve_csv} {evolve_yaml} gs://{bucket}') # upload
|
| 1142 |
+
|
| 1143 |
+
|
| 1144 |
+
def apply_classifier(x, model, img, im0):
|
| 1145 |
+
# Apply a second stage classifier to YOLO outputs
|
| 1146 |
+
# Example model = torchvision.models.__dict__['efficientnet_b0'](pretrained=True).to(device).eval()
|
| 1147 |
+
im0 = [im0] if isinstance(im0, np.ndarray) else im0
|
| 1148 |
+
for i, d in enumerate(x): # per image
|
| 1149 |
+
if d is not None and len(d):
|
| 1150 |
+
d = d.clone()
|
| 1151 |
+
|
| 1152 |
+
# Reshape and pad cutouts
|
| 1153 |
+
b = xyxy2xywh(d[:, :4]) # boxes
|
| 1154 |
+
b[:, 2:] = b[:, 2:].max(1)[0].unsqueeze(1) # rectangle to square
|
| 1155 |
+
b[:, 2:] = b[:, 2:] * 1.3 + 30 # pad
|
| 1156 |
+
d[:, :4] = xywh2xyxy(b).long()
|
| 1157 |
+
|
| 1158 |
+
# Rescale boxes from img_size to im0 size
|
| 1159 |
+
scale_boxes(img.shape[2:], d[:, :4], im0[i].shape)
|
| 1160 |
+
|
| 1161 |
+
# Classes
|
| 1162 |
+
pred_cls1 = d[:, 5].long()
|
| 1163 |
+
ims = []
|
| 1164 |
+
for a in d:
|
| 1165 |
+
cutout = im0[i][int(a[1]):int(a[3]), int(a[0]):int(a[2])]
|
| 1166 |
+
im = cv2.resize(cutout, (224, 224)) # BGR
|
| 1167 |
+
|
| 1168 |
+
im = im[:, :, ::-1].transpose(2, 0, 1) # BGR to RGB, to 3x416x416
|
| 1169 |
+
im = np.ascontiguousarray(im, dtype=np.float32) # uint8 to float32
|
| 1170 |
+
im /= 255 # 0 - 255 to 0.0 - 1.0
|
| 1171 |
+
ims.append(im)
|
| 1172 |
+
|
| 1173 |
+
pred_cls2 = model(torch.Tensor(ims).to(d.device)).argmax(1) # classifier prediction
|
| 1174 |
+
x[i] = x[i][pred_cls1 == pred_cls2] # retain matching class detections
|
| 1175 |
+
|
| 1176 |
+
return x
|
| 1177 |
+
|
| 1178 |
+
|
| 1179 |
+
def increment_path(path, exist_ok=False, sep='', mkdir=False):
|
| 1180 |
+
# Increment file or directory path, i.e. runs/exp --> runs/exp{sep}2, runs/exp{sep}3, ... etc.
|
| 1181 |
+
path = Path(path) # os-agnostic
|
| 1182 |
+
if path.exists() and not exist_ok:
|
| 1183 |
+
path, suffix = (path.with_suffix(''), path.suffix) if path.is_file() else (path, '')
|
| 1184 |
+
|
| 1185 |
+
# Method 1
|
| 1186 |
+
for n in range(2, 9999):
|
| 1187 |
+
p = f'{path}{sep}{n}{suffix}' # increment path
|
| 1188 |
+
if not os.path.exists(p): #
|
| 1189 |
+
break
|
| 1190 |
+
path = Path(p)
|
| 1191 |
+
|
| 1192 |
+
# Method 2 (deprecated)
|
| 1193 |
+
# dirs = glob.glob(f"{path}{sep}*") # similar paths
|
| 1194 |
+
# matches = [re.search(rf"{path.stem}{sep}(\d+)", d) for d in dirs]
|
| 1195 |
+
# i = [int(m.groups()[0]) for m in matches if m] # indices
|
| 1196 |
+
# n = max(i) + 1 if i else 2 # increment number
|
| 1197 |
+
# path = Path(f"{path}{sep}{n}{suffix}") # increment path
|
| 1198 |
+
|
| 1199 |
+
if mkdir:
|
| 1200 |
+
path.mkdir(parents=True, exist_ok=True) # make directory
|
| 1201 |
+
|
| 1202 |
+
return path
|
| 1203 |
+
|
| 1204 |
+
|
| 1205 |
+
# OpenCV Chinese-friendly functions ------------------------------------------------------------------------------------
|
| 1206 |
+
imshow_ = cv2.imshow # copy to avoid recursion errors
|
| 1207 |
+
|
| 1208 |
+
|
| 1209 |
+
def imread(path, flags=cv2.IMREAD_COLOR):
|
| 1210 |
+
return cv2.imdecode(np.fromfile(path, np.uint8), flags)
|
| 1211 |
+
|
| 1212 |
+
|
| 1213 |
+
def imwrite(path, im):
|
| 1214 |
+
try:
|
| 1215 |
+
cv2.imencode(Path(path).suffix, im)[1].tofile(path)
|
| 1216 |
+
return True
|
| 1217 |
+
except Exception:
|
| 1218 |
+
return False
|
| 1219 |
+
|
| 1220 |
+
|
| 1221 |
+
def imshow(path, im):
|
| 1222 |
+
imshow_(path.encode('unicode_escape').decode(), im)
|
| 1223 |
+
|
| 1224 |
+
|
| 1225 |
+
cv2.imread, cv2.imwrite, cv2.imshow = imread, imwrite, imshow # redefine
|
| 1226 |
+
|
| 1227 |
+
# Variables ------------------------------------------------------------------------------------------------------------
|
utils/lion.py
ADDED
|
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""PyTorch implementation of the Lion optimizer."""
|
| 2 |
+
import torch
|
| 3 |
+
from torch.optim.optimizer import Optimizer
|
| 4 |
+
|
| 5 |
+
|
| 6 |
+
class Lion(Optimizer):
|
| 7 |
+
r"""Implements Lion algorithm."""
|
| 8 |
+
|
| 9 |
+
def __init__(self, params, lr=1e-4, betas=(0.9, 0.99), weight_decay=0.0):
|
| 10 |
+
"""Initialize the hyperparameters.
|
| 11 |
+
Args:
|
| 12 |
+
params (iterable): iterable of parameters to optimize or dicts defining
|
| 13 |
+
parameter groups
|
| 14 |
+
lr (float, optional): learning rate (default: 1e-4)
|
| 15 |
+
betas (Tuple[float, float], optional): coefficients used for computing
|
| 16 |
+
running averages of gradient and its square (default: (0.9, 0.99))
|
| 17 |
+
weight_decay (float, optional): weight decay coefficient (default: 0)
|
| 18 |
+
"""
|
| 19 |
+
|
| 20 |
+
if not 0.0 <= lr:
|
| 21 |
+
raise ValueError('Invalid learning rate: {}'.format(lr))
|
| 22 |
+
if not 0.0 <= betas[0] < 1.0:
|
| 23 |
+
raise ValueError('Invalid beta parameter at index 0: {}'.format(betas[0]))
|
| 24 |
+
if not 0.0 <= betas[1] < 1.0:
|
| 25 |
+
raise ValueError('Invalid beta parameter at index 1: {}'.format(betas[1]))
|
| 26 |
+
defaults = dict(lr=lr, betas=betas, weight_decay=weight_decay)
|
| 27 |
+
super().__init__(params, defaults)
|
| 28 |
+
|
| 29 |
+
@torch.no_grad()
|
| 30 |
+
def step(self, closure=None):
|
| 31 |
+
"""Performs a single optimization step.
|
| 32 |
+
Args:
|
| 33 |
+
closure (callable, optional): A closure that reevaluates the model
|
| 34 |
+
and returns the loss.
|
| 35 |
+
Returns:
|
| 36 |
+
the loss.
|
| 37 |
+
"""
|
| 38 |
+
loss = None
|
| 39 |
+
if closure is not None:
|
| 40 |
+
with torch.enable_grad():
|
| 41 |
+
loss = closure()
|
| 42 |
+
|
| 43 |
+
for group in self.param_groups:
|
| 44 |
+
for p in group['params']:
|
| 45 |
+
if p.grad is None:
|
| 46 |
+
continue
|
| 47 |
+
|
| 48 |
+
# Perform stepweight decay
|
| 49 |
+
p.data.mul_(1 - group['lr'] * group['weight_decay'])
|
| 50 |
+
|
| 51 |
+
grad = p.grad
|
| 52 |
+
state = self.state[p]
|
| 53 |
+
# State initialization
|
| 54 |
+
if len(state) == 0:
|
| 55 |
+
# Exponential moving average of gradient values
|
| 56 |
+
state['exp_avg'] = torch.zeros_like(p)
|
| 57 |
+
|
| 58 |
+
exp_avg = state['exp_avg']
|
| 59 |
+
beta1, beta2 = group['betas']
|
| 60 |
+
|
| 61 |
+
# Weight update
|
| 62 |
+
update = exp_avg * beta1 + grad * (1 - beta1)
|
| 63 |
+
p.add_(torch.sign(update), alpha=-group['lr'])
|
| 64 |
+
# Decay the momentum running average coefficient
|
| 65 |
+
exp_avg.mul_(beta2).add_(grad, alpha=1 - beta2)
|
| 66 |
+
|
| 67 |
+
return loss
|
utils/loggers/__init__.py
ADDED
|
@@ -0,0 +1,653 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import warnings
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
|
| 5 |
+
import pkg_resources as pkg
|
| 6 |
+
import torch
|
| 7 |
+
from torch.utils.tensorboard import SummaryWriter
|
| 8 |
+
|
| 9 |
+
from utils.general import LOGGER, colorstr, cv2
|
| 10 |
+
from utils.loggers.clearml.clearml_utils import ClearmlLogger
|
| 11 |
+
from utils.loggers.wandb.wandb_utils import WandbLogger
|
| 12 |
+
from utils.plots import plot_images, plot_labels, plot_results
|
| 13 |
+
from utils.torch_utils import de_parallel
|
| 14 |
+
|
| 15 |
+
LOGGERS = ('csv', 'tb', 'wandb', 'clearml', 'comet') # *.csv, TensorBoard, Weights & Biases, ClearML
|
| 16 |
+
RANK = int(os.getenv('RANK', -1))
|
| 17 |
+
|
| 18 |
+
try:
|
| 19 |
+
import wandb
|
| 20 |
+
|
| 21 |
+
assert hasattr(wandb, '__version__') # verify package import not local dir
|
| 22 |
+
if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.2') and RANK in {0, -1}:
|
| 23 |
+
try:
|
| 24 |
+
wandb_login_success = wandb.login(timeout=30)
|
| 25 |
+
except wandb.errors.UsageError: # known non-TTY terminal issue
|
| 26 |
+
wandb_login_success = False
|
| 27 |
+
if not wandb_login_success:
|
| 28 |
+
wandb = None
|
| 29 |
+
except (ImportError, AssertionError):
|
| 30 |
+
wandb = None
|
| 31 |
+
|
| 32 |
+
try:
|
| 33 |
+
import clearml
|
| 34 |
+
|
| 35 |
+
assert hasattr(clearml, '__version__') # verify package import not local dir
|
| 36 |
+
except (ImportError, AssertionError):
|
| 37 |
+
clearml = None
|
| 38 |
+
|
| 39 |
+
try:
|
| 40 |
+
if RANK not in [0, -1]:
|
| 41 |
+
comet_ml = None
|
| 42 |
+
else:
|
| 43 |
+
import comet_ml
|
| 44 |
+
|
| 45 |
+
assert hasattr(comet_ml, '__version__') # verify package import not local dir
|
| 46 |
+
from utils.loggers.comet import CometLogger
|
| 47 |
+
|
| 48 |
+
except (ModuleNotFoundError, ImportError, AssertionError):
|
| 49 |
+
comet_ml = None
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class Loggers():
|
| 53 |
+
# YOLO Loggers class
|
| 54 |
+
def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None, include=LOGGERS):
|
| 55 |
+
self.save_dir = save_dir
|
| 56 |
+
self.weights = weights
|
| 57 |
+
self.opt = opt
|
| 58 |
+
self.hyp = hyp
|
| 59 |
+
self.plots = not opt.noplots # plot results
|
| 60 |
+
self.logger = logger # for printing results to console
|
| 61 |
+
self.include = include
|
| 62 |
+
self.keys = [
|
| 63 |
+
'train/box_loss',
|
| 64 |
+
'train/cls_loss',
|
| 65 |
+
'train/dfl_loss', # train loss
|
| 66 |
+
'metrics/precision',
|
| 67 |
+
'metrics/recall',
|
| 68 |
+
'metrics/mAP_0.5',
|
| 69 |
+
'metrics/mAP_0.5:0.95', # metrics
|
| 70 |
+
'val/box_loss',
|
| 71 |
+
'val/cls_loss',
|
| 72 |
+
'val/dfl_loss', # val loss
|
| 73 |
+
'x/lr0',
|
| 74 |
+
'x/lr1',
|
| 75 |
+
'x/lr2'] # params
|
| 76 |
+
self.best_keys = ['best/epoch', 'best/precision', 'best/recall', 'best/mAP_0.5', 'best/mAP_0.5:0.95']
|
| 77 |
+
for k in LOGGERS:
|
| 78 |
+
setattr(self, k, None) # init empty logger dictionary
|
| 79 |
+
self.csv = True # always log to csv
|
| 80 |
+
|
| 81 |
+
# Messages
|
| 82 |
+
# if not wandb:
|
| 83 |
+
# prefix = colorstr('Weights & Biases: ')
|
| 84 |
+
# s = f"{prefix}run 'pip install wandb' to automatically track and visualize YOLO 🚀 runs in Weights & Biases"
|
| 85 |
+
# self.logger.info(s)
|
| 86 |
+
if not clearml:
|
| 87 |
+
prefix = colorstr('ClearML: ')
|
| 88 |
+
s = f"{prefix}run 'pip install clearml' to automatically track, visualize and remotely train YOLO 🚀 in ClearML"
|
| 89 |
+
self.logger.info(s)
|
| 90 |
+
if not comet_ml:
|
| 91 |
+
prefix = colorstr('Comet: ')
|
| 92 |
+
s = f"{prefix}run 'pip install comet_ml' to automatically track and visualize YOLO 🚀 runs in Comet"
|
| 93 |
+
self.logger.info(s)
|
| 94 |
+
# TensorBoard
|
| 95 |
+
s = self.save_dir
|
| 96 |
+
if 'tb' in self.include and not self.opt.evolve:
|
| 97 |
+
prefix = colorstr('TensorBoard: ')
|
| 98 |
+
self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/")
|
| 99 |
+
self.tb = SummaryWriter(str(s))
|
| 100 |
+
|
| 101 |
+
# W&B
|
| 102 |
+
if wandb and 'wandb' in self.include:
|
| 103 |
+
wandb_artifact_resume = isinstance(self.opt.resume, str) and self.opt.resume.startswith('wandb-artifact://')
|
| 104 |
+
run_id = torch.load(self.weights).get('wandb_id') if self.opt.resume and not wandb_artifact_resume else None
|
| 105 |
+
self.opt.hyp = self.hyp # add hyperparameters
|
| 106 |
+
self.wandb = WandbLogger(self.opt, run_id)
|
| 107 |
+
# temp warn. because nested artifacts not supported after 0.12.10
|
| 108 |
+
# if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.11'):
|
| 109 |
+
# s = "YOLO temporarily requires wandb version 0.12.10 or below. Some features may not work as expected."
|
| 110 |
+
# self.logger.warning(s)
|
| 111 |
+
else:
|
| 112 |
+
self.wandb = None
|
| 113 |
+
|
| 114 |
+
# ClearML
|
| 115 |
+
if clearml and 'clearml' in self.include:
|
| 116 |
+
self.clearml = ClearmlLogger(self.opt, self.hyp)
|
| 117 |
+
else:
|
| 118 |
+
self.clearml = None
|
| 119 |
+
|
| 120 |
+
# Comet
|
| 121 |
+
if comet_ml and 'comet' in self.include:
|
| 122 |
+
if isinstance(self.opt.resume, str) and self.opt.resume.startswith("comet://"):
|
| 123 |
+
run_id = self.opt.resume.split("/")[-1]
|
| 124 |
+
self.comet_logger = CometLogger(self.opt, self.hyp, run_id=run_id)
|
| 125 |
+
|
| 126 |
+
else:
|
| 127 |
+
self.comet_logger = CometLogger(self.opt, self.hyp)
|
| 128 |
+
|
| 129 |
+
else:
|
| 130 |
+
self.comet_logger = None
|
| 131 |
+
|
| 132 |
+
@property
|
| 133 |
+
def remote_dataset(self):
|
| 134 |
+
# Get data_dict if custom dataset artifact link is provided
|
| 135 |
+
data_dict = None
|
| 136 |
+
if self.clearml:
|
| 137 |
+
data_dict = self.clearml.data_dict
|
| 138 |
+
if self.wandb:
|
| 139 |
+
data_dict = self.wandb.data_dict
|
| 140 |
+
if self.comet_logger:
|
| 141 |
+
data_dict = self.comet_logger.data_dict
|
| 142 |
+
|
| 143 |
+
return data_dict
|
| 144 |
+
|
| 145 |
+
def on_train_start(self):
|
| 146 |
+
if self.comet_logger:
|
| 147 |
+
self.comet_logger.on_train_start()
|
| 148 |
+
|
| 149 |
+
def on_pretrain_routine_start(self):
|
| 150 |
+
if self.comet_logger:
|
| 151 |
+
self.comet_logger.on_pretrain_routine_start()
|
| 152 |
+
|
| 153 |
+
def on_pretrain_routine_end(self, labels, names):
|
| 154 |
+
# Callback runs on pre-train routine end
|
| 155 |
+
if self.plots:
|
| 156 |
+
plot_labels(labels, names, self.save_dir)
|
| 157 |
+
paths = self.save_dir.glob('*labels*.jpg') # training labels
|
| 158 |
+
if self.wandb:
|
| 159 |
+
self.wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in paths]})
|
| 160 |
+
# if self.clearml:
|
| 161 |
+
# pass # ClearML saves these images automatically using hooks
|
| 162 |
+
if self.comet_logger:
|
| 163 |
+
self.comet_logger.on_pretrain_routine_end(paths)
|
| 164 |
+
|
| 165 |
+
def on_train_batch_end(self, model, ni, imgs, targets, paths, vals):
|
| 166 |
+
log_dict = dict(zip(self.keys[0:3], vals))
|
| 167 |
+
# Callback runs on train batch end
|
| 168 |
+
# ni: number integrated batches (since train start)
|
| 169 |
+
if self.plots:
|
| 170 |
+
if ni < 3:
|
| 171 |
+
f = self.save_dir / f'train_batch{ni}.jpg' # filename
|
| 172 |
+
plot_images(imgs, targets, paths, f)
|
| 173 |
+
if ni == 0 and self.tb and not self.opt.sync_bn:
|
| 174 |
+
log_tensorboard_graph(self.tb, model, imgsz=(self.opt.imgsz, self.opt.imgsz))
|
| 175 |
+
if ni == 10 and (self.wandb or self.clearml):
|
| 176 |
+
files = sorted(self.save_dir.glob('train*.jpg'))
|
| 177 |
+
if self.wandb:
|
| 178 |
+
self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]})
|
| 179 |
+
if self.clearml:
|
| 180 |
+
self.clearml.log_debug_samples(files, title='Mosaics')
|
| 181 |
+
|
| 182 |
+
if self.comet_logger:
|
| 183 |
+
self.comet_logger.on_train_batch_end(log_dict, step=ni)
|
| 184 |
+
|
| 185 |
+
def on_train_epoch_end(self, epoch):
|
| 186 |
+
# Callback runs on train epoch end
|
| 187 |
+
if self.wandb:
|
| 188 |
+
self.wandb.current_epoch = epoch + 1
|
| 189 |
+
|
| 190 |
+
if self.comet_logger:
|
| 191 |
+
self.comet_logger.on_train_epoch_end(epoch)
|
| 192 |
+
|
| 193 |
+
def on_val_start(self):
|
| 194 |
+
if self.comet_logger:
|
| 195 |
+
self.comet_logger.on_val_start()
|
| 196 |
+
|
| 197 |
+
def on_val_image_end(self, pred, predn, path, names, im):
|
| 198 |
+
# Callback runs on val image end
|
| 199 |
+
if self.wandb:
|
| 200 |
+
self.wandb.val_one_image(pred, predn, path, names, im)
|
| 201 |
+
if self.clearml:
|
| 202 |
+
self.clearml.log_image_with_boxes(path, pred, names, im)
|
| 203 |
+
|
| 204 |
+
def on_val_batch_end(self, batch_i, im, targets, paths, shapes, out):
|
| 205 |
+
if self.comet_logger:
|
| 206 |
+
self.comet_logger.on_val_batch_end(batch_i, im, targets, paths, shapes, out)
|
| 207 |
+
|
| 208 |
+
def on_val_end(self, nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix):
|
| 209 |
+
# Callback runs on val end
|
| 210 |
+
if self.wandb or self.clearml:
|
| 211 |
+
files = sorted(self.save_dir.glob('val*.jpg'))
|
| 212 |
+
if self.wandb:
|
| 213 |
+
self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]})
|
| 214 |
+
if self.clearml:
|
| 215 |
+
self.clearml.log_debug_samples(files, title='Validation')
|
| 216 |
+
|
| 217 |
+
if self.comet_logger:
|
| 218 |
+
self.comet_logger.on_val_end(nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix)
|
| 219 |
+
|
| 220 |
+
def on_fit_epoch_end(self, vals, epoch, best_fitness, fi):
|
| 221 |
+
# Callback runs at the end of each fit (train+val) epoch
|
| 222 |
+
x = dict(zip(self.keys, vals))
|
| 223 |
+
if self.csv:
|
| 224 |
+
file = self.save_dir / 'results.csv'
|
| 225 |
+
n = len(x) + 1 # number of cols
|
| 226 |
+
s = '' if file.exists() else (('%20s,' * n % tuple(['epoch'] + self.keys)).rstrip(',') + '\n') # add header
|
| 227 |
+
with open(file, 'a') as f:
|
| 228 |
+
f.write(s + ('%20.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n')
|
| 229 |
+
|
| 230 |
+
if self.tb:
|
| 231 |
+
for k, v in x.items():
|
| 232 |
+
self.tb.add_scalar(k, v, epoch)
|
| 233 |
+
elif self.clearml: # log to ClearML if TensorBoard not used
|
| 234 |
+
for k, v in x.items():
|
| 235 |
+
title, series = k.split('/')
|
| 236 |
+
self.clearml.task.get_logger().report_scalar(title, series, v, epoch)
|
| 237 |
+
|
| 238 |
+
if self.wandb:
|
| 239 |
+
if best_fitness == fi:
|
| 240 |
+
best_results = [epoch] + vals[3:7]
|
| 241 |
+
for i, name in enumerate(self.best_keys):
|
| 242 |
+
self.wandb.wandb_run.summary[name] = best_results[i] # log best results in the summary
|
| 243 |
+
self.wandb.log(x)
|
| 244 |
+
self.wandb.end_epoch(best_result=best_fitness == fi)
|
| 245 |
+
|
| 246 |
+
if self.clearml:
|
| 247 |
+
self.clearml.current_epoch_logged_images = set() # reset epoch image limit
|
| 248 |
+
self.clearml.current_epoch += 1
|
| 249 |
+
|
| 250 |
+
if self.comet_logger:
|
| 251 |
+
self.comet_logger.on_fit_epoch_end(x, epoch=epoch)
|
| 252 |
+
|
| 253 |
+
def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
|
| 254 |
+
# Callback runs on model save event
|
| 255 |
+
if (epoch + 1) % self.opt.save_period == 0 and not final_epoch and self.opt.save_period != -1:
|
| 256 |
+
if self.wandb:
|
| 257 |
+
self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
|
| 258 |
+
if self.clearml:
|
| 259 |
+
self.clearml.task.update_output_model(model_path=str(last),
|
| 260 |
+
model_name='Latest Model',
|
| 261 |
+
auto_delete_file=False)
|
| 262 |
+
|
| 263 |
+
if self.comet_logger:
|
| 264 |
+
self.comet_logger.on_model_save(last, epoch, final_epoch, best_fitness, fi)
|
| 265 |
+
|
| 266 |
+
def on_train_end(self, last, best, epoch, results):
|
| 267 |
+
# Callback runs on training end, i.e. saving best model
|
| 268 |
+
if self.plots:
|
| 269 |
+
plot_results(file=self.save_dir / 'results.csv') # save results.png
|
| 270 |
+
files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
|
| 271 |
+
files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] # filter
|
| 272 |
+
self.logger.info(f"Results saved to {colorstr('bold', self.save_dir)}")
|
| 273 |
+
|
| 274 |
+
if self.tb and not self.clearml: # These images are already captured by ClearML by now, we don't want doubles
|
| 275 |
+
for f in files:
|
| 276 |
+
self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC')
|
| 277 |
+
|
| 278 |
+
if self.wandb:
|
| 279 |
+
self.wandb.log(dict(zip(self.keys[3:10], results)))
|
| 280 |
+
self.wandb.log({"Results": [wandb.Image(str(f), caption=f.name) for f in files]})
|
| 281 |
+
# Calling wandb.log. TODO: Refactor this into WandbLogger.log_model
|
| 282 |
+
if not self.opt.evolve:
|
| 283 |
+
wandb.log_artifact(str(best if best.exists() else last),
|
| 284 |
+
type='model',
|
| 285 |
+
name=f'run_{self.wandb.wandb_run.id}_model',
|
| 286 |
+
aliases=['latest', 'best', 'stripped'])
|
| 287 |
+
self.wandb.finish_run()
|
| 288 |
+
|
| 289 |
+
if self.clearml and not self.opt.evolve:
|
| 290 |
+
self.clearml.task.update_output_model(model_path=str(best if best.exists() else last),
|
| 291 |
+
name='Best Model',
|
| 292 |
+
auto_delete_file=False)
|
| 293 |
+
|
| 294 |
+
if self.comet_logger:
|
| 295 |
+
final_results = dict(zip(self.keys[3:10], results))
|
| 296 |
+
self.comet_logger.on_train_end(files, self.save_dir, last, best, epoch, final_results)
|
| 297 |
+
|
| 298 |
+
def on_params_update(self, params: dict):
|
| 299 |
+
# Update hyperparams or configs of the experiment
|
| 300 |
+
if self.wandb:
|
| 301 |
+
self.wandb.wandb_run.config.update(params, allow_val_change=True)
|
| 302 |
+
if self.comet_logger:
|
| 303 |
+
self.comet_logger.on_params_update(params)
|
| 304 |
+
|
| 305 |
+
|
| 306 |
+
class CustomedLoggers():
|
| 307 |
+
# YOLO Loggers class
|
| 308 |
+
def __init__(self, save_dir=None, weights=None, opt=None, hyp=None, logger=None, include=LOGGERS):
|
| 309 |
+
self.save_dir = save_dir
|
| 310 |
+
self.weights = weights
|
| 311 |
+
self.opt = opt
|
| 312 |
+
self.hyp = hyp
|
| 313 |
+
self.plots = not opt.noplots # plot results
|
| 314 |
+
self.logger = logger # for printing results to console
|
| 315 |
+
self.include = include
|
| 316 |
+
self.keys = [
|
| 317 |
+
'train/box_loss',
|
| 318 |
+
'train/cls_loss',
|
| 319 |
+
'train/dfl_loss', # train loss
|
| 320 |
+
'metrics/precision',
|
| 321 |
+
'metrics/recall',
|
| 322 |
+
'metrics/mAP_0.5',
|
| 323 |
+
'metrics/mAP_0.5:0.95', # metrics
|
| 324 |
+
'val/box_loss',
|
| 325 |
+
'val/cls_loss',
|
| 326 |
+
'val/dfl_loss', # val loss
|
| 327 |
+
'x/lr0',
|
| 328 |
+
'x/lr1',
|
| 329 |
+
'x/lr2'] # params
|
| 330 |
+
self.best_keys = ['best/epoch', 'best/precision', 'best/recall', 'best/mAP_0.5', 'best/mAP_0.5:0.95']
|
| 331 |
+
for k in LOGGERS:
|
| 332 |
+
setattr(self, k, None) # init empty logger dictionary
|
| 333 |
+
self.csv = True # always log to csv
|
| 334 |
+
|
| 335 |
+
# Messages
|
| 336 |
+
# if not wandb:
|
| 337 |
+
# prefix = colorstr('Weights & Biases: ')
|
| 338 |
+
# s = f"{prefix}run 'pip install wandb' to automatically track and visualize YOLO 🚀 runs in Weights & Biases"
|
| 339 |
+
# self.logger.info(s)
|
| 340 |
+
if not clearml:
|
| 341 |
+
prefix = colorstr('ClearML: ')
|
| 342 |
+
s = f"{prefix}run 'pip install clearml' to automatically track, visualize and remotely train YOLO 🚀 in ClearML"
|
| 343 |
+
self.logger.info(s)
|
| 344 |
+
if not comet_ml:
|
| 345 |
+
prefix = colorstr('Comet: ')
|
| 346 |
+
s = f"{prefix}run 'pip install comet_ml' to automatically track and visualize YOLO 🚀 runs in Comet"
|
| 347 |
+
self.logger.info(s)
|
| 348 |
+
# TensorBoard
|
| 349 |
+
s = self.save_dir
|
| 350 |
+
if 'tb' in self.include and not self.opt.evolve:
|
| 351 |
+
prefix = colorstr('TensorBoard: ')
|
| 352 |
+
self.logger.info(f"{prefix}Start with 'tensorboard --logdir {s.parent}', view at http://localhost:6006/")
|
| 353 |
+
self.tb = SummaryWriter(str(s))
|
| 354 |
+
|
| 355 |
+
# W&B
|
| 356 |
+
if wandb and 'wandb' in self.include:
|
| 357 |
+
wandb_artifact_resume = isinstance(self.opt.resume, str) and self.opt.resume.startswith('wandb-artifact://')
|
| 358 |
+
run_id = torch.load(self.weights).get('wandb_id') if self.opt.resume and not wandb_artifact_resume else None
|
| 359 |
+
self.opt.hyp = self.hyp # add hyperparameters
|
| 360 |
+
self.wandb = WandbLogger(self.opt, run_id)
|
| 361 |
+
# temp warn. because nested artifacts not supported after 0.12.10
|
| 362 |
+
# if pkg.parse_version(wandb.__version__) >= pkg.parse_version('0.12.11'):
|
| 363 |
+
# s = "YOLO temporarily requires wandb version 0.12.10 or below. Some features may not work as expected."
|
| 364 |
+
# self.logger.warning(s)
|
| 365 |
+
else:
|
| 366 |
+
self.wandb = None
|
| 367 |
+
|
| 368 |
+
# ClearML
|
| 369 |
+
if clearml and 'clearml' in self.include:
|
| 370 |
+
self.clearml = ClearmlLogger(self.opt, self.hyp)
|
| 371 |
+
else:
|
| 372 |
+
self.clearml = None
|
| 373 |
+
|
| 374 |
+
# Comet
|
| 375 |
+
if comet_ml and 'comet' in self.include:
|
| 376 |
+
if isinstance(self.opt.resume, str) and self.opt.resume.startswith("comet://"):
|
| 377 |
+
run_id = self.opt.resume.split("/")[-1]
|
| 378 |
+
self.comet_logger = CometLogger(self.opt, self.hyp, run_id=run_id)
|
| 379 |
+
|
| 380 |
+
else:
|
| 381 |
+
self.comet_logger = CometLogger(self.opt, self.hyp)
|
| 382 |
+
|
| 383 |
+
else:
|
| 384 |
+
self.comet_logger = None
|
| 385 |
+
|
| 386 |
+
@property
|
| 387 |
+
def remote_dataset(self):
|
| 388 |
+
# Get data_dict if custom dataset artifact link is provided
|
| 389 |
+
data_dict = None
|
| 390 |
+
if self.clearml:
|
| 391 |
+
data_dict = self.clearml.data_dict
|
| 392 |
+
if self.wandb:
|
| 393 |
+
data_dict = self.wandb.data_dict
|
| 394 |
+
if self.comet_logger:
|
| 395 |
+
data_dict = self.comet_logger.data_dict
|
| 396 |
+
|
| 397 |
+
return data_dict
|
| 398 |
+
|
| 399 |
+
def on_train_start(self):
|
| 400 |
+
if self.comet_logger:
|
| 401 |
+
self.comet_logger.on_train_start()
|
| 402 |
+
|
| 403 |
+
def on_pretrain_routine_start(self):
|
| 404 |
+
if self.comet_logger:
|
| 405 |
+
self.comet_logger.on_pretrain_routine_start()
|
| 406 |
+
|
| 407 |
+
def on_pretrain_routine_end(self, labels, names):
|
| 408 |
+
# Callback runs on pre-train routine end
|
| 409 |
+
if self.plots:
|
| 410 |
+
plot_labels(labels, names, self.save_dir)
|
| 411 |
+
paths = self.save_dir.glob('*labels*.jpg') # training labels
|
| 412 |
+
if self.wandb:
|
| 413 |
+
self.wandb.log({"Labels": [wandb.Image(str(x), caption=x.name) for x in paths]})
|
| 414 |
+
# if self.clearml:
|
| 415 |
+
# pass # ClearML saves these images automatically using hooks
|
| 416 |
+
if self.comet_logger:
|
| 417 |
+
self.comet_logger.on_pretrain_routine_end(paths)
|
| 418 |
+
|
| 419 |
+
def on_train_batch_end(self, model, ni, imgs, targets, paths, vals):
|
| 420 |
+
log_dict = dict(zip(self.keys[0:3], vals))
|
| 421 |
+
# Callback runs on train batch end
|
| 422 |
+
# ni: number integrated batches (since train start)
|
| 423 |
+
if self.plots:
|
| 424 |
+
if ni < 3:
|
| 425 |
+
f = self.save_dir / f'train_batch{ni}.jpg' # filename
|
| 426 |
+
plot_images(imgs, targets, paths, f)
|
| 427 |
+
if ni == 0 and self.tb and not self.opt.sync_bn:
|
| 428 |
+
log_tensorboard_graph(self.tb, model, imgsz=(self.opt.imgsz, self.opt.imgsz))
|
| 429 |
+
if ni == 10 and (self.wandb or self.clearml):
|
| 430 |
+
files = sorted(self.save_dir.glob('train*.jpg'))
|
| 431 |
+
if self.wandb:
|
| 432 |
+
self.wandb.log({'Mosaics': [wandb.Image(str(f), caption=f.name) for f in files if f.exists()]})
|
| 433 |
+
if self.clearml:
|
| 434 |
+
self.clearml.log_debug_samples(files, title='Mosaics')
|
| 435 |
+
|
| 436 |
+
if self.comet_logger:
|
| 437 |
+
self.comet_logger.on_train_batch_end(log_dict, step=ni)
|
| 438 |
+
|
| 439 |
+
def on_train_epoch_end(self, epoch):
|
| 440 |
+
# Callback runs on train epoch end
|
| 441 |
+
if self.wandb:
|
| 442 |
+
self.wandb.current_epoch = epoch + 1
|
| 443 |
+
|
| 444 |
+
if self.comet_logger:
|
| 445 |
+
self.comet_logger.on_train_epoch_end(epoch)
|
| 446 |
+
|
| 447 |
+
def on_val_start(self):
|
| 448 |
+
if self.comet_logger:
|
| 449 |
+
self.comet_logger.on_val_start()
|
| 450 |
+
|
| 451 |
+
def on_val_image_end(self, pred, predn, path, names, im):
|
| 452 |
+
# Callback runs on val image end
|
| 453 |
+
if self.wandb:
|
| 454 |
+
self.wandb.val_one_image(pred, predn, path, names, im)
|
| 455 |
+
if self.clearml:
|
| 456 |
+
self.clearml.log_image_with_boxes(path, pred, names, im)
|
| 457 |
+
|
| 458 |
+
def on_val_batch_end(self, batch_i, im, targets, paths, shapes, out):
|
| 459 |
+
if self.comet_logger:
|
| 460 |
+
self.comet_logger.on_val_batch_end(batch_i, im, targets, paths, shapes, out)
|
| 461 |
+
|
| 462 |
+
def on_val_end(self, nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix):
|
| 463 |
+
# Callback runs on val end
|
| 464 |
+
if self.wandb or self.clearml:
|
| 465 |
+
files = sorted(self.save_dir.glob('val*.jpg'))
|
| 466 |
+
if self.wandb:
|
| 467 |
+
self.wandb.log({"Validation": [wandb.Image(str(f), caption=f.name) for f in files]})
|
| 468 |
+
if self.clearml:
|
| 469 |
+
self.clearml.log_debug_samples(files, title='Validation')
|
| 470 |
+
|
| 471 |
+
if self.comet_logger:
|
| 472 |
+
self.comet_logger.on_val_end(nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix)
|
| 473 |
+
|
| 474 |
+
def on_fit_epoch_end(self, vals, epoch, best_fitness, fi):
|
| 475 |
+
# Callback runs at the end of each fit (train+val) epoch
|
| 476 |
+
x = dict(zip(self.keys, vals))
|
| 477 |
+
if self.csv:
|
| 478 |
+
file = self.save_dir / 'results.csv'
|
| 479 |
+
n = len(x) + 1 # number of cols
|
| 480 |
+
s = '' if file.exists() else (('%20s,' * n % tuple(['epoch'] + self.keys)).rstrip(',') + '\n') # add header
|
| 481 |
+
with open(file, 'a') as f:
|
| 482 |
+
f.write(s + ('%20.5g,' * (n + 1) % tuple([epoch] + vals)).rstrip(',') + '\n')
|
| 483 |
+
|
| 484 |
+
if self.tb:
|
| 485 |
+
for k, v in x.items():
|
| 486 |
+
self.tb.add_scalar(k, v, epoch)
|
| 487 |
+
elif self.clearml: # log to ClearML if TensorBoard not used
|
| 488 |
+
for k, v in x.items():
|
| 489 |
+
title, series = k.split('/')
|
| 490 |
+
self.clearml.task.get_logger().report_scalar(title, series, v, epoch)
|
| 491 |
+
|
| 492 |
+
if self.wandb:
|
| 493 |
+
if best_fitness == fi:
|
| 494 |
+
best_results = [epoch] + vals[3:7]
|
| 495 |
+
for i, name in enumerate(self.best_keys):
|
| 496 |
+
self.wandb.wandb_run.summary[name] = best_results[i] # log best results in the summary
|
| 497 |
+
self.wandb.log(x)
|
| 498 |
+
self.wandb.end_epoch(best_result=best_fitness == fi)
|
| 499 |
+
|
| 500 |
+
if self.clearml:
|
| 501 |
+
self.clearml.current_epoch_logged_images = set() # reset epoch image limit
|
| 502 |
+
self.clearml.current_epoch += 1
|
| 503 |
+
|
| 504 |
+
if self.comet_logger:
|
| 505 |
+
self.comet_logger.on_fit_epoch_end(x, epoch=epoch)
|
| 506 |
+
|
| 507 |
+
def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
|
| 508 |
+
# Callback runs on model save event
|
| 509 |
+
if (epoch + 1) % self.opt.save_period == 0 and not final_epoch and self.opt.save_period != -1:
|
| 510 |
+
if self.wandb:
|
| 511 |
+
self.wandb.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
|
| 512 |
+
if self.clearml:
|
| 513 |
+
self.clearml.task.update_output_model(model_path=str(last),
|
| 514 |
+
model_name='Latest Model',
|
| 515 |
+
auto_delete_file=False)
|
| 516 |
+
|
| 517 |
+
if self.comet_logger:
|
| 518 |
+
self.comet_logger.on_model_save(last, epoch, final_epoch, best_fitness, fi)
|
| 519 |
+
|
| 520 |
+
def on_train_end(self, last, best, epoch, results):
|
| 521 |
+
# Callback runs on training end, i.e. saving best model
|
| 522 |
+
if self.plots:
|
| 523 |
+
plot_results(file=self.save_dir / 'results.csv') # save results.png
|
| 524 |
+
files = ['results.png', 'confusion_matrix.png', *(f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R'))]
|
| 525 |
+
files = [(self.save_dir / f) for f in files if (self.save_dir / f).exists()] # filter
|
| 526 |
+
self.logger.info(f"Results saved to {colorstr('bold', self.save_dir)}")
|
| 527 |
+
|
| 528 |
+
if self.tb and not self.clearml: # These images are already captured by ClearML by now, we don't want doubles
|
| 529 |
+
for f in files:
|
| 530 |
+
self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC')
|
| 531 |
+
|
| 532 |
+
if self.wandb:
|
| 533 |
+
self.wandb.log(dict(zip(self.keys[3:10], results)))
|
| 534 |
+
self.wandb.log({"Results": [wandb.Image(str(f), caption=f.name) for f in files]})
|
| 535 |
+
# Calling wandb.log. TODO: Refactor this into WandbLogger.log_model
|
| 536 |
+
if not self.opt.evolve:
|
| 537 |
+
wandb.log_artifact(str(best if best.exists() else last),
|
| 538 |
+
type='model',
|
| 539 |
+
name=f'run_{self.wandb.wandb_run.id}_model',
|
| 540 |
+
aliases=['latest', 'best', 'stripped'])
|
| 541 |
+
self.wandb.finish_run()
|
| 542 |
+
|
| 543 |
+
if self.clearml and not self.opt.evolve:
|
| 544 |
+
self.clearml.task.update_output_model(model_path=str(best if best.exists() else last),
|
| 545 |
+
name='Best Model',
|
| 546 |
+
auto_delete_file=False)
|
| 547 |
+
|
| 548 |
+
if self.comet_logger:
|
| 549 |
+
final_results = dict(zip(self.keys[3:10], results))
|
| 550 |
+
self.comet_logger.on_train_end(files, self.save_dir, last, best, epoch, final_results)
|
| 551 |
+
|
| 552 |
+
def on_params_update(self, params: dict):
|
| 553 |
+
# Update hyperparams or configs of the experiment
|
| 554 |
+
if self.wandb:
|
| 555 |
+
self.wandb.wandb_run.config.update(params, allow_val_change=True)
|
| 556 |
+
if self.comet_logger:
|
| 557 |
+
self.comet_logger.on_params_update(params)
|
| 558 |
+
|
| 559 |
+
|
| 560 |
+
class GenericLogger:
|
| 561 |
+
"""
|
| 562 |
+
YOLO General purpose logger for non-task specific logging
|
| 563 |
+
Usage: from utils.loggers import GenericLogger; logger = GenericLogger(...)
|
| 564 |
+
Arguments
|
| 565 |
+
opt: Run arguments
|
| 566 |
+
console_logger: Console logger
|
| 567 |
+
include: loggers to include
|
| 568 |
+
"""
|
| 569 |
+
|
| 570 |
+
def __init__(self, opt, console_logger, include=('tb', 'wandb')):
|
| 571 |
+
# init default loggers
|
| 572 |
+
self.save_dir = Path(opt.save_dir)
|
| 573 |
+
self.include = include
|
| 574 |
+
self.console_logger = console_logger
|
| 575 |
+
self.csv = self.save_dir / 'results.csv' # CSV logger
|
| 576 |
+
if 'tb' in self.include:
|
| 577 |
+
prefix = colorstr('TensorBoard: ')
|
| 578 |
+
self.console_logger.info(
|
| 579 |
+
f"{prefix}Start with 'tensorboard --logdir {self.save_dir.parent}', view at http://localhost:6006/")
|
| 580 |
+
self.tb = SummaryWriter(str(self.save_dir))
|
| 581 |
+
|
| 582 |
+
if wandb and 'wandb' in self.include:
|
| 583 |
+
self.wandb = wandb.init(project=web_project_name(str(opt.project)),
|
| 584 |
+
name=None if opt.name == "exp" else opt.name,
|
| 585 |
+
config=opt)
|
| 586 |
+
else:
|
| 587 |
+
self.wandb = None
|
| 588 |
+
|
| 589 |
+
def log_metrics(self, metrics, epoch):
|
| 590 |
+
# Log metrics dictionary to all loggers
|
| 591 |
+
if self.csv:
|
| 592 |
+
keys, vals = list(metrics.keys()), list(metrics.values())
|
| 593 |
+
n = len(metrics) + 1 # number of cols
|
| 594 |
+
s = '' if self.csv.exists() else (('%23s,' * n % tuple(['epoch'] + keys)).rstrip(',') + '\n') # header
|
| 595 |
+
with open(self.csv, 'a') as f:
|
| 596 |
+
f.write(s + ('%23.5g,' * n % tuple([epoch] + vals)).rstrip(',') + '\n')
|
| 597 |
+
|
| 598 |
+
if self.tb:
|
| 599 |
+
for k, v in metrics.items():
|
| 600 |
+
self.tb.add_scalar(k, v, epoch)
|
| 601 |
+
|
| 602 |
+
if self.wandb:
|
| 603 |
+
self.wandb.log(metrics, step=epoch)
|
| 604 |
+
|
| 605 |
+
def log_images(self, files, name='Images', epoch=0):
|
| 606 |
+
# Log images to all loggers
|
| 607 |
+
files = [Path(f) for f in (files if isinstance(files, (tuple, list)) else [files])] # to Path
|
| 608 |
+
files = [f for f in files if f.exists()] # filter by exists
|
| 609 |
+
|
| 610 |
+
if self.tb:
|
| 611 |
+
for f in files:
|
| 612 |
+
self.tb.add_image(f.stem, cv2.imread(str(f))[..., ::-1], epoch, dataformats='HWC')
|
| 613 |
+
|
| 614 |
+
if self.wandb:
|
| 615 |
+
self.wandb.log({name: [wandb.Image(str(f), caption=f.name) for f in files]}, step=epoch)
|
| 616 |
+
|
| 617 |
+
def log_graph(self, model, imgsz=(640, 640)):
|
| 618 |
+
# Log model graph to all loggers
|
| 619 |
+
if self.tb:
|
| 620 |
+
log_tensorboard_graph(self.tb, model, imgsz)
|
| 621 |
+
|
| 622 |
+
def log_model(self, model_path, epoch=0, metadata={}):
|
| 623 |
+
# Log model to all loggers
|
| 624 |
+
if self.wandb:
|
| 625 |
+
art = wandb.Artifact(name=f"run_{wandb.run.id}_model", type="model", metadata=metadata)
|
| 626 |
+
art.add_file(str(model_path))
|
| 627 |
+
wandb.log_artifact(art)
|
| 628 |
+
|
| 629 |
+
def update_params(self, params):
|
| 630 |
+
# Update the paramters logged
|
| 631 |
+
if self.wandb:
|
| 632 |
+
wandb.run.config.update(params, allow_val_change=True)
|
| 633 |
+
|
| 634 |
+
|
| 635 |
+
def log_tensorboard_graph(tb, model, imgsz=(640, 640)):
|
| 636 |
+
# Log model graph to TensorBoard
|
| 637 |
+
try:
|
| 638 |
+
p = next(model.parameters()) # for device, type
|
| 639 |
+
imgsz = (imgsz, imgsz) if isinstance(imgsz, int) else imgsz # expand
|
| 640 |
+
im = torch.zeros((1, 3, *imgsz)).to(p.device).type_as(p) # input image (WARNING: must be zeros, not empty)
|
| 641 |
+
with warnings.catch_warnings():
|
| 642 |
+
warnings.simplefilter('ignore') # suppress jit trace warning
|
| 643 |
+
tb.add_graph(torch.jit.trace(de_parallel(model), im, strict=False), [])
|
| 644 |
+
except Exception as e:
|
| 645 |
+
LOGGER.warning(f'WARNING ⚠️ TensorBoard graph visualization failure {e}')
|
| 646 |
+
|
| 647 |
+
|
| 648 |
+
def web_project_name(project):
|
| 649 |
+
# Convert local project name to web project name
|
| 650 |
+
if not project.startswith('runs/train'):
|
| 651 |
+
return project
|
| 652 |
+
suffix = '-Classify' if project.endswith('-cls') else '-Segment' if project.endswith('-seg') else ''
|
| 653 |
+
return f'YOLO{suffix}'
|
utils/loggers/clearml/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
# init
|
utils/loggers/clearml/clearml_utils.py
ADDED
|
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Main Logger class for ClearML experiment tracking."""
|
| 2 |
+
import glob
|
| 3 |
+
import re
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
|
| 6 |
+
import numpy as np
|
| 7 |
+
import yaml
|
| 8 |
+
|
| 9 |
+
from utils.plots import Annotator, colors
|
| 10 |
+
|
| 11 |
+
try:
|
| 12 |
+
import clearml
|
| 13 |
+
from clearml import Dataset, Task
|
| 14 |
+
|
| 15 |
+
assert hasattr(clearml, '__version__') # verify package import not local dir
|
| 16 |
+
except (ImportError, AssertionError):
|
| 17 |
+
clearml = None
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def construct_dataset(clearml_info_string):
|
| 21 |
+
"""Load in a clearml dataset and fill the internal data_dict with its contents.
|
| 22 |
+
"""
|
| 23 |
+
dataset_id = clearml_info_string.replace('clearml://', '')
|
| 24 |
+
dataset = Dataset.get(dataset_id=dataset_id)
|
| 25 |
+
dataset_root_path = Path(dataset.get_local_copy())
|
| 26 |
+
|
| 27 |
+
# We'll search for the yaml file definition in the dataset
|
| 28 |
+
yaml_filenames = list(glob.glob(str(dataset_root_path / "*.yaml")) + glob.glob(str(dataset_root_path / "*.yml")))
|
| 29 |
+
if len(yaml_filenames) > 1:
|
| 30 |
+
raise ValueError('More than one yaml file was found in the dataset root, cannot determine which one contains '
|
| 31 |
+
'the dataset definition this way.')
|
| 32 |
+
elif len(yaml_filenames) == 0:
|
| 33 |
+
raise ValueError('No yaml definition found in dataset root path, check that there is a correct yaml file '
|
| 34 |
+
'inside the dataset root path.')
|
| 35 |
+
with open(yaml_filenames[0]) as f:
|
| 36 |
+
dataset_definition = yaml.safe_load(f)
|
| 37 |
+
|
| 38 |
+
assert set(dataset_definition.keys()).issuperset(
|
| 39 |
+
{'train', 'test', 'val', 'nc', 'names'}
|
| 40 |
+
), "The right keys were not found in the yaml file, make sure it at least has the following keys: ('train', 'test', 'val', 'nc', 'names')"
|
| 41 |
+
|
| 42 |
+
data_dict = dict()
|
| 43 |
+
data_dict['train'] = str(
|
| 44 |
+
(dataset_root_path / dataset_definition['train']).resolve()) if dataset_definition['train'] else None
|
| 45 |
+
data_dict['test'] = str(
|
| 46 |
+
(dataset_root_path / dataset_definition['test']).resolve()) if dataset_definition['test'] else None
|
| 47 |
+
data_dict['val'] = str(
|
| 48 |
+
(dataset_root_path / dataset_definition['val']).resolve()) if dataset_definition['val'] else None
|
| 49 |
+
data_dict['nc'] = dataset_definition['nc']
|
| 50 |
+
data_dict['names'] = dataset_definition['names']
|
| 51 |
+
|
| 52 |
+
return data_dict
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
class ClearmlLogger:
|
| 56 |
+
"""Log training runs, datasets, models, and predictions to ClearML.
|
| 57 |
+
|
| 58 |
+
This logger sends information to ClearML at app.clear.ml or to your own hosted server. By default,
|
| 59 |
+
this information includes hyperparameters, system configuration and metrics, model metrics, code information and
|
| 60 |
+
basic data metrics and analyses.
|
| 61 |
+
|
| 62 |
+
By providing additional command line arguments to train.py, datasets,
|
| 63 |
+
models and predictions can also be logged.
|
| 64 |
+
"""
|
| 65 |
+
|
| 66 |
+
def __init__(self, opt, hyp):
|
| 67 |
+
"""
|
| 68 |
+
- Initialize ClearML Task, this object will capture the experiment
|
| 69 |
+
- Upload dataset version to ClearML Data if opt.upload_dataset is True
|
| 70 |
+
|
| 71 |
+
arguments:
|
| 72 |
+
opt (namespace) -- Commandline arguments for this run
|
| 73 |
+
hyp (dict) -- Hyperparameters for this run
|
| 74 |
+
|
| 75 |
+
"""
|
| 76 |
+
self.current_epoch = 0
|
| 77 |
+
# Keep tracked of amount of logged images to enforce a limit
|
| 78 |
+
self.current_epoch_logged_images = set()
|
| 79 |
+
# Maximum number of images to log to clearML per epoch
|
| 80 |
+
self.max_imgs_to_log_per_epoch = 16
|
| 81 |
+
# Get the interval of epochs when bounding box images should be logged
|
| 82 |
+
self.bbox_interval = opt.bbox_interval
|
| 83 |
+
self.clearml = clearml
|
| 84 |
+
self.task = None
|
| 85 |
+
self.data_dict = None
|
| 86 |
+
if self.clearml:
|
| 87 |
+
self.task = Task.init(
|
| 88 |
+
project_name=opt.project if opt.project != 'runs/train' else 'YOLOv5',
|
| 89 |
+
task_name=opt.name if opt.name != 'exp' else 'Training',
|
| 90 |
+
tags=['YOLOv5'],
|
| 91 |
+
output_uri=True,
|
| 92 |
+
auto_connect_frameworks={'pytorch': False}
|
| 93 |
+
# We disconnect pytorch auto-detection, because we added manual model save points in the code
|
| 94 |
+
)
|
| 95 |
+
# ClearML's hooks will already grab all general parameters
|
| 96 |
+
# Only the hyperparameters coming from the yaml config file
|
| 97 |
+
# will have to be added manually!
|
| 98 |
+
self.task.connect(hyp, name='Hyperparameters')
|
| 99 |
+
|
| 100 |
+
# Get ClearML Dataset Version if requested
|
| 101 |
+
if opt.data.startswith('clearml://'):
|
| 102 |
+
# data_dict should have the following keys:
|
| 103 |
+
# names, nc (number of classes), test, train, val (all three relative paths to ../datasets)
|
| 104 |
+
self.data_dict = construct_dataset(opt.data)
|
| 105 |
+
# Set data to data_dict because wandb will crash without this information and opt is the best way
|
| 106 |
+
# to give it to them
|
| 107 |
+
opt.data = self.data_dict
|
| 108 |
+
|
| 109 |
+
def log_debug_samples(self, files, title='Debug Samples'):
|
| 110 |
+
"""
|
| 111 |
+
Log files (images) as debug samples in the ClearML task.
|
| 112 |
+
|
| 113 |
+
arguments:
|
| 114 |
+
files (List(PosixPath)) a list of file paths in PosixPath format
|
| 115 |
+
title (str) A title that groups together images with the same values
|
| 116 |
+
"""
|
| 117 |
+
for f in files:
|
| 118 |
+
if f.exists():
|
| 119 |
+
it = re.search(r'_batch(\d+)', f.name)
|
| 120 |
+
iteration = int(it.groups()[0]) if it else 0
|
| 121 |
+
self.task.get_logger().report_image(title=title,
|
| 122 |
+
series=f.name.replace(it.group(), ''),
|
| 123 |
+
local_path=str(f),
|
| 124 |
+
iteration=iteration)
|
| 125 |
+
|
| 126 |
+
def log_image_with_boxes(self, image_path, boxes, class_names, image, conf_threshold=0.25):
|
| 127 |
+
"""
|
| 128 |
+
Draw the bounding boxes on a single image and report the result as a ClearML debug sample.
|
| 129 |
+
|
| 130 |
+
arguments:
|
| 131 |
+
image_path (PosixPath) the path the original image file
|
| 132 |
+
boxes (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
|
| 133 |
+
class_names (dict): dict containing mapping of class int to class name
|
| 134 |
+
image (Tensor): A torch tensor containing the actual image data
|
| 135 |
+
"""
|
| 136 |
+
if len(self.current_epoch_logged_images) < self.max_imgs_to_log_per_epoch and self.current_epoch >= 0:
|
| 137 |
+
# Log every bbox_interval times and deduplicate for any intermittend extra eval runs
|
| 138 |
+
if self.current_epoch % self.bbox_interval == 0 and image_path not in self.current_epoch_logged_images:
|
| 139 |
+
im = np.ascontiguousarray(np.moveaxis(image.mul(255).clamp(0, 255).byte().cpu().numpy(), 0, 2))
|
| 140 |
+
annotator = Annotator(im=im, pil=True)
|
| 141 |
+
for i, (conf, class_nr, box) in enumerate(zip(boxes[:, 4], boxes[:, 5], boxes[:, :4])):
|
| 142 |
+
color = colors(i)
|
| 143 |
+
|
| 144 |
+
class_name = class_names[int(class_nr)]
|
| 145 |
+
confidence_percentage = round(float(conf) * 100, 2)
|
| 146 |
+
label = f"{class_name}: {confidence_percentage}%"
|
| 147 |
+
|
| 148 |
+
if conf > conf_threshold:
|
| 149 |
+
annotator.rectangle(box.cpu().numpy(), outline=color)
|
| 150 |
+
annotator.box_label(box.cpu().numpy(), label=label, color=color)
|
| 151 |
+
|
| 152 |
+
annotated_image = annotator.result()
|
| 153 |
+
self.task.get_logger().report_image(title='Bounding Boxes',
|
| 154 |
+
series=image_path.name,
|
| 155 |
+
iteration=self.current_epoch,
|
| 156 |
+
image=annotated_image)
|
| 157 |
+
self.current_epoch_logged_images.add(image_path)
|
utils/loggers/clearml/hpo.py
ADDED
|
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from clearml import Task
|
| 2 |
+
# Connecting ClearML with the current process,
|
| 3 |
+
# from here on everything is logged automatically
|
| 4 |
+
from clearml.automation import HyperParameterOptimizer, UniformParameterRange
|
| 5 |
+
from clearml.automation.optuna import OptimizerOptuna
|
| 6 |
+
|
| 7 |
+
task = Task.init(project_name='Hyper-Parameter Optimization',
|
| 8 |
+
task_name='YOLOv5',
|
| 9 |
+
task_type=Task.TaskTypes.optimizer,
|
| 10 |
+
reuse_last_task_id=False)
|
| 11 |
+
|
| 12 |
+
# Example use case:
|
| 13 |
+
optimizer = HyperParameterOptimizer(
|
| 14 |
+
# This is the experiment we want to optimize
|
| 15 |
+
base_task_id='<your_template_task_id>',
|
| 16 |
+
# here we define the hyper-parameters to optimize
|
| 17 |
+
# Notice: The parameter name should exactly match what you see in the UI: <section_name>/<parameter>
|
| 18 |
+
# For Example, here we see in the base experiment a section Named: "General"
|
| 19 |
+
# under it a parameter named "batch_size", this becomes "General/batch_size"
|
| 20 |
+
# If you have `argparse` for example, then arguments will appear under the "Args" section,
|
| 21 |
+
# and you should instead pass "Args/batch_size"
|
| 22 |
+
hyper_parameters=[
|
| 23 |
+
UniformParameterRange('Hyperparameters/lr0', min_value=1e-5, max_value=1e-1),
|
| 24 |
+
UniformParameterRange('Hyperparameters/lrf', min_value=0.01, max_value=1.0),
|
| 25 |
+
UniformParameterRange('Hyperparameters/momentum', min_value=0.6, max_value=0.98),
|
| 26 |
+
UniformParameterRange('Hyperparameters/weight_decay', min_value=0.0, max_value=0.001),
|
| 27 |
+
UniformParameterRange('Hyperparameters/warmup_epochs', min_value=0.0, max_value=5.0),
|
| 28 |
+
UniformParameterRange('Hyperparameters/warmup_momentum', min_value=0.0, max_value=0.95),
|
| 29 |
+
UniformParameterRange('Hyperparameters/warmup_bias_lr', min_value=0.0, max_value=0.2),
|
| 30 |
+
UniformParameterRange('Hyperparameters/box', min_value=0.02, max_value=0.2),
|
| 31 |
+
UniformParameterRange('Hyperparameters/cls', min_value=0.2, max_value=4.0),
|
| 32 |
+
UniformParameterRange('Hyperparameters/cls_pw', min_value=0.5, max_value=2.0),
|
| 33 |
+
UniformParameterRange('Hyperparameters/obj', min_value=0.2, max_value=4.0),
|
| 34 |
+
UniformParameterRange('Hyperparameters/obj_pw', min_value=0.5, max_value=2.0),
|
| 35 |
+
UniformParameterRange('Hyperparameters/iou_t', min_value=0.1, max_value=0.7),
|
| 36 |
+
UniformParameterRange('Hyperparameters/anchor_t', min_value=2.0, max_value=8.0),
|
| 37 |
+
UniformParameterRange('Hyperparameters/fl_gamma', min_value=0.0, max_value=4.0),
|
| 38 |
+
UniformParameterRange('Hyperparameters/hsv_h', min_value=0.0, max_value=0.1),
|
| 39 |
+
UniformParameterRange('Hyperparameters/hsv_s', min_value=0.0, max_value=0.9),
|
| 40 |
+
UniformParameterRange('Hyperparameters/hsv_v', min_value=0.0, max_value=0.9),
|
| 41 |
+
UniformParameterRange('Hyperparameters/degrees', min_value=0.0, max_value=45.0),
|
| 42 |
+
UniformParameterRange('Hyperparameters/translate', min_value=0.0, max_value=0.9),
|
| 43 |
+
UniformParameterRange('Hyperparameters/scale', min_value=0.0, max_value=0.9),
|
| 44 |
+
UniformParameterRange('Hyperparameters/shear', min_value=0.0, max_value=10.0),
|
| 45 |
+
UniformParameterRange('Hyperparameters/perspective', min_value=0.0, max_value=0.001),
|
| 46 |
+
UniformParameterRange('Hyperparameters/flipud', min_value=0.0, max_value=1.0),
|
| 47 |
+
UniformParameterRange('Hyperparameters/fliplr', min_value=0.0, max_value=1.0),
|
| 48 |
+
UniformParameterRange('Hyperparameters/mosaic', min_value=0.0, max_value=1.0),
|
| 49 |
+
UniformParameterRange('Hyperparameters/mixup', min_value=0.0, max_value=1.0),
|
| 50 |
+
UniformParameterRange('Hyperparameters/copy_paste', min_value=0.0, max_value=1.0)],
|
| 51 |
+
# this is the objective metric we want to maximize/minimize
|
| 52 |
+
objective_metric_title='metrics',
|
| 53 |
+
objective_metric_series='mAP_0.5',
|
| 54 |
+
# now we decide if we want to maximize it or minimize it (accuracy we maximize)
|
| 55 |
+
objective_metric_sign='max',
|
| 56 |
+
# let us limit the number of concurrent experiments,
|
| 57 |
+
# this in turn will make sure we do dont bombard the scheduler with experiments.
|
| 58 |
+
# if we have an auto-scaler connected, this, by proxy, will limit the number of machine
|
| 59 |
+
max_number_of_concurrent_tasks=1,
|
| 60 |
+
# this is the optimizer class (actually doing the optimization)
|
| 61 |
+
# Currently, we can choose from GridSearch, RandomSearch or OptimizerBOHB (Bayesian optimization Hyper-Band)
|
| 62 |
+
optimizer_class=OptimizerOptuna,
|
| 63 |
+
# If specified only the top K performing Tasks will be kept, the others will be automatically archived
|
| 64 |
+
save_top_k_tasks_only=5, # 5,
|
| 65 |
+
compute_time_limit=None,
|
| 66 |
+
total_max_jobs=20,
|
| 67 |
+
min_iteration_per_job=None,
|
| 68 |
+
max_iteration_per_job=None,
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
# report every 10 seconds, this is way too often, but we are testing here
|
| 72 |
+
optimizer.set_report_period(10 / 60)
|
| 73 |
+
# You can also use the line below instead to run all the optimizer tasks locally, without using queues or agent
|
| 74 |
+
# an_optimizer.start_locally(job_complete_callback=job_complete_callback)
|
| 75 |
+
# set the time limit for the optimization process (2 hours)
|
| 76 |
+
optimizer.set_time_limit(in_minutes=120.0)
|
| 77 |
+
# Start the optimization process in the local environment
|
| 78 |
+
optimizer.start_locally()
|
| 79 |
+
# wait until process is done (notice we are controlling the optimization process in the background)
|
| 80 |
+
optimizer.wait()
|
| 81 |
+
# make sure background optimization stopped
|
| 82 |
+
optimizer.stop()
|
| 83 |
+
|
| 84 |
+
print('We are done, good bye')
|
utils/loggers/comet/__init__.py
ADDED
|
@@ -0,0 +1,508 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import glob
|
| 2 |
+
import json
|
| 3 |
+
import logging
|
| 4 |
+
import os
|
| 5 |
+
import sys
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
|
| 8 |
+
logger = logging.getLogger(__name__)
|
| 9 |
+
|
| 10 |
+
FILE = Path(__file__).resolve()
|
| 11 |
+
ROOT = FILE.parents[3] # YOLOv5 root directory
|
| 12 |
+
if str(ROOT) not in sys.path:
|
| 13 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
| 14 |
+
|
| 15 |
+
try:
|
| 16 |
+
import comet_ml
|
| 17 |
+
|
| 18 |
+
# Project Configuration
|
| 19 |
+
config = comet_ml.config.get_config()
|
| 20 |
+
COMET_PROJECT_NAME = config.get_string(os.getenv("COMET_PROJECT_NAME"), "comet.project_name", default="yolov5")
|
| 21 |
+
except (ModuleNotFoundError, ImportError):
|
| 22 |
+
comet_ml = None
|
| 23 |
+
COMET_PROJECT_NAME = None
|
| 24 |
+
|
| 25 |
+
import PIL
|
| 26 |
+
import torch
|
| 27 |
+
import torchvision.transforms as T
|
| 28 |
+
import yaml
|
| 29 |
+
|
| 30 |
+
from utils.dataloaders import img2label_paths
|
| 31 |
+
from utils.general import check_dataset, scale_boxes, xywh2xyxy
|
| 32 |
+
from utils.metrics import box_iou
|
| 33 |
+
|
| 34 |
+
COMET_PREFIX = "comet://"
|
| 35 |
+
|
| 36 |
+
COMET_MODE = os.getenv("COMET_MODE", "online")
|
| 37 |
+
|
| 38 |
+
# Model Saving Settings
|
| 39 |
+
COMET_MODEL_NAME = os.getenv("COMET_MODEL_NAME", "yolov5")
|
| 40 |
+
|
| 41 |
+
# Dataset Artifact Settings
|
| 42 |
+
COMET_UPLOAD_DATASET = os.getenv("COMET_UPLOAD_DATASET", "false").lower() == "true"
|
| 43 |
+
|
| 44 |
+
# Evaluation Settings
|
| 45 |
+
COMET_LOG_CONFUSION_MATRIX = os.getenv("COMET_LOG_CONFUSION_MATRIX", "true").lower() == "true"
|
| 46 |
+
COMET_LOG_PREDICTIONS = os.getenv("COMET_LOG_PREDICTIONS", "true").lower() == "true"
|
| 47 |
+
COMET_MAX_IMAGE_UPLOADS = int(os.getenv("COMET_MAX_IMAGE_UPLOADS", 100))
|
| 48 |
+
|
| 49 |
+
# Confusion Matrix Settings
|
| 50 |
+
CONF_THRES = float(os.getenv("CONF_THRES", 0.001))
|
| 51 |
+
IOU_THRES = float(os.getenv("IOU_THRES", 0.6))
|
| 52 |
+
|
| 53 |
+
# Batch Logging Settings
|
| 54 |
+
COMET_LOG_BATCH_METRICS = os.getenv("COMET_LOG_BATCH_METRICS", "false").lower() == "true"
|
| 55 |
+
COMET_BATCH_LOGGING_INTERVAL = os.getenv("COMET_BATCH_LOGGING_INTERVAL", 1)
|
| 56 |
+
COMET_PREDICTION_LOGGING_INTERVAL = os.getenv("COMET_PREDICTION_LOGGING_INTERVAL", 1)
|
| 57 |
+
COMET_LOG_PER_CLASS_METRICS = os.getenv("COMET_LOG_PER_CLASS_METRICS", "false").lower() == "true"
|
| 58 |
+
|
| 59 |
+
RANK = int(os.getenv("RANK", -1))
|
| 60 |
+
|
| 61 |
+
to_pil = T.ToPILImage()
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
class CometLogger:
|
| 65 |
+
"""Log metrics, parameters, source code, models and much more
|
| 66 |
+
with Comet
|
| 67 |
+
"""
|
| 68 |
+
|
| 69 |
+
def __init__(self, opt, hyp, run_id=None, job_type="Training", **experiment_kwargs) -> None:
|
| 70 |
+
self.job_type = job_type
|
| 71 |
+
self.opt = opt
|
| 72 |
+
self.hyp = hyp
|
| 73 |
+
|
| 74 |
+
# Comet Flags
|
| 75 |
+
self.comet_mode = COMET_MODE
|
| 76 |
+
|
| 77 |
+
self.save_model = opt.save_period > -1
|
| 78 |
+
self.model_name = COMET_MODEL_NAME
|
| 79 |
+
|
| 80 |
+
# Batch Logging Settings
|
| 81 |
+
self.log_batch_metrics = COMET_LOG_BATCH_METRICS
|
| 82 |
+
self.comet_log_batch_interval = COMET_BATCH_LOGGING_INTERVAL
|
| 83 |
+
|
| 84 |
+
# Dataset Artifact Settings
|
| 85 |
+
self.upload_dataset = self.opt.upload_dataset if self.opt.upload_dataset else COMET_UPLOAD_DATASET
|
| 86 |
+
self.resume = self.opt.resume
|
| 87 |
+
|
| 88 |
+
# Default parameters to pass to Experiment objects
|
| 89 |
+
self.default_experiment_kwargs = {
|
| 90 |
+
"log_code": False,
|
| 91 |
+
"log_env_gpu": True,
|
| 92 |
+
"log_env_cpu": True,
|
| 93 |
+
"project_name": COMET_PROJECT_NAME,}
|
| 94 |
+
self.default_experiment_kwargs.update(experiment_kwargs)
|
| 95 |
+
self.experiment = self._get_experiment(self.comet_mode, run_id)
|
| 96 |
+
|
| 97 |
+
self.data_dict = self.check_dataset(self.opt.data)
|
| 98 |
+
self.class_names = self.data_dict["names"]
|
| 99 |
+
self.num_classes = self.data_dict["nc"]
|
| 100 |
+
|
| 101 |
+
self.logged_images_count = 0
|
| 102 |
+
self.max_images = COMET_MAX_IMAGE_UPLOADS
|
| 103 |
+
|
| 104 |
+
if run_id is None:
|
| 105 |
+
self.experiment.log_other("Created from", "YOLOv5")
|
| 106 |
+
if not isinstance(self.experiment, comet_ml.OfflineExperiment):
|
| 107 |
+
workspace, project_name, experiment_id = self.experiment.url.split("/")[-3:]
|
| 108 |
+
self.experiment.log_other(
|
| 109 |
+
"Run Path",
|
| 110 |
+
f"{workspace}/{project_name}/{experiment_id}",
|
| 111 |
+
)
|
| 112 |
+
self.log_parameters(vars(opt))
|
| 113 |
+
self.log_parameters(self.opt.hyp)
|
| 114 |
+
self.log_asset_data(
|
| 115 |
+
self.opt.hyp,
|
| 116 |
+
name="hyperparameters.json",
|
| 117 |
+
metadata={"type": "hyp-config-file"},
|
| 118 |
+
)
|
| 119 |
+
self.log_asset(
|
| 120 |
+
f"{self.opt.save_dir}/opt.yaml",
|
| 121 |
+
metadata={"type": "opt-config-file"},
|
| 122 |
+
)
|
| 123 |
+
|
| 124 |
+
self.comet_log_confusion_matrix = COMET_LOG_CONFUSION_MATRIX
|
| 125 |
+
|
| 126 |
+
if hasattr(self.opt, "conf_thres"):
|
| 127 |
+
self.conf_thres = self.opt.conf_thres
|
| 128 |
+
else:
|
| 129 |
+
self.conf_thres = CONF_THRES
|
| 130 |
+
if hasattr(self.opt, "iou_thres"):
|
| 131 |
+
self.iou_thres = self.opt.iou_thres
|
| 132 |
+
else:
|
| 133 |
+
self.iou_thres = IOU_THRES
|
| 134 |
+
|
| 135 |
+
self.log_parameters({"val_iou_threshold": self.iou_thres, "val_conf_threshold": self.conf_thres})
|
| 136 |
+
|
| 137 |
+
self.comet_log_predictions = COMET_LOG_PREDICTIONS
|
| 138 |
+
if self.opt.bbox_interval == -1:
|
| 139 |
+
self.comet_log_prediction_interval = 1 if self.opt.epochs < 10 else self.opt.epochs // 10
|
| 140 |
+
else:
|
| 141 |
+
self.comet_log_prediction_interval = self.opt.bbox_interval
|
| 142 |
+
|
| 143 |
+
if self.comet_log_predictions:
|
| 144 |
+
self.metadata_dict = {}
|
| 145 |
+
self.logged_image_names = []
|
| 146 |
+
|
| 147 |
+
self.comet_log_per_class_metrics = COMET_LOG_PER_CLASS_METRICS
|
| 148 |
+
|
| 149 |
+
self.experiment.log_others({
|
| 150 |
+
"comet_mode": COMET_MODE,
|
| 151 |
+
"comet_max_image_uploads": COMET_MAX_IMAGE_UPLOADS,
|
| 152 |
+
"comet_log_per_class_metrics": COMET_LOG_PER_CLASS_METRICS,
|
| 153 |
+
"comet_log_batch_metrics": COMET_LOG_BATCH_METRICS,
|
| 154 |
+
"comet_log_confusion_matrix": COMET_LOG_CONFUSION_MATRIX,
|
| 155 |
+
"comet_model_name": COMET_MODEL_NAME,})
|
| 156 |
+
|
| 157 |
+
# Check if running the Experiment with the Comet Optimizer
|
| 158 |
+
if hasattr(self.opt, "comet_optimizer_id"):
|
| 159 |
+
self.experiment.log_other("optimizer_id", self.opt.comet_optimizer_id)
|
| 160 |
+
self.experiment.log_other("optimizer_objective", self.opt.comet_optimizer_objective)
|
| 161 |
+
self.experiment.log_other("optimizer_metric", self.opt.comet_optimizer_metric)
|
| 162 |
+
self.experiment.log_other("optimizer_parameters", json.dumps(self.hyp))
|
| 163 |
+
|
| 164 |
+
def _get_experiment(self, mode, experiment_id=None):
|
| 165 |
+
if mode == "offline":
|
| 166 |
+
if experiment_id is not None:
|
| 167 |
+
return comet_ml.ExistingOfflineExperiment(
|
| 168 |
+
previous_experiment=experiment_id,
|
| 169 |
+
**self.default_experiment_kwargs,
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
return comet_ml.OfflineExperiment(**self.default_experiment_kwargs,)
|
| 173 |
+
|
| 174 |
+
else:
|
| 175 |
+
try:
|
| 176 |
+
if experiment_id is not None:
|
| 177 |
+
return comet_ml.ExistingExperiment(
|
| 178 |
+
previous_experiment=experiment_id,
|
| 179 |
+
**self.default_experiment_kwargs,
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
return comet_ml.Experiment(**self.default_experiment_kwargs)
|
| 183 |
+
|
| 184 |
+
except ValueError:
|
| 185 |
+
logger.warning("COMET WARNING: "
|
| 186 |
+
"Comet credentials have not been set. "
|
| 187 |
+
"Comet will default to offline logging. "
|
| 188 |
+
"Please set your credentials to enable online logging.")
|
| 189 |
+
return self._get_experiment("offline", experiment_id)
|
| 190 |
+
|
| 191 |
+
return
|
| 192 |
+
|
| 193 |
+
def log_metrics(self, log_dict, **kwargs):
|
| 194 |
+
self.experiment.log_metrics(log_dict, **kwargs)
|
| 195 |
+
|
| 196 |
+
def log_parameters(self, log_dict, **kwargs):
|
| 197 |
+
self.experiment.log_parameters(log_dict, **kwargs)
|
| 198 |
+
|
| 199 |
+
def log_asset(self, asset_path, **kwargs):
|
| 200 |
+
self.experiment.log_asset(asset_path, **kwargs)
|
| 201 |
+
|
| 202 |
+
def log_asset_data(self, asset, **kwargs):
|
| 203 |
+
self.experiment.log_asset_data(asset, **kwargs)
|
| 204 |
+
|
| 205 |
+
def log_image(self, img, **kwargs):
|
| 206 |
+
self.experiment.log_image(img, **kwargs)
|
| 207 |
+
|
| 208 |
+
def log_model(self, path, opt, epoch, fitness_score, best_model=False):
|
| 209 |
+
if not self.save_model:
|
| 210 |
+
return
|
| 211 |
+
|
| 212 |
+
model_metadata = {
|
| 213 |
+
"fitness_score": fitness_score[-1],
|
| 214 |
+
"epochs_trained": epoch + 1,
|
| 215 |
+
"save_period": opt.save_period,
|
| 216 |
+
"total_epochs": opt.epochs,}
|
| 217 |
+
|
| 218 |
+
model_files = glob.glob(f"{path}/*.pt")
|
| 219 |
+
for model_path in model_files:
|
| 220 |
+
name = Path(model_path).name
|
| 221 |
+
|
| 222 |
+
self.experiment.log_model(
|
| 223 |
+
self.model_name,
|
| 224 |
+
file_or_folder=model_path,
|
| 225 |
+
file_name=name,
|
| 226 |
+
metadata=model_metadata,
|
| 227 |
+
overwrite=True,
|
| 228 |
+
)
|
| 229 |
+
|
| 230 |
+
def check_dataset(self, data_file):
|
| 231 |
+
with open(data_file) as f:
|
| 232 |
+
data_config = yaml.safe_load(f)
|
| 233 |
+
|
| 234 |
+
if data_config['path'].startswith(COMET_PREFIX):
|
| 235 |
+
path = data_config['path'].replace(COMET_PREFIX, "")
|
| 236 |
+
data_dict = self.download_dataset_artifact(path)
|
| 237 |
+
|
| 238 |
+
return data_dict
|
| 239 |
+
|
| 240 |
+
self.log_asset(self.opt.data, metadata={"type": "data-config-file"})
|
| 241 |
+
|
| 242 |
+
return check_dataset(data_file)
|
| 243 |
+
|
| 244 |
+
def log_predictions(self, image, labelsn, path, shape, predn):
|
| 245 |
+
if self.logged_images_count >= self.max_images:
|
| 246 |
+
return
|
| 247 |
+
detections = predn[predn[:, 4] > self.conf_thres]
|
| 248 |
+
iou = box_iou(labelsn[:, 1:], detections[:, :4])
|
| 249 |
+
mask, _ = torch.where(iou > self.iou_thres)
|
| 250 |
+
if len(mask) == 0:
|
| 251 |
+
return
|
| 252 |
+
|
| 253 |
+
filtered_detections = detections[mask]
|
| 254 |
+
filtered_labels = labelsn[mask]
|
| 255 |
+
|
| 256 |
+
image_id = path.split("/")[-1].split(".")[0]
|
| 257 |
+
image_name = f"{image_id}_curr_epoch_{self.experiment.curr_epoch}"
|
| 258 |
+
if image_name not in self.logged_image_names:
|
| 259 |
+
native_scale_image = PIL.Image.open(path)
|
| 260 |
+
self.log_image(native_scale_image, name=image_name)
|
| 261 |
+
self.logged_image_names.append(image_name)
|
| 262 |
+
|
| 263 |
+
metadata = []
|
| 264 |
+
for cls, *xyxy in filtered_labels.tolist():
|
| 265 |
+
metadata.append({
|
| 266 |
+
"label": f"{self.class_names[int(cls)]}-gt",
|
| 267 |
+
"score": 100,
|
| 268 |
+
"box": {
|
| 269 |
+
"x": xyxy[0],
|
| 270 |
+
"y": xyxy[1],
|
| 271 |
+
"x2": xyxy[2],
|
| 272 |
+
"y2": xyxy[3]},})
|
| 273 |
+
for *xyxy, conf, cls in filtered_detections.tolist():
|
| 274 |
+
metadata.append({
|
| 275 |
+
"label": f"{self.class_names[int(cls)]}",
|
| 276 |
+
"score": conf * 100,
|
| 277 |
+
"box": {
|
| 278 |
+
"x": xyxy[0],
|
| 279 |
+
"y": xyxy[1],
|
| 280 |
+
"x2": xyxy[2],
|
| 281 |
+
"y2": xyxy[3]},})
|
| 282 |
+
|
| 283 |
+
self.metadata_dict[image_name] = metadata
|
| 284 |
+
self.logged_images_count += 1
|
| 285 |
+
|
| 286 |
+
return
|
| 287 |
+
|
| 288 |
+
def preprocess_prediction(self, image, labels, shape, pred):
|
| 289 |
+
nl, _ = labels.shape[0], pred.shape[0]
|
| 290 |
+
|
| 291 |
+
# Predictions
|
| 292 |
+
if self.opt.single_cls:
|
| 293 |
+
pred[:, 5] = 0
|
| 294 |
+
|
| 295 |
+
predn = pred.clone()
|
| 296 |
+
scale_boxes(image.shape[1:], predn[:, :4], shape[0], shape[1])
|
| 297 |
+
|
| 298 |
+
labelsn = None
|
| 299 |
+
if nl:
|
| 300 |
+
tbox = xywh2xyxy(labels[:, 1:5]) # target boxes
|
| 301 |
+
scale_boxes(image.shape[1:], tbox, shape[0], shape[1]) # native-space labels
|
| 302 |
+
labelsn = torch.cat((labels[:, 0:1], tbox), 1) # native-space labels
|
| 303 |
+
scale_boxes(image.shape[1:], predn[:, :4], shape[0], shape[1]) # native-space pred
|
| 304 |
+
|
| 305 |
+
return predn, labelsn
|
| 306 |
+
|
| 307 |
+
def add_assets_to_artifact(self, artifact, path, asset_path, split):
|
| 308 |
+
img_paths = sorted(glob.glob(f"{asset_path}/*"))
|
| 309 |
+
label_paths = img2label_paths(img_paths)
|
| 310 |
+
|
| 311 |
+
for image_file, label_file in zip(img_paths, label_paths):
|
| 312 |
+
image_logical_path, label_logical_path = map(lambda x: os.path.relpath(x, path), [image_file, label_file])
|
| 313 |
+
|
| 314 |
+
try:
|
| 315 |
+
artifact.add(image_file, logical_path=image_logical_path, metadata={"split": split})
|
| 316 |
+
artifact.add(label_file, logical_path=label_logical_path, metadata={"split": split})
|
| 317 |
+
except ValueError as e:
|
| 318 |
+
logger.error('COMET ERROR: Error adding file to Artifact. Skipping file.')
|
| 319 |
+
logger.error(f"COMET ERROR: {e}")
|
| 320 |
+
continue
|
| 321 |
+
|
| 322 |
+
return artifact
|
| 323 |
+
|
| 324 |
+
def upload_dataset_artifact(self):
|
| 325 |
+
dataset_name = self.data_dict.get("dataset_name", "yolov5-dataset")
|
| 326 |
+
path = str((ROOT / Path(self.data_dict["path"])).resolve())
|
| 327 |
+
|
| 328 |
+
metadata = self.data_dict.copy()
|
| 329 |
+
for key in ["train", "val", "test"]:
|
| 330 |
+
split_path = metadata.get(key)
|
| 331 |
+
if split_path is not None:
|
| 332 |
+
metadata[key] = split_path.replace(path, "")
|
| 333 |
+
|
| 334 |
+
artifact = comet_ml.Artifact(name=dataset_name, artifact_type="dataset", metadata=metadata)
|
| 335 |
+
for key in metadata.keys():
|
| 336 |
+
if key in ["train", "val", "test"]:
|
| 337 |
+
if isinstance(self.upload_dataset, str) and (key != self.upload_dataset):
|
| 338 |
+
continue
|
| 339 |
+
|
| 340 |
+
asset_path = self.data_dict.get(key)
|
| 341 |
+
if asset_path is not None:
|
| 342 |
+
artifact = self.add_assets_to_artifact(artifact, path, asset_path, key)
|
| 343 |
+
|
| 344 |
+
self.experiment.log_artifact(artifact)
|
| 345 |
+
|
| 346 |
+
return
|
| 347 |
+
|
| 348 |
+
def download_dataset_artifact(self, artifact_path):
|
| 349 |
+
logged_artifact = self.experiment.get_artifact(artifact_path)
|
| 350 |
+
artifact_save_dir = str(Path(self.opt.save_dir) / logged_artifact.name)
|
| 351 |
+
logged_artifact.download(artifact_save_dir)
|
| 352 |
+
|
| 353 |
+
metadata = logged_artifact.metadata
|
| 354 |
+
data_dict = metadata.copy()
|
| 355 |
+
data_dict["path"] = artifact_save_dir
|
| 356 |
+
|
| 357 |
+
metadata_names = metadata.get("names")
|
| 358 |
+
if type(metadata_names) == dict:
|
| 359 |
+
data_dict["names"] = {int(k): v for k, v in metadata.get("names").items()}
|
| 360 |
+
elif type(metadata_names) == list:
|
| 361 |
+
data_dict["names"] = {int(k): v for k, v in zip(range(len(metadata_names)), metadata_names)}
|
| 362 |
+
else:
|
| 363 |
+
raise "Invalid 'names' field in dataset yaml file. Please use a list or dictionary"
|
| 364 |
+
|
| 365 |
+
data_dict = self.update_data_paths(data_dict)
|
| 366 |
+
return data_dict
|
| 367 |
+
|
| 368 |
+
def update_data_paths(self, data_dict):
|
| 369 |
+
path = data_dict.get("path", "")
|
| 370 |
+
|
| 371 |
+
for split in ["train", "val", "test"]:
|
| 372 |
+
if data_dict.get(split):
|
| 373 |
+
split_path = data_dict.get(split)
|
| 374 |
+
data_dict[split] = (f"{path}/{split_path}" if isinstance(split, str) else [
|
| 375 |
+
f"{path}/{x}" for x in split_path])
|
| 376 |
+
|
| 377 |
+
return data_dict
|
| 378 |
+
|
| 379 |
+
def on_pretrain_routine_end(self, paths):
|
| 380 |
+
if self.opt.resume:
|
| 381 |
+
return
|
| 382 |
+
|
| 383 |
+
for path in paths:
|
| 384 |
+
self.log_asset(str(path))
|
| 385 |
+
|
| 386 |
+
if self.upload_dataset:
|
| 387 |
+
if not self.resume:
|
| 388 |
+
self.upload_dataset_artifact()
|
| 389 |
+
|
| 390 |
+
return
|
| 391 |
+
|
| 392 |
+
def on_train_start(self):
|
| 393 |
+
self.log_parameters(self.hyp)
|
| 394 |
+
|
| 395 |
+
def on_train_epoch_start(self):
|
| 396 |
+
return
|
| 397 |
+
|
| 398 |
+
def on_train_epoch_end(self, epoch):
|
| 399 |
+
self.experiment.curr_epoch = epoch
|
| 400 |
+
|
| 401 |
+
return
|
| 402 |
+
|
| 403 |
+
def on_train_batch_start(self):
|
| 404 |
+
return
|
| 405 |
+
|
| 406 |
+
def on_train_batch_end(self, log_dict, step):
|
| 407 |
+
self.experiment.curr_step = step
|
| 408 |
+
if self.log_batch_metrics and (step % self.comet_log_batch_interval == 0):
|
| 409 |
+
self.log_metrics(log_dict, step=step)
|
| 410 |
+
|
| 411 |
+
return
|
| 412 |
+
|
| 413 |
+
def on_train_end(self, files, save_dir, last, best, epoch, results):
|
| 414 |
+
if self.comet_log_predictions:
|
| 415 |
+
curr_epoch = self.experiment.curr_epoch
|
| 416 |
+
self.experiment.log_asset_data(self.metadata_dict, "image-metadata.json", epoch=curr_epoch)
|
| 417 |
+
|
| 418 |
+
for f in files:
|
| 419 |
+
self.log_asset(f, metadata={"epoch": epoch})
|
| 420 |
+
self.log_asset(f"{save_dir}/results.csv", metadata={"epoch": epoch})
|
| 421 |
+
|
| 422 |
+
if not self.opt.evolve:
|
| 423 |
+
model_path = str(best if best.exists() else last)
|
| 424 |
+
name = Path(model_path).name
|
| 425 |
+
if self.save_model:
|
| 426 |
+
self.experiment.log_model(
|
| 427 |
+
self.model_name,
|
| 428 |
+
file_or_folder=model_path,
|
| 429 |
+
file_name=name,
|
| 430 |
+
overwrite=True,
|
| 431 |
+
)
|
| 432 |
+
|
| 433 |
+
# Check if running Experiment with Comet Optimizer
|
| 434 |
+
if hasattr(self.opt, 'comet_optimizer_id'):
|
| 435 |
+
metric = results.get(self.opt.comet_optimizer_metric)
|
| 436 |
+
self.experiment.log_other('optimizer_metric_value', metric)
|
| 437 |
+
|
| 438 |
+
self.finish_run()
|
| 439 |
+
|
| 440 |
+
def on_val_start(self):
|
| 441 |
+
return
|
| 442 |
+
|
| 443 |
+
def on_val_batch_start(self):
|
| 444 |
+
return
|
| 445 |
+
|
| 446 |
+
def on_val_batch_end(self, batch_i, images, targets, paths, shapes, outputs):
|
| 447 |
+
if not (self.comet_log_predictions and ((batch_i + 1) % self.comet_log_prediction_interval == 0)):
|
| 448 |
+
return
|
| 449 |
+
|
| 450 |
+
for si, pred in enumerate(outputs):
|
| 451 |
+
if len(pred) == 0:
|
| 452 |
+
continue
|
| 453 |
+
|
| 454 |
+
image = images[si]
|
| 455 |
+
labels = targets[targets[:, 0] == si, 1:]
|
| 456 |
+
shape = shapes[si]
|
| 457 |
+
path = paths[si]
|
| 458 |
+
predn, labelsn = self.preprocess_prediction(image, labels, shape, pred)
|
| 459 |
+
if labelsn is not None:
|
| 460 |
+
self.log_predictions(image, labelsn, path, shape, predn)
|
| 461 |
+
|
| 462 |
+
return
|
| 463 |
+
|
| 464 |
+
def on_val_end(self, nt, tp, fp, p, r, f1, ap, ap50, ap_class, confusion_matrix):
|
| 465 |
+
if self.comet_log_per_class_metrics:
|
| 466 |
+
if self.num_classes > 1:
|
| 467 |
+
for i, c in enumerate(ap_class):
|
| 468 |
+
class_name = self.class_names[c]
|
| 469 |
+
self.experiment.log_metrics(
|
| 470 |
+
{
|
| 471 |
+
'[email protected]': ap50[i],
|
| 472 |
+
'[email protected]:.95': ap[i],
|
| 473 |
+
'precision': p[i],
|
| 474 |
+
'recall': r[i],
|
| 475 |
+
'f1': f1[i],
|
| 476 |
+
'true_positives': tp[i],
|
| 477 |
+
'false_positives': fp[i],
|
| 478 |
+
'support': nt[c]},
|
| 479 |
+
prefix=class_name)
|
| 480 |
+
|
| 481 |
+
if self.comet_log_confusion_matrix:
|
| 482 |
+
epoch = self.experiment.curr_epoch
|
| 483 |
+
class_names = list(self.class_names.values())
|
| 484 |
+
class_names.append("background")
|
| 485 |
+
num_classes = len(class_names)
|
| 486 |
+
|
| 487 |
+
self.experiment.log_confusion_matrix(
|
| 488 |
+
matrix=confusion_matrix.matrix,
|
| 489 |
+
max_categories=num_classes,
|
| 490 |
+
labels=class_names,
|
| 491 |
+
epoch=epoch,
|
| 492 |
+
column_label='Actual Category',
|
| 493 |
+
row_label='Predicted Category',
|
| 494 |
+
file_name=f"confusion-matrix-epoch-{epoch}.json",
|
| 495 |
+
)
|
| 496 |
+
|
| 497 |
+
def on_fit_epoch_end(self, result, epoch):
|
| 498 |
+
self.log_metrics(result, epoch=epoch)
|
| 499 |
+
|
| 500 |
+
def on_model_save(self, last, epoch, final_epoch, best_fitness, fi):
|
| 501 |
+
if ((epoch + 1) % self.opt.save_period == 0 and not final_epoch) and self.opt.save_period != -1:
|
| 502 |
+
self.log_model(last.parent, self.opt, epoch, fi, best_model=best_fitness == fi)
|
| 503 |
+
|
| 504 |
+
def on_params_update(self, params):
|
| 505 |
+
self.log_parameters(params)
|
| 506 |
+
|
| 507 |
+
def finish_run(self):
|
| 508 |
+
self.experiment.end()
|
utils/loggers/comet/comet_utils.py
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import os
|
| 3 |
+
from urllib.parse import urlparse
|
| 4 |
+
|
| 5 |
+
try:
|
| 6 |
+
import comet_ml
|
| 7 |
+
except (ModuleNotFoundError, ImportError):
|
| 8 |
+
comet_ml = None
|
| 9 |
+
|
| 10 |
+
import yaml
|
| 11 |
+
|
| 12 |
+
logger = logging.getLogger(__name__)
|
| 13 |
+
|
| 14 |
+
COMET_PREFIX = "comet://"
|
| 15 |
+
COMET_MODEL_NAME = os.getenv("COMET_MODEL_NAME", "yolov5")
|
| 16 |
+
COMET_DEFAULT_CHECKPOINT_FILENAME = os.getenv("COMET_DEFAULT_CHECKPOINT_FILENAME", "last.pt")
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
def download_model_checkpoint(opt, experiment):
|
| 20 |
+
model_dir = f"{opt.project}/{experiment.name}"
|
| 21 |
+
os.makedirs(model_dir, exist_ok=True)
|
| 22 |
+
|
| 23 |
+
model_name = COMET_MODEL_NAME
|
| 24 |
+
model_asset_list = experiment.get_model_asset_list(model_name)
|
| 25 |
+
|
| 26 |
+
if len(model_asset_list) == 0:
|
| 27 |
+
logger.error(f"COMET ERROR: No checkpoints found for model name : {model_name}")
|
| 28 |
+
return
|
| 29 |
+
|
| 30 |
+
model_asset_list = sorted(
|
| 31 |
+
model_asset_list,
|
| 32 |
+
key=lambda x: x["step"],
|
| 33 |
+
reverse=True,
|
| 34 |
+
)
|
| 35 |
+
logged_checkpoint_map = {asset["fileName"]: asset["assetId"] for asset in model_asset_list}
|
| 36 |
+
|
| 37 |
+
resource_url = urlparse(opt.weights)
|
| 38 |
+
checkpoint_filename = resource_url.query
|
| 39 |
+
|
| 40 |
+
if checkpoint_filename:
|
| 41 |
+
asset_id = logged_checkpoint_map.get(checkpoint_filename)
|
| 42 |
+
else:
|
| 43 |
+
asset_id = logged_checkpoint_map.get(COMET_DEFAULT_CHECKPOINT_FILENAME)
|
| 44 |
+
checkpoint_filename = COMET_DEFAULT_CHECKPOINT_FILENAME
|
| 45 |
+
|
| 46 |
+
if asset_id is None:
|
| 47 |
+
logger.error(f"COMET ERROR: Checkpoint {checkpoint_filename} not found in the given Experiment")
|
| 48 |
+
return
|
| 49 |
+
|
| 50 |
+
try:
|
| 51 |
+
logger.info(f"COMET INFO: Downloading checkpoint {checkpoint_filename}")
|
| 52 |
+
asset_filename = checkpoint_filename
|
| 53 |
+
|
| 54 |
+
model_binary = experiment.get_asset(asset_id, return_type="binary", stream=False)
|
| 55 |
+
model_download_path = f"{model_dir}/{asset_filename}"
|
| 56 |
+
with open(model_download_path, "wb") as f:
|
| 57 |
+
f.write(model_binary)
|
| 58 |
+
|
| 59 |
+
opt.weights = model_download_path
|
| 60 |
+
|
| 61 |
+
except Exception as e:
|
| 62 |
+
logger.warning("COMET WARNING: Unable to download checkpoint from Comet")
|
| 63 |
+
logger.exception(e)
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
def set_opt_parameters(opt, experiment):
|
| 67 |
+
"""Update the opts Namespace with parameters
|
| 68 |
+
from Comet's ExistingExperiment when resuming a run
|
| 69 |
+
|
| 70 |
+
Args:
|
| 71 |
+
opt (argparse.Namespace): Namespace of command line options
|
| 72 |
+
experiment (comet_ml.APIExperiment): Comet API Experiment object
|
| 73 |
+
"""
|
| 74 |
+
asset_list = experiment.get_asset_list()
|
| 75 |
+
resume_string = opt.resume
|
| 76 |
+
|
| 77 |
+
for asset in asset_list:
|
| 78 |
+
if asset["fileName"] == "opt.yaml":
|
| 79 |
+
asset_id = asset["assetId"]
|
| 80 |
+
asset_binary = experiment.get_asset(asset_id, return_type="binary", stream=False)
|
| 81 |
+
opt_dict = yaml.safe_load(asset_binary)
|
| 82 |
+
for key, value in opt_dict.items():
|
| 83 |
+
setattr(opt, key, value)
|
| 84 |
+
opt.resume = resume_string
|
| 85 |
+
|
| 86 |
+
# Save hyperparameters to YAML file
|
| 87 |
+
# Necessary to pass checks in training script
|
| 88 |
+
save_dir = f"{opt.project}/{experiment.name}"
|
| 89 |
+
os.makedirs(save_dir, exist_ok=True)
|
| 90 |
+
|
| 91 |
+
hyp_yaml_path = f"{save_dir}/hyp.yaml"
|
| 92 |
+
with open(hyp_yaml_path, "w") as f:
|
| 93 |
+
yaml.dump(opt.hyp, f)
|
| 94 |
+
opt.hyp = hyp_yaml_path
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
def check_comet_weights(opt):
|
| 98 |
+
"""Downloads model weights from Comet and updates the
|
| 99 |
+
weights path to point to saved weights location
|
| 100 |
+
|
| 101 |
+
Args:
|
| 102 |
+
opt (argparse.Namespace): Command Line arguments passed
|
| 103 |
+
to YOLOv5 training script
|
| 104 |
+
|
| 105 |
+
Returns:
|
| 106 |
+
None/bool: Return True if weights are successfully downloaded
|
| 107 |
+
else return None
|
| 108 |
+
"""
|
| 109 |
+
if comet_ml is None:
|
| 110 |
+
return
|
| 111 |
+
|
| 112 |
+
if isinstance(opt.weights, str):
|
| 113 |
+
if opt.weights.startswith(COMET_PREFIX):
|
| 114 |
+
api = comet_ml.API()
|
| 115 |
+
resource = urlparse(opt.weights)
|
| 116 |
+
experiment_path = f"{resource.netloc}{resource.path}"
|
| 117 |
+
experiment = api.get(experiment_path)
|
| 118 |
+
download_model_checkpoint(opt, experiment)
|
| 119 |
+
return True
|
| 120 |
+
|
| 121 |
+
return None
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def check_comet_resume(opt):
|
| 125 |
+
"""Restores run parameters to its original state based on the model checkpoint
|
| 126 |
+
and logged Experiment parameters.
|
| 127 |
+
|
| 128 |
+
Args:
|
| 129 |
+
opt (argparse.Namespace): Command Line arguments passed
|
| 130 |
+
to YOLOv5 training script
|
| 131 |
+
|
| 132 |
+
Returns:
|
| 133 |
+
None/bool: Return True if the run is restored successfully
|
| 134 |
+
else return None
|
| 135 |
+
"""
|
| 136 |
+
if comet_ml is None:
|
| 137 |
+
return
|
| 138 |
+
|
| 139 |
+
if isinstance(opt.resume, str):
|
| 140 |
+
if opt.resume.startswith(COMET_PREFIX):
|
| 141 |
+
api = comet_ml.API()
|
| 142 |
+
resource = urlparse(opt.resume)
|
| 143 |
+
experiment_path = f"{resource.netloc}{resource.path}"
|
| 144 |
+
experiment = api.get(experiment_path)
|
| 145 |
+
set_opt_parameters(opt, experiment)
|
| 146 |
+
download_model_checkpoint(opt, experiment)
|
| 147 |
+
|
| 148 |
+
return True
|
| 149 |
+
|
| 150 |
+
return None
|
utils/loggers/comet/hpo.py
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import json
|
| 3 |
+
import logging
|
| 4 |
+
import os
|
| 5 |
+
import sys
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
|
| 8 |
+
import comet_ml
|
| 9 |
+
|
| 10 |
+
logger = logging.getLogger(__name__)
|
| 11 |
+
|
| 12 |
+
FILE = Path(__file__).resolve()
|
| 13 |
+
ROOT = FILE.parents[3] # YOLOv5 root directory
|
| 14 |
+
if str(ROOT) not in sys.path:
|
| 15 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
| 16 |
+
|
| 17 |
+
from train import train
|
| 18 |
+
from utils.callbacks import Callbacks
|
| 19 |
+
from utils.general import increment_path
|
| 20 |
+
from utils.torch_utils import select_device
|
| 21 |
+
|
| 22 |
+
# Project Configuration
|
| 23 |
+
config = comet_ml.config.get_config()
|
| 24 |
+
COMET_PROJECT_NAME = config.get_string(os.getenv("COMET_PROJECT_NAME"), "comet.project_name", default="yolov5")
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def get_args(known=False):
|
| 28 |
+
parser = argparse.ArgumentParser()
|
| 29 |
+
parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path')
|
| 30 |
+
parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
|
| 31 |
+
parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
|
| 32 |
+
parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
|
| 33 |
+
parser.add_argument('--epochs', type=int, default=300, help='total training epochs')
|
| 34 |
+
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
|
| 35 |
+
parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
|
| 36 |
+
parser.add_argument('--rect', action='store_true', help='rectangular training')
|
| 37 |
+
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
|
| 38 |
+
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
|
| 39 |
+
parser.add_argument('--noval', action='store_true', help='only validate final epoch')
|
| 40 |
+
parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
|
| 41 |
+
parser.add_argument('--noplots', action='store_true', help='save no plot files')
|
| 42 |
+
parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
|
| 43 |
+
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
|
| 44 |
+
parser.add_argument('--cache', type=str, nargs='?', const='ram', help='--cache images in "ram" (default) or "disk"')
|
| 45 |
+
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
|
| 46 |
+
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
|
| 47 |
+
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
|
| 48 |
+
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
|
| 49 |
+
parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
|
| 50 |
+
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
|
| 51 |
+
parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
|
| 52 |
+
parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
|
| 53 |
+
parser.add_argument('--name', default='exp', help='save to project/name')
|
| 54 |
+
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
|
| 55 |
+
parser.add_argument('--quad', action='store_true', help='quad dataloader')
|
| 56 |
+
parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
|
| 57 |
+
parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
|
| 58 |
+
parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
|
| 59 |
+
parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
|
| 60 |
+
parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
|
| 61 |
+
parser.add_argument('--seed', type=int, default=0, help='Global training seed')
|
| 62 |
+
parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
|
| 63 |
+
|
| 64 |
+
# Weights & Biases arguments
|
| 65 |
+
parser.add_argument('--entity', default=None, help='W&B: Entity')
|
| 66 |
+
parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='W&B: Upload data, "val" option')
|
| 67 |
+
parser.add_argument('--bbox_interval', type=int, default=-1, help='W&B: Set bounding-box image logging interval')
|
| 68 |
+
parser.add_argument('--artifact_alias', type=str, default='latest', help='W&B: Version of dataset artifact to use')
|
| 69 |
+
|
| 70 |
+
# Comet Arguments
|
| 71 |
+
parser.add_argument("--comet_optimizer_config", type=str, help="Comet: Path to a Comet Optimizer Config File.")
|
| 72 |
+
parser.add_argument("--comet_optimizer_id", type=str, help="Comet: ID of the Comet Optimizer sweep.")
|
| 73 |
+
parser.add_argument("--comet_optimizer_objective", type=str, help="Comet: Set to 'minimize' or 'maximize'.")
|
| 74 |
+
parser.add_argument("--comet_optimizer_metric", type=str, help="Comet: Metric to Optimize.")
|
| 75 |
+
parser.add_argument("--comet_optimizer_workers",
|
| 76 |
+
type=int,
|
| 77 |
+
default=1,
|
| 78 |
+
help="Comet: Number of Parallel Workers to use with the Comet Optimizer.")
|
| 79 |
+
|
| 80 |
+
return parser.parse_known_args()[0] if known else parser.parse_args()
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def run(parameters, opt):
|
| 84 |
+
hyp_dict = {k: v for k, v in parameters.items() if k not in ["epochs", "batch_size"]}
|
| 85 |
+
|
| 86 |
+
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve))
|
| 87 |
+
opt.batch_size = parameters.get("batch_size")
|
| 88 |
+
opt.epochs = parameters.get("epochs")
|
| 89 |
+
|
| 90 |
+
device = select_device(opt.device, batch_size=opt.batch_size)
|
| 91 |
+
train(hyp_dict, opt, device, callbacks=Callbacks())
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
if __name__ == "__main__":
|
| 95 |
+
opt = get_args(known=True)
|
| 96 |
+
|
| 97 |
+
opt.weights = str(opt.weights)
|
| 98 |
+
opt.cfg = str(opt.cfg)
|
| 99 |
+
opt.data = str(opt.data)
|
| 100 |
+
opt.project = str(opt.project)
|
| 101 |
+
|
| 102 |
+
optimizer_id = os.getenv("COMET_OPTIMIZER_ID")
|
| 103 |
+
if optimizer_id is None:
|
| 104 |
+
with open(opt.comet_optimizer_config) as f:
|
| 105 |
+
optimizer_config = json.load(f)
|
| 106 |
+
optimizer = comet_ml.Optimizer(optimizer_config)
|
| 107 |
+
else:
|
| 108 |
+
optimizer = comet_ml.Optimizer(optimizer_id)
|
| 109 |
+
|
| 110 |
+
opt.comet_optimizer_id = optimizer.id
|
| 111 |
+
status = optimizer.status()
|
| 112 |
+
|
| 113 |
+
opt.comet_optimizer_objective = status["spec"]["objective"]
|
| 114 |
+
opt.comet_optimizer_metric = status["spec"]["metric"]
|
| 115 |
+
|
| 116 |
+
logger.info("COMET INFO: Starting Hyperparameter Sweep")
|
| 117 |
+
for parameter in optimizer.get_parameters():
|
| 118 |
+
run(parameter["parameters"], opt)
|
utils/loggers/comet/optimizer_config.json
ADDED
|
@@ -0,0 +1,209 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"algorithm": "random",
|
| 3 |
+
"parameters": {
|
| 4 |
+
"anchor_t": {
|
| 5 |
+
"type": "discrete",
|
| 6 |
+
"values": [
|
| 7 |
+
2,
|
| 8 |
+
8
|
| 9 |
+
]
|
| 10 |
+
},
|
| 11 |
+
"batch_size": {
|
| 12 |
+
"type": "discrete",
|
| 13 |
+
"values": [
|
| 14 |
+
16,
|
| 15 |
+
32,
|
| 16 |
+
64
|
| 17 |
+
]
|
| 18 |
+
},
|
| 19 |
+
"box": {
|
| 20 |
+
"type": "discrete",
|
| 21 |
+
"values": [
|
| 22 |
+
0.02,
|
| 23 |
+
0.2
|
| 24 |
+
]
|
| 25 |
+
},
|
| 26 |
+
"cls": {
|
| 27 |
+
"type": "discrete",
|
| 28 |
+
"values": [
|
| 29 |
+
0.2
|
| 30 |
+
]
|
| 31 |
+
},
|
| 32 |
+
"cls_pw": {
|
| 33 |
+
"type": "discrete",
|
| 34 |
+
"values": [
|
| 35 |
+
0.5
|
| 36 |
+
]
|
| 37 |
+
},
|
| 38 |
+
"copy_paste": {
|
| 39 |
+
"type": "discrete",
|
| 40 |
+
"values": [
|
| 41 |
+
1
|
| 42 |
+
]
|
| 43 |
+
},
|
| 44 |
+
"degrees": {
|
| 45 |
+
"type": "discrete",
|
| 46 |
+
"values": [
|
| 47 |
+
0,
|
| 48 |
+
45
|
| 49 |
+
]
|
| 50 |
+
},
|
| 51 |
+
"epochs": {
|
| 52 |
+
"type": "discrete",
|
| 53 |
+
"values": [
|
| 54 |
+
5
|
| 55 |
+
]
|
| 56 |
+
},
|
| 57 |
+
"fl_gamma": {
|
| 58 |
+
"type": "discrete",
|
| 59 |
+
"values": [
|
| 60 |
+
0
|
| 61 |
+
]
|
| 62 |
+
},
|
| 63 |
+
"fliplr": {
|
| 64 |
+
"type": "discrete",
|
| 65 |
+
"values": [
|
| 66 |
+
0
|
| 67 |
+
]
|
| 68 |
+
},
|
| 69 |
+
"flipud": {
|
| 70 |
+
"type": "discrete",
|
| 71 |
+
"values": [
|
| 72 |
+
0
|
| 73 |
+
]
|
| 74 |
+
},
|
| 75 |
+
"hsv_h": {
|
| 76 |
+
"type": "discrete",
|
| 77 |
+
"values": [
|
| 78 |
+
0
|
| 79 |
+
]
|
| 80 |
+
},
|
| 81 |
+
"hsv_s": {
|
| 82 |
+
"type": "discrete",
|
| 83 |
+
"values": [
|
| 84 |
+
0
|
| 85 |
+
]
|
| 86 |
+
},
|
| 87 |
+
"hsv_v": {
|
| 88 |
+
"type": "discrete",
|
| 89 |
+
"values": [
|
| 90 |
+
0
|
| 91 |
+
]
|
| 92 |
+
},
|
| 93 |
+
"iou_t": {
|
| 94 |
+
"type": "discrete",
|
| 95 |
+
"values": [
|
| 96 |
+
0.7
|
| 97 |
+
]
|
| 98 |
+
},
|
| 99 |
+
"lr0": {
|
| 100 |
+
"type": "discrete",
|
| 101 |
+
"values": [
|
| 102 |
+
1e-05,
|
| 103 |
+
0.1
|
| 104 |
+
]
|
| 105 |
+
},
|
| 106 |
+
"lrf": {
|
| 107 |
+
"type": "discrete",
|
| 108 |
+
"values": [
|
| 109 |
+
0.01,
|
| 110 |
+
1
|
| 111 |
+
]
|
| 112 |
+
},
|
| 113 |
+
"mixup": {
|
| 114 |
+
"type": "discrete",
|
| 115 |
+
"values": [
|
| 116 |
+
1
|
| 117 |
+
]
|
| 118 |
+
},
|
| 119 |
+
"momentum": {
|
| 120 |
+
"type": "discrete",
|
| 121 |
+
"values": [
|
| 122 |
+
0.6
|
| 123 |
+
]
|
| 124 |
+
},
|
| 125 |
+
"mosaic": {
|
| 126 |
+
"type": "discrete",
|
| 127 |
+
"values": [
|
| 128 |
+
0
|
| 129 |
+
]
|
| 130 |
+
},
|
| 131 |
+
"obj": {
|
| 132 |
+
"type": "discrete",
|
| 133 |
+
"values": [
|
| 134 |
+
0.2
|
| 135 |
+
]
|
| 136 |
+
},
|
| 137 |
+
"obj_pw": {
|
| 138 |
+
"type": "discrete",
|
| 139 |
+
"values": [
|
| 140 |
+
0.5
|
| 141 |
+
]
|
| 142 |
+
},
|
| 143 |
+
"optimizer": {
|
| 144 |
+
"type": "categorical",
|
| 145 |
+
"values": [
|
| 146 |
+
"SGD",
|
| 147 |
+
"Adam",
|
| 148 |
+
"AdamW"
|
| 149 |
+
]
|
| 150 |
+
},
|
| 151 |
+
"perspective": {
|
| 152 |
+
"type": "discrete",
|
| 153 |
+
"values": [
|
| 154 |
+
0
|
| 155 |
+
]
|
| 156 |
+
},
|
| 157 |
+
"scale": {
|
| 158 |
+
"type": "discrete",
|
| 159 |
+
"values": [
|
| 160 |
+
0
|
| 161 |
+
]
|
| 162 |
+
},
|
| 163 |
+
"shear": {
|
| 164 |
+
"type": "discrete",
|
| 165 |
+
"values": [
|
| 166 |
+
0
|
| 167 |
+
]
|
| 168 |
+
},
|
| 169 |
+
"translate": {
|
| 170 |
+
"type": "discrete",
|
| 171 |
+
"values": [
|
| 172 |
+
0
|
| 173 |
+
]
|
| 174 |
+
},
|
| 175 |
+
"warmup_bias_lr": {
|
| 176 |
+
"type": "discrete",
|
| 177 |
+
"values": [
|
| 178 |
+
0,
|
| 179 |
+
0.2
|
| 180 |
+
]
|
| 181 |
+
},
|
| 182 |
+
"warmup_epochs": {
|
| 183 |
+
"type": "discrete",
|
| 184 |
+
"values": [
|
| 185 |
+
5
|
| 186 |
+
]
|
| 187 |
+
},
|
| 188 |
+
"warmup_momentum": {
|
| 189 |
+
"type": "discrete",
|
| 190 |
+
"values": [
|
| 191 |
+
0,
|
| 192 |
+
0.95
|
| 193 |
+
]
|
| 194 |
+
},
|
| 195 |
+
"weight_decay": {
|
| 196 |
+
"type": "discrete",
|
| 197 |
+
"values": [
|
| 198 |
+
0,
|
| 199 |
+
0.001
|
| 200 |
+
]
|
| 201 |
+
}
|
| 202 |
+
},
|
| 203 |
+
"spec": {
|
| 204 |
+
"maxCombo": 0,
|
| 205 |
+
"metric": "metrics/mAP_0.5",
|
| 206 |
+
"objective": "maximize"
|
| 207 |
+
},
|
| 208 |
+
"trials": 1
|
| 209 |
+
}
|
utils/loggers/wandb/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
# init
|
utils/loggers/wandb/log_dataset.py
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
|
| 3 |
+
from wandb_utils import WandbLogger
|
| 4 |
+
|
| 5 |
+
from utils.general import LOGGER
|
| 6 |
+
|
| 7 |
+
WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def create_dataset_artifact(opt):
|
| 11 |
+
logger = WandbLogger(opt, None, job_type='Dataset Creation') # TODO: return value unused
|
| 12 |
+
if not logger.wandb:
|
| 13 |
+
LOGGER.info("install wandb using `pip install wandb` to log the dataset")
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
if __name__ == '__main__':
|
| 17 |
+
parser = argparse.ArgumentParser()
|
| 18 |
+
parser.add_argument('--data', type=str, default='data/coco128.yaml', help='data.yaml path')
|
| 19 |
+
parser.add_argument('--single-cls', action='store_true', help='train as single-class dataset')
|
| 20 |
+
parser.add_argument('--project', type=str, default='YOLOv5', help='name of W&B Project')
|
| 21 |
+
parser.add_argument('--entity', default=None, help='W&B entity')
|
| 22 |
+
parser.add_argument('--name', type=str, default='log dataset', help='name of W&B run')
|
| 23 |
+
|
| 24 |
+
opt = parser.parse_args()
|
| 25 |
+
opt.resume = False # Explicitly disallow resume check for dataset upload job
|
| 26 |
+
|
| 27 |
+
create_dataset_artifact(opt)
|
utils/loggers/wandb/sweep.py
ADDED
|
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import sys
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
|
| 4 |
+
import wandb
|
| 5 |
+
|
| 6 |
+
FILE = Path(__file__).resolve()
|
| 7 |
+
ROOT = FILE.parents[3] # YOLOv5 root directory
|
| 8 |
+
if str(ROOT) not in sys.path:
|
| 9 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
| 10 |
+
|
| 11 |
+
from train import parse_opt, train
|
| 12 |
+
from utils.callbacks import Callbacks
|
| 13 |
+
from utils.general import increment_path
|
| 14 |
+
from utils.torch_utils import select_device
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def sweep():
|
| 18 |
+
wandb.init()
|
| 19 |
+
# Get hyp dict from sweep agent. Copy because train() modifies parameters which confused wandb.
|
| 20 |
+
hyp_dict = vars(wandb.config).get("_items").copy()
|
| 21 |
+
|
| 22 |
+
# Workaround: get necessary opt args
|
| 23 |
+
opt = parse_opt(known=True)
|
| 24 |
+
opt.batch_size = hyp_dict.get("batch_size")
|
| 25 |
+
opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok or opt.evolve))
|
| 26 |
+
opt.epochs = hyp_dict.get("epochs")
|
| 27 |
+
opt.nosave = True
|
| 28 |
+
opt.data = hyp_dict.get("data")
|
| 29 |
+
opt.weights = str(opt.weights)
|
| 30 |
+
opt.cfg = str(opt.cfg)
|
| 31 |
+
opt.data = str(opt.data)
|
| 32 |
+
opt.hyp = str(opt.hyp)
|
| 33 |
+
opt.project = str(opt.project)
|
| 34 |
+
device = select_device(opt.device, batch_size=opt.batch_size)
|
| 35 |
+
|
| 36 |
+
# train
|
| 37 |
+
train(hyp_dict, opt, device, callbacks=Callbacks())
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
if __name__ == "__main__":
|
| 41 |
+
sweep()
|
utils/loggers/wandb/sweep.yaml
ADDED
|
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Hyperparameters for training
|
| 2 |
+
# To set range-
|
| 3 |
+
# Provide min and max values as:
|
| 4 |
+
# parameter:
|
| 5 |
+
#
|
| 6 |
+
# min: scalar
|
| 7 |
+
# max: scalar
|
| 8 |
+
# OR
|
| 9 |
+
#
|
| 10 |
+
# Set a specific list of search space-
|
| 11 |
+
# parameter:
|
| 12 |
+
# values: [scalar1, scalar2, scalar3...]
|
| 13 |
+
#
|
| 14 |
+
# You can use grid, bayesian and hyperopt search strategy
|
| 15 |
+
# For more info on configuring sweeps visit - https://docs.wandb.ai/guides/sweeps/configuration
|
| 16 |
+
|
| 17 |
+
program: utils/loggers/wandb/sweep.py
|
| 18 |
+
method: random
|
| 19 |
+
metric:
|
| 20 |
+
name: metrics/mAP_0.5
|
| 21 |
+
goal: maximize
|
| 22 |
+
|
| 23 |
+
parameters:
|
| 24 |
+
# hyperparameters: set either min, max range or values list
|
| 25 |
+
data:
|
| 26 |
+
value: "data/coco128.yaml"
|
| 27 |
+
batch_size:
|
| 28 |
+
values: [64]
|
| 29 |
+
epochs:
|
| 30 |
+
values: [10]
|
| 31 |
+
|
| 32 |
+
lr0:
|
| 33 |
+
distribution: uniform
|
| 34 |
+
min: 1e-5
|
| 35 |
+
max: 1e-1
|
| 36 |
+
lrf:
|
| 37 |
+
distribution: uniform
|
| 38 |
+
min: 0.01
|
| 39 |
+
max: 1.0
|
| 40 |
+
momentum:
|
| 41 |
+
distribution: uniform
|
| 42 |
+
min: 0.6
|
| 43 |
+
max: 0.98
|
| 44 |
+
weight_decay:
|
| 45 |
+
distribution: uniform
|
| 46 |
+
min: 0.0
|
| 47 |
+
max: 0.001
|
| 48 |
+
warmup_epochs:
|
| 49 |
+
distribution: uniform
|
| 50 |
+
min: 0.0
|
| 51 |
+
max: 5.0
|
| 52 |
+
warmup_momentum:
|
| 53 |
+
distribution: uniform
|
| 54 |
+
min: 0.0
|
| 55 |
+
max: 0.95
|
| 56 |
+
warmup_bias_lr:
|
| 57 |
+
distribution: uniform
|
| 58 |
+
min: 0.0
|
| 59 |
+
max: 0.2
|
| 60 |
+
box:
|
| 61 |
+
distribution: uniform
|
| 62 |
+
min: 0.02
|
| 63 |
+
max: 0.2
|
| 64 |
+
cls:
|
| 65 |
+
distribution: uniform
|
| 66 |
+
min: 0.2
|
| 67 |
+
max: 4.0
|
| 68 |
+
cls_pw:
|
| 69 |
+
distribution: uniform
|
| 70 |
+
min: 0.5
|
| 71 |
+
max: 2.0
|
| 72 |
+
obj:
|
| 73 |
+
distribution: uniform
|
| 74 |
+
min: 0.2
|
| 75 |
+
max: 4.0
|
| 76 |
+
obj_pw:
|
| 77 |
+
distribution: uniform
|
| 78 |
+
min: 0.5
|
| 79 |
+
max: 2.0
|
| 80 |
+
iou_t:
|
| 81 |
+
distribution: uniform
|
| 82 |
+
min: 0.1
|
| 83 |
+
max: 0.7
|
| 84 |
+
anchor_t:
|
| 85 |
+
distribution: uniform
|
| 86 |
+
min: 2.0
|
| 87 |
+
max: 8.0
|
| 88 |
+
fl_gamma:
|
| 89 |
+
distribution: uniform
|
| 90 |
+
min: 0.0
|
| 91 |
+
max: 4.0
|
| 92 |
+
hsv_h:
|
| 93 |
+
distribution: uniform
|
| 94 |
+
min: 0.0
|
| 95 |
+
max: 0.1
|
| 96 |
+
hsv_s:
|
| 97 |
+
distribution: uniform
|
| 98 |
+
min: 0.0
|
| 99 |
+
max: 0.9
|
| 100 |
+
hsv_v:
|
| 101 |
+
distribution: uniform
|
| 102 |
+
min: 0.0
|
| 103 |
+
max: 0.9
|
| 104 |
+
degrees:
|
| 105 |
+
distribution: uniform
|
| 106 |
+
min: 0.0
|
| 107 |
+
max: 45.0
|
| 108 |
+
translate:
|
| 109 |
+
distribution: uniform
|
| 110 |
+
min: 0.0
|
| 111 |
+
max: 0.9
|
| 112 |
+
scale:
|
| 113 |
+
distribution: uniform
|
| 114 |
+
min: 0.0
|
| 115 |
+
max: 0.9
|
| 116 |
+
shear:
|
| 117 |
+
distribution: uniform
|
| 118 |
+
min: 0.0
|
| 119 |
+
max: 10.0
|
| 120 |
+
perspective:
|
| 121 |
+
distribution: uniform
|
| 122 |
+
min: 0.0
|
| 123 |
+
max: 0.001
|
| 124 |
+
flipud:
|
| 125 |
+
distribution: uniform
|
| 126 |
+
min: 0.0
|
| 127 |
+
max: 1.0
|
| 128 |
+
fliplr:
|
| 129 |
+
distribution: uniform
|
| 130 |
+
min: 0.0
|
| 131 |
+
max: 1.0
|
| 132 |
+
mosaic:
|
| 133 |
+
distribution: uniform
|
| 134 |
+
min: 0.0
|
| 135 |
+
max: 1.0
|
| 136 |
+
mixup:
|
| 137 |
+
distribution: uniform
|
| 138 |
+
min: 0.0
|
| 139 |
+
max: 1.0
|
| 140 |
+
copy_paste:
|
| 141 |
+
distribution: uniform
|
| 142 |
+
min: 0.0
|
| 143 |
+
max: 1.0
|
utils/loggers/wandb/wandb_utils.py
ADDED
|
@@ -0,0 +1,589 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Utilities and tools for tracking runs with Weights & Biases."""
|
| 2 |
+
|
| 3 |
+
import logging
|
| 4 |
+
import os
|
| 5 |
+
import sys
|
| 6 |
+
from contextlib import contextmanager
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
from typing import Dict
|
| 9 |
+
|
| 10 |
+
import yaml
|
| 11 |
+
from tqdm import tqdm
|
| 12 |
+
|
| 13 |
+
FILE = Path(__file__).resolve()
|
| 14 |
+
ROOT = FILE.parents[3] # YOLOv5 root directory
|
| 15 |
+
if str(ROOT) not in sys.path:
|
| 16 |
+
sys.path.append(str(ROOT)) # add ROOT to PATH
|
| 17 |
+
|
| 18 |
+
from utils.dataloaders import LoadImagesAndLabels, img2label_paths
|
| 19 |
+
from utils.general import LOGGER, check_dataset, check_file
|
| 20 |
+
|
| 21 |
+
try:
|
| 22 |
+
import wandb
|
| 23 |
+
|
| 24 |
+
assert hasattr(wandb, '__version__') # verify package import not local dir
|
| 25 |
+
except (ImportError, AssertionError):
|
| 26 |
+
wandb = None
|
| 27 |
+
|
| 28 |
+
RANK = int(os.getenv('RANK', -1))
|
| 29 |
+
WANDB_ARTIFACT_PREFIX = 'wandb-artifact://'
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def remove_prefix(from_string, prefix=WANDB_ARTIFACT_PREFIX):
|
| 33 |
+
return from_string[len(prefix):]
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def check_wandb_config_file(data_config_file):
|
| 37 |
+
wandb_config = '_wandb.'.join(data_config_file.rsplit('.', 1)) # updated data.yaml path
|
| 38 |
+
if Path(wandb_config).is_file():
|
| 39 |
+
return wandb_config
|
| 40 |
+
return data_config_file
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def check_wandb_dataset(data_file):
|
| 44 |
+
is_trainset_wandb_artifact = False
|
| 45 |
+
is_valset_wandb_artifact = False
|
| 46 |
+
if isinstance(data_file, dict):
|
| 47 |
+
# In that case another dataset manager has already processed it and we don't have to
|
| 48 |
+
return data_file
|
| 49 |
+
if check_file(data_file) and data_file.endswith('.yaml'):
|
| 50 |
+
with open(data_file, errors='ignore') as f:
|
| 51 |
+
data_dict = yaml.safe_load(f)
|
| 52 |
+
is_trainset_wandb_artifact = isinstance(data_dict['train'],
|
| 53 |
+
str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX)
|
| 54 |
+
is_valset_wandb_artifact = isinstance(data_dict['val'],
|
| 55 |
+
str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX)
|
| 56 |
+
if is_trainset_wandb_artifact or is_valset_wandb_artifact:
|
| 57 |
+
return data_dict
|
| 58 |
+
else:
|
| 59 |
+
return check_dataset(data_file)
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def get_run_info(run_path):
|
| 63 |
+
run_path = Path(remove_prefix(run_path, WANDB_ARTIFACT_PREFIX))
|
| 64 |
+
run_id = run_path.stem
|
| 65 |
+
project = run_path.parent.stem
|
| 66 |
+
entity = run_path.parent.parent.stem
|
| 67 |
+
model_artifact_name = 'run_' + run_id + '_model'
|
| 68 |
+
return entity, project, run_id, model_artifact_name
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def check_wandb_resume(opt):
|
| 72 |
+
process_wandb_config_ddp_mode(opt) if RANK not in [-1, 0] else None
|
| 73 |
+
if isinstance(opt.resume, str):
|
| 74 |
+
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
|
| 75 |
+
if RANK not in [-1, 0]: # For resuming DDP runs
|
| 76 |
+
entity, project, run_id, model_artifact_name = get_run_info(opt.resume)
|
| 77 |
+
api = wandb.Api()
|
| 78 |
+
artifact = api.artifact(entity + '/' + project + '/' + model_artifact_name + ':latest')
|
| 79 |
+
modeldir = artifact.download()
|
| 80 |
+
opt.weights = str(Path(modeldir) / "last.pt")
|
| 81 |
+
return True
|
| 82 |
+
return None
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def process_wandb_config_ddp_mode(opt):
|
| 86 |
+
with open(check_file(opt.data), errors='ignore') as f:
|
| 87 |
+
data_dict = yaml.safe_load(f) # data dict
|
| 88 |
+
train_dir, val_dir = None, None
|
| 89 |
+
if isinstance(data_dict['train'], str) and data_dict['train'].startswith(WANDB_ARTIFACT_PREFIX):
|
| 90 |
+
api = wandb.Api()
|
| 91 |
+
train_artifact = api.artifact(remove_prefix(data_dict['train']) + ':' + opt.artifact_alias)
|
| 92 |
+
train_dir = train_artifact.download()
|
| 93 |
+
train_path = Path(train_dir) / 'data/images/'
|
| 94 |
+
data_dict['train'] = str(train_path)
|
| 95 |
+
|
| 96 |
+
if isinstance(data_dict['val'], str) and data_dict['val'].startswith(WANDB_ARTIFACT_PREFIX):
|
| 97 |
+
api = wandb.Api()
|
| 98 |
+
val_artifact = api.artifact(remove_prefix(data_dict['val']) + ':' + opt.artifact_alias)
|
| 99 |
+
val_dir = val_artifact.download()
|
| 100 |
+
val_path = Path(val_dir) / 'data/images/'
|
| 101 |
+
data_dict['val'] = str(val_path)
|
| 102 |
+
if train_dir or val_dir:
|
| 103 |
+
ddp_data_path = str(Path(val_dir) / 'wandb_local_data.yaml')
|
| 104 |
+
with open(ddp_data_path, 'w') as f:
|
| 105 |
+
yaml.safe_dump(data_dict, f)
|
| 106 |
+
opt.data = ddp_data_path
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
class WandbLogger():
|
| 110 |
+
"""Log training runs, datasets, models, and predictions to Weights & Biases.
|
| 111 |
+
|
| 112 |
+
This logger sends information to W&B at wandb.ai. By default, this information
|
| 113 |
+
includes hyperparameters, system configuration and metrics, model metrics,
|
| 114 |
+
and basic data metrics and analyses.
|
| 115 |
+
|
| 116 |
+
By providing additional command line arguments to train.py, datasets,
|
| 117 |
+
models and predictions can also be logged.
|
| 118 |
+
|
| 119 |
+
For more on how this logger is used, see the Weights & Biases documentation:
|
| 120 |
+
https://docs.wandb.com/guides/integrations/yolov5
|
| 121 |
+
"""
|
| 122 |
+
|
| 123 |
+
def __init__(self, opt, run_id=None, job_type='Training'):
|
| 124 |
+
"""
|
| 125 |
+
- Initialize WandbLogger instance
|
| 126 |
+
- Upload dataset if opt.upload_dataset is True
|
| 127 |
+
- Setup training processes if job_type is 'Training'
|
| 128 |
+
|
| 129 |
+
arguments:
|
| 130 |
+
opt (namespace) -- Commandline arguments for this run
|
| 131 |
+
run_id (str) -- Run ID of W&B run to be resumed
|
| 132 |
+
job_type (str) -- To set the job_type for this run
|
| 133 |
+
|
| 134 |
+
"""
|
| 135 |
+
# Temporary-fix
|
| 136 |
+
if opt.upload_dataset:
|
| 137 |
+
opt.upload_dataset = False
|
| 138 |
+
# LOGGER.info("Uploading Dataset functionality is not being supported temporarily due to a bug.")
|
| 139 |
+
|
| 140 |
+
# Pre-training routine --
|
| 141 |
+
self.job_type = job_type
|
| 142 |
+
self.wandb, self.wandb_run = wandb, None if not wandb else wandb.run
|
| 143 |
+
self.val_artifact, self.train_artifact = None, None
|
| 144 |
+
self.train_artifact_path, self.val_artifact_path = None, None
|
| 145 |
+
self.result_artifact = None
|
| 146 |
+
self.val_table, self.result_table = None, None
|
| 147 |
+
self.bbox_media_panel_images = []
|
| 148 |
+
self.val_table_path_map = None
|
| 149 |
+
self.max_imgs_to_log = 16
|
| 150 |
+
self.wandb_artifact_data_dict = None
|
| 151 |
+
self.data_dict = None
|
| 152 |
+
# It's more elegant to stick to 1 wandb.init call,
|
| 153 |
+
# but useful config data is overwritten in the WandbLogger's wandb.init call
|
| 154 |
+
if isinstance(opt.resume, str): # checks resume from artifact
|
| 155 |
+
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
|
| 156 |
+
entity, project, run_id, model_artifact_name = get_run_info(opt.resume)
|
| 157 |
+
model_artifact_name = WANDB_ARTIFACT_PREFIX + model_artifact_name
|
| 158 |
+
assert wandb, 'install wandb to resume wandb runs'
|
| 159 |
+
# Resume wandb-artifact:// runs here| workaround for not overwriting wandb.config
|
| 160 |
+
self.wandb_run = wandb.init(id=run_id,
|
| 161 |
+
project=project,
|
| 162 |
+
entity=entity,
|
| 163 |
+
resume='allow',
|
| 164 |
+
allow_val_change=True)
|
| 165 |
+
opt.resume = model_artifact_name
|
| 166 |
+
elif self.wandb:
|
| 167 |
+
self.wandb_run = wandb.init(config=opt,
|
| 168 |
+
resume="allow",
|
| 169 |
+
project='YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem,
|
| 170 |
+
entity=opt.entity,
|
| 171 |
+
name=opt.name if opt.name != 'exp' else None,
|
| 172 |
+
job_type=job_type,
|
| 173 |
+
id=run_id,
|
| 174 |
+
allow_val_change=True) if not wandb.run else wandb.run
|
| 175 |
+
if self.wandb_run:
|
| 176 |
+
if self.job_type == 'Training':
|
| 177 |
+
if opt.upload_dataset:
|
| 178 |
+
if not opt.resume:
|
| 179 |
+
self.wandb_artifact_data_dict = self.check_and_upload_dataset(opt)
|
| 180 |
+
|
| 181 |
+
if isinstance(opt.data, dict):
|
| 182 |
+
# This means another dataset manager has already processed the dataset info (e.g. ClearML)
|
| 183 |
+
# and they will have stored the already processed dict in opt.data
|
| 184 |
+
self.data_dict = opt.data
|
| 185 |
+
elif opt.resume:
|
| 186 |
+
# resume from artifact
|
| 187 |
+
if isinstance(opt.resume, str) and opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
|
| 188 |
+
self.data_dict = dict(self.wandb_run.config.data_dict)
|
| 189 |
+
else: # local resume
|
| 190 |
+
self.data_dict = check_wandb_dataset(opt.data)
|
| 191 |
+
else:
|
| 192 |
+
self.data_dict = check_wandb_dataset(opt.data)
|
| 193 |
+
self.wandb_artifact_data_dict = self.wandb_artifact_data_dict or self.data_dict
|
| 194 |
+
|
| 195 |
+
# write data_dict to config. useful for resuming from artifacts. Do this only when not resuming.
|
| 196 |
+
self.wandb_run.config.update({'data_dict': self.wandb_artifact_data_dict}, allow_val_change=True)
|
| 197 |
+
self.setup_training(opt)
|
| 198 |
+
|
| 199 |
+
if self.job_type == 'Dataset Creation':
|
| 200 |
+
self.wandb_run.config.update({"upload_dataset": True})
|
| 201 |
+
self.data_dict = self.check_and_upload_dataset(opt)
|
| 202 |
+
|
| 203 |
+
def check_and_upload_dataset(self, opt):
|
| 204 |
+
"""
|
| 205 |
+
Check if the dataset format is compatible and upload it as W&B artifact
|
| 206 |
+
|
| 207 |
+
arguments:
|
| 208 |
+
opt (namespace)-- Commandline arguments for current run
|
| 209 |
+
|
| 210 |
+
returns:
|
| 211 |
+
Updated dataset info dictionary where local dataset paths are replaced by WAND_ARFACT_PREFIX links.
|
| 212 |
+
"""
|
| 213 |
+
assert wandb, 'Install wandb to upload dataset'
|
| 214 |
+
config_path = self.log_dataset_artifact(opt.data, opt.single_cls,
|
| 215 |
+
'YOLOv5' if opt.project == 'runs/train' else Path(opt.project).stem)
|
| 216 |
+
with open(config_path, errors='ignore') as f:
|
| 217 |
+
wandb_data_dict = yaml.safe_load(f)
|
| 218 |
+
return wandb_data_dict
|
| 219 |
+
|
| 220 |
+
def setup_training(self, opt):
|
| 221 |
+
"""
|
| 222 |
+
Setup the necessary processes for training YOLO models:
|
| 223 |
+
- Attempt to download model checkpoint and dataset artifacts if opt.resume stats with WANDB_ARTIFACT_PREFIX
|
| 224 |
+
- Update data_dict, to contain info of previous run if resumed and the paths of dataset artifact if downloaded
|
| 225 |
+
- Setup log_dict, initialize bbox_interval
|
| 226 |
+
|
| 227 |
+
arguments:
|
| 228 |
+
opt (namespace) -- commandline arguments for this run
|
| 229 |
+
|
| 230 |
+
"""
|
| 231 |
+
self.log_dict, self.current_epoch = {}, 0
|
| 232 |
+
self.bbox_interval = opt.bbox_interval
|
| 233 |
+
if isinstance(opt.resume, str):
|
| 234 |
+
modeldir, _ = self.download_model_artifact(opt)
|
| 235 |
+
if modeldir:
|
| 236 |
+
self.weights = Path(modeldir) / "last.pt"
|
| 237 |
+
config = self.wandb_run.config
|
| 238 |
+
opt.weights, opt.save_period, opt.batch_size, opt.bbox_interval, opt.epochs, opt.hyp, opt.imgsz = str(
|
| 239 |
+
self.weights), config.save_period, config.batch_size, config.bbox_interval, config.epochs,\
|
| 240 |
+
config.hyp, config.imgsz
|
| 241 |
+
data_dict = self.data_dict
|
| 242 |
+
if self.val_artifact is None: # If --upload_dataset is set, use the existing artifact, don't download
|
| 243 |
+
self.train_artifact_path, self.train_artifact = self.download_dataset_artifact(
|
| 244 |
+
data_dict.get('train'), opt.artifact_alias)
|
| 245 |
+
self.val_artifact_path, self.val_artifact = self.download_dataset_artifact(
|
| 246 |
+
data_dict.get('val'), opt.artifact_alias)
|
| 247 |
+
|
| 248 |
+
if self.train_artifact_path is not None:
|
| 249 |
+
train_path = Path(self.train_artifact_path) / 'data/images/'
|
| 250 |
+
data_dict['train'] = str(train_path)
|
| 251 |
+
if self.val_artifact_path is not None:
|
| 252 |
+
val_path = Path(self.val_artifact_path) / 'data/images/'
|
| 253 |
+
data_dict['val'] = str(val_path)
|
| 254 |
+
|
| 255 |
+
if self.val_artifact is not None:
|
| 256 |
+
self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
|
| 257 |
+
columns = ["epoch", "id", "ground truth", "prediction"]
|
| 258 |
+
columns.extend(self.data_dict['names'])
|
| 259 |
+
self.result_table = wandb.Table(columns)
|
| 260 |
+
self.val_table = self.val_artifact.get("val")
|
| 261 |
+
if self.val_table_path_map is None:
|
| 262 |
+
self.map_val_table_path()
|
| 263 |
+
if opt.bbox_interval == -1:
|
| 264 |
+
self.bbox_interval = opt.bbox_interval = (opt.epochs // 10) if opt.epochs > 10 else 1
|
| 265 |
+
if opt.evolve or opt.noplots:
|
| 266 |
+
self.bbox_interval = opt.bbox_interval = opt.epochs + 1 # disable bbox_interval
|
| 267 |
+
train_from_artifact = self.train_artifact_path is not None and self.val_artifact_path is not None
|
| 268 |
+
# Update the the data_dict to point to local artifacts dir
|
| 269 |
+
if train_from_artifact:
|
| 270 |
+
self.data_dict = data_dict
|
| 271 |
+
|
| 272 |
+
def download_dataset_artifact(self, path, alias):
|
| 273 |
+
"""
|
| 274 |
+
download the model checkpoint artifact if the path starts with WANDB_ARTIFACT_PREFIX
|
| 275 |
+
|
| 276 |
+
arguments:
|
| 277 |
+
path -- path of the dataset to be used for training
|
| 278 |
+
alias (str)-- alias of the artifact to be download/used for training
|
| 279 |
+
|
| 280 |
+
returns:
|
| 281 |
+
(str, wandb.Artifact) -- path of the downladed dataset and it's corresponding artifact object if dataset
|
| 282 |
+
is found otherwise returns (None, None)
|
| 283 |
+
"""
|
| 284 |
+
if isinstance(path, str) and path.startswith(WANDB_ARTIFACT_PREFIX):
|
| 285 |
+
artifact_path = Path(remove_prefix(path, WANDB_ARTIFACT_PREFIX) + ":" + alias)
|
| 286 |
+
dataset_artifact = wandb.use_artifact(artifact_path.as_posix().replace("\\", "/"))
|
| 287 |
+
assert dataset_artifact is not None, "'Error: W&B dataset artifact doesn\'t exist'"
|
| 288 |
+
datadir = dataset_artifact.download()
|
| 289 |
+
return datadir, dataset_artifact
|
| 290 |
+
return None, None
|
| 291 |
+
|
| 292 |
+
def download_model_artifact(self, opt):
|
| 293 |
+
"""
|
| 294 |
+
download the model checkpoint artifact if the resume path starts with WANDB_ARTIFACT_PREFIX
|
| 295 |
+
|
| 296 |
+
arguments:
|
| 297 |
+
opt (namespace) -- Commandline arguments for this run
|
| 298 |
+
"""
|
| 299 |
+
if opt.resume.startswith(WANDB_ARTIFACT_PREFIX):
|
| 300 |
+
model_artifact = wandb.use_artifact(remove_prefix(opt.resume, WANDB_ARTIFACT_PREFIX) + ":latest")
|
| 301 |
+
assert model_artifact is not None, 'Error: W&B model artifact doesn\'t exist'
|
| 302 |
+
modeldir = model_artifact.download()
|
| 303 |
+
# epochs_trained = model_artifact.metadata.get('epochs_trained')
|
| 304 |
+
total_epochs = model_artifact.metadata.get('total_epochs')
|
| 305 |
+
is_finished = total_epochs is None
|
| 306 |
+
assert not is_finished, 'training is finished, can only resume incomplete runs.'
|
| 307 |
+
return modeldir, model_artifact
|
| 308 |
+
return None, None
|
| 309 |
+
|
| 310 |
+
def log_model(self, path, opt, epoch, fitness_score, best_model=False):
|
| 311 |
+
"""
|
| 312 |
+
Log the model checkpoint as W&B artifact
|
| 313 |
+
|
| 314 |
+
arguments:
|
| 315 |
+
path (Path) -- Path of directory containing the checkpoints
|
| 316 |
+
opt (namespace) -- Command line arguments for this run
|
| 317 |
+
epoch (int) -- Current epoch number
|
| 318 |
+
fitness_score (float) -- fitness score for current epoch
|
| 319 |
+
best_model (boolean) -- Boolean representing if the current checkpoint is the best yet.
|
| 320 |
+
"""
|
| 321 |
+
model_artifact = wandb.Artifact('run_' + wandb.run.id + '_model',
|
| 322 |
+
type='model',
|
| 323 |
+
metadata={
|
| 324 |
+
'original_url': str(path),
|
| 325 |
+
'epochs_trained': epoch + 1,
|
| 326 |
+
'save period': opt.save_period,
|
| 327 |
+
'project': opt.project,
|
| 328 |
+
'total_epochs': opt.epochs,
|
| 329 |
+
'fitness_score': fitness_score})
|
| 330 |
+
model_artifact.add_file(str(path / 'last.pt'), name='last.pt')
|
| 331 |
+
wandb.log_artifact(model_artifact,
|
| 332 |
+
aliases=['latest', 'last', 'epoch ' + str(self.current_epoch), 'best' if best_model else ''])
|
| 333 |
+
LOGGER.info(f"Saving model artifact on epoch {epoch + 1}")
|
| 334 |
+
|
| 335 |
+
def log_dataset_artifact(self, data_file, single_cls, project, overwrite_config=False):
|
| 336 |
+
"""
|
| 337 |
+
Log the dataset as W&B artifact and return the new data file with W&B links
|
| 338 |
+
|
| 339 |
+
arguments:
|
| 340 |
+
data_file (str) -- the .yaml file with information about the dataset like - path, classes etc.
|
| 341 |
+
single_class (boolean) -- train multi-class data as single-class
|
| 342 |
+
project (str) -- project name. Used to construct the artifact path
|
| 343 |
+
overwrite_config (boolean) -- overwrites the data.yaml file if set to true otherwise creates a new
|
| 344 |
+
file with _wandb postfix. Eg -> data_wandb.yaml
|
| 345 |
+
|
| 346 |
+
returns:
|
| 347 |
+
the new .yaml file with artifact links. it can be used to start training directly from artifacts
|
| 348 |
+
"""
|
| 349 |
+
upload_dataset = self.wandb_run.config.upload_dataset
|
| 350 |
+
log_val_only = isinstance(upload_dataset, str) and upload_dataset == 'val'
|
| 351 |
+
self.data_dict = check_dataset(data_file) # parse and check
|
| 352 |
+
data = dict(self.data_dict)
|
| 353 |
+
nc, names = (1, ['item']) if single_cls else (int(data['nc']), data['names'])
|
| 354 |
+
names = {k: v for k, v in enumerate(names)} # to index dictionary
|
| 355 |
+
|
| 356 |
+
# log train set
|
| 357 |
+
if not log_val_only:
|
| 358 |
+
self.train_artifact = self.create_dataset_table(LoadImagesAndLabels(data['train'], rect=True, batch_size=1),
|
| 359 |
+
names,
|
| 360 |
+
name='train') if data.get('train') else None
|
| 361 |
+
if data.get('train'):
|
| 362 |
+
data['train'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'train')
|
| 363 |
+
|
| 364 |
+
self.val_artifact = self.create_dataset_table(
|
| 365 |
+
LoadImagesAndLabels(data['val'], rect=True, batch_size=1), names, name='val') if data.get('val') else None
|
| 366 |
+
if data.get('val'):
|
| 367 |
+
data['val'] = WANDB_ARTIFACT_PREFIX + str(Path(project) / 'val')
|
| 368 |
+
|
| 369 |
+
path = Path(data_file)
|
| 370 |
+
# create a _wandb.yaml file with artifacts links if both train and test set are logged
|
| 371 |
+
if not log_val_only:
|
| 372 |
+
path = (path.stem if overwrite_config else path.stem + '_wandb') + '.yaml' # updated data.yaml path
|
| 373 |
+
path = ROOT / 'data' / path
|
| 374 |
+
data.pop('download', None)
|
| 375 |
+
data.pop('path', None)
|
| 376 |
+
with open(path, 'w') as f:
|
| 377 |
+
yaml.safe_dump(data, f)
|
| 378 |
+
LOGGER.info(f"Created dataset config file {path}")
|
| 379 |
+
|
| 380 |
+
if self.job_type == 'Training': # builds correct artifact pipeline graph
|
| 381 |
+
if not log_val_only:
|
| 382 |
+
self.wandb_run.log_artifact(
|
| 383 |
+
self.train_artifact) # calling use_artifact downloads the dataset. NOT NEEDED!
|
| 384 |
+
self.wandb_run.use_artifact(self.val_artifact)
|
| 385 |
+
self.val_artifact.wait()
|
| 386 |
+
self.val_table = self.val_artifact.get('val')
|
| 387 |
+
self.map_val_table_path()
|
| 388 |
+
else:
|
| 389 |
+
self.wandb_run.log_artifact(self.train_artifact)
|
| 390 |
+
self.wandb_run.log_artifact(self.val_artifact)
|
| 391 |
+
return path
|
| 392 |
+
|
| 393 |
+
def map_val_table_path(self):
|
| 394 |
+
"""
|
| 395 |
+
Map the validation dataset Table like name of file -> it's id in the W&B Table.
|
| 396 |
+
Useful for - referencing artifacts for evaluation.
|
| 397 |
+
"""
|
| 398 |
+
self.val_table_path_map = {}
|
| 399 |
+
LOGGER.info("Mapping dataset")
|
| 400 |
+
for i, data in enumerate(tqdm(self.val_table.data)):
|
| 401 |
+
self.val_table_path_map[data[3]] = data[0]
|
| 402 |
+
|
| 403 |
+
def create_dataset_table(self, dataset: LoadImagesAndLabels, class_to_id: Dict[int, str], name: str = 'dataset'):
|
| 404 |
+
"""
|
| 405 |
+
Create and return W&B artifact containing W&B Table of the dataset.
|
| 406 |
+
|
| 407 |
+
arguments:
|
| 408 |
+
dataset -- instance of LoadImagesAndLabels class used to iterate over the data to build Table
|
| 409 |
+
class_to_id -- hash map that maps class ids to labels
|
| 410 |
+
name -- name of the artifact
|
| 411 |
+
|
| 412 |
+
returns:
|
| 413 |
+
dataset artifact to be logged or used
|
| 414 |
+
"""
|
| 415 |
+
# TODO: Explore multiprocessing to slpit this loop parallely| This is essential for speeding up the the logging
|
| 416 |
+
artifact = wandb.Artifact(name=name, type="dataset")
|
| 417 |
+
img_files = tqdm([dataset.path]) if isinstance(dataset.path, str) and Path(dataset.path).is_dir() else None
|
| 418 |
+
img_files = tqdm(dataset.im_files) if not img_files else img_files
|
| 419 |
+
for img_file in img_files:
|
| 420 |
+
if Path(img_file).is_dir():
|
| 421 |
+
artifact.add_dir(img_file, name='data/images')
|
| 422 |
+
labels_path = 'labels'.join(dataset.path.rsplit('images', 1))
|
| 423 |
+
artifact.add_dir(labels_path, name='data/labels')
|
| 424 |
+
else:
|
| 425 |
+
artifact.add_file(img_file, name='data/images/' + Path(img_file).name)
|
| 426 |
+
label_file = Path(img2label_paths([img_file])[0])
|
| 427 |
+
artifact.add_file(str(label_file), name='data/labels/' +
|
| 428 |
+
label_file.name) if label_file.exists() else None
|
| 429 |
+
table = wandb.Table(columns=["id", "train_image", "Classes", "name"])
|
| 430 |
+
class_set = wandb.Classes([{'id': id, 'name': name} for id, name in class_to_id.items()])
|
| 431 |
+
for si, (img, labels, paths, shapes) in enumerate(tqdm(dataset)):
|
| 432 |
+
box_data, img_classes = [], {}
|
| 433 |
+
for cls, *xywh in labels[:, 1:].tolist():
|
| 434 |
+
cls = int(cls)
|
| 435 |
+
box_data.append({
|
| 436 |
+
"position": {
|
| 437 |
+
"middle": [xywh[0], xywh[1]],
|
| 438 |
+
"width": xywh[2],
|
| 439 |
+
"height": xywh[3]},
|
| 440 |
+
"class_id": cls,
|
| 441 |
+
"box_caption": "%s" % (class_to_id[cls])})
|
| 442 |
+
img_classes[cls] = class_to_id[cls]
|
| 443 |
+
boxes = {"ground_truth": {"box_data": box_data, "class_labels": class_to_id}} # inference-space
|
| 444 |
+
table.add_data(si, wandb.Image(paths, classes=class_set, boxes=boxes), list(img_classes.values()),
|
| 445 |
+
Path(paths).name)
|
| 446 |
+
artifact.add(table, name)
|
| 447 |
+
return artifact
|
| 448 |
+
|
| 449 |
+
def log_training_progress(self, predn, path, names):
|
| 450 |
+
"""
|
| 451 |
+
Build evaluation Table. Uses reference from validation dataset table.
|
| 452 |
+
|
| 453 |
+
arguments:
|
| 454 |
+
predn (list): list of predictions in the native space in the format - [xmin, ymin, xmax, ymax, confidence, class]
|
| 455 |
+
path (str): local path of the current evaluation image
|
| 456 |
+
names (dict(int, str)): hash map that maps class ids to labels
|
| 457 |
+
"""
|
| 458 |
+
class_set = wandb.Classes([{'id': id, 'name': name} for id, name in names.items()])
|
| 459 |
+
box_data = []
|
| 460 |
+
avg_conf_per_class = [0] * len(self.data_dict['names'])
|
| 461 |
+
pred_class_count = {}
|
| 462 |
+
for *xyxy, conf, cls in predn.tolist():
|
| 463 |
+
if conf >= 0.25:
|
| 464 |
+
cls = int(cls)
|
| 465 |
+
box_data.append({
|
| 466 |
+
"position": {
|
| 467 |
+
"minX": xyxy[0],
|
| 468 |
+
"minY": xyxy[1],
|
| 469 |
+
"maxX": xyxy[2],
|
| 470 |
+
"maxY": xyxy[3]},
|
| 471 |
+
"class_id": cls,
|
| 472 |
+
"box_caption": f"{names[cls]} {conf:.3f}",
|
| 473 |
+
"scores": {
|
| 474 |
+
"class_score": conf},
|
| 475 |
+
"domain": "pixel"})
|
| 476 |
+
avg_conf_per_class[cls] += conf
|
| 477 |
+
|
| 478 |
+
if cls in pred_class_count:
|
| 479 |
+
pred_class_count[cls] += 1
|
| 480 |
+
else:
|
| 481 |
+
pred_class_count[cls] = 1
|
| 482 |
+
|
| 483 |
+
for pred_class in pred_class_count.keys():
|
| 484 |
+
avg_conf_per_class[pred_class] = avg_conf_per_class[pred_class] / pred_class_count[pred_class]
|
| 485 |
+
|
| 486 |
+
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
|
| 487 |
+
id = self.val_table_path_map[Path(path).name]
|
| 488 |
+
self.result_table.add_data(self.current_epoch, id, self.val_table.data[id][1],
|
| 489 |
+
wandb.Image(self.val_table.data[id][1], boxes=boxes, classes=class_set),
|
| 490 |
+
*avg_conf_per_class)
|
| 491 |
+
|
| 492 |
+
def val_one_image(self, pred, predn, path, names, im):
|
| 493 |
+
"""
|
| 494 |
+
Log validation data for one image. updates the result Table if validation dataset is uploaded and log bbox media panel
|
| 495 |
+
|
| 496 |
+
arguments:
|
| 497 |
+
pred (list): list of scaled predictions in the format - [xmin, ymin, xmax, ymax, confidence, class]
|
| 498 |
+
predn (list): list of predictions in the native space - [xmin, ymin, xmax, ymax, confidence, class]
|
| 499 |
+
path (str): local path of the current evaluation image
|
| 500 |
+
"""
|
| 501 |
+
if self.val_table and self.result_table: # Log Table if Val dataset is uploaded as artifact
|
| 502 |
+
self.log_training_progress(predn, path, names)
|
| 503 |
+
|
| 504 |
+
if len(self.bbox_media_panel_images) < self.max_imgs_to_log and self.current_epoch > 0:
|
| 505 |
+
if self.current_epoch % self.bbox_interval == 0:
|
| 506 |
+
box_data = [{
|
| 507 |
+
"position": {
|
| 508 |
+
"minX": xyxy[0],
|
| 509 |
+
"minY": xyxy[1],
|
| 510 |
+
"maxX": xyxy[2],
|
| 511 |
+
"maxY": xyxy[3]},
|
| 512 |
+
"class_id": int(cls),
|
| 513 |
+
"box_caption": f"{names[int(cls)]} {conf:.3f}",
|
| 514 |
+
"scores": {
|
| 515 |
+
"class_score": conf},
|
| 516 |
+
"domain": "pixel"} for *xyxy, conf, cls in pred.tolist()]
|
| 517 |
+
boxes = {"predictions": {"box_data": box_data, "class_labels": names}} # inference-space
|
| 518 |
+
self.bbox_media_panel_images.append(wandb.Image(im, boxes=boxes, caption=path.name))
|
| 519 |
+
|
| 520 |
+
def log(self, log_dict):
|
| 521 |
+
"""
|
| 522 |
+
save the metrics to the logging dictionary
|
| 523 |
+
|
| 524 |
+
arguments:
|
| 525 |
+
log_dict (Dict) -- metrics/media to be logged in current step
|
| 526 |
+
"""
|
| 527 |
+
if self.wandb_run:
|
| 528 |
+
for key, value in log_dict.items():
|
| 529 |
+
self.log_dict[key] = value
|
| 530 |
+
|
| 531 |
+
def end_epoch(self, best_result=False):
|
| 532 |
+
"""
|
| 533 |
+
commit the log_dict, model artifacts and Tables to W&B and flush the log_dict.
|
| 534 |
+
|
| 535 |
+
arguments:
|
| 536 |
+
best_result (boolean): Boolean representing if the result of this evaluation is best or not
|
| 537 |
+
"""
|
| 538 |
+
if self.wandb_run:
|
| 539 |
+
with all_logging_disabled():
|
| 540 |
+
if self.bbox_media_panel_images:
|
| 541 |
+
self.log_dict["BoundingBoxDebugger"] = self.bbox_media_panel_images
|
| 542 |
+
try:
|
| 543 |
+
wandb.log(self.log_dict)
|
| 544 |
+
except BaseException as e:
|
| 545 |
+
LOGGER.info(
|
| 546 |
+
f"An error occurred in wandb logger. The training will proceed without interruption. More info\n{e}"
|
| 547 |
+
)
|
| 548 |
+
self.wandb_run.finish()
|
| 549 |
+
self.wandb_run = None
|
| 550 |
+
|
| 551 |
+
self.log_dict = {}
|
| 552 |
+
self.bbox_media_panel_images = []
|
| 553 |
+
if self.result_artifact:
|
| 554 |
+
self.result_artifact.add(self.result_table, 'result')
|
| 555 |
+
wandb.log_artifact(self.result_artifact,
|
| 556 |
+
aliases=[
|
| 557 |
+
'latest', 'last', 'epoch ' + str(self.current_epoch),
|
| 558 |
+
('best' if best_result else '')])
|
| 559 |
+
|
| 560 |
+
wandb.log({"evaluation": self.result_table})
|
| 561 |
+
columns = ["epoch", "id", "ground truth", "prediction"]
|
| 562 |
+
columns.extend(self.data_dict['names'])
|
| 563 |
+
self.result_table = wandb.Table(columns)
|
| 564 |
+
self.result_artifact = wandb.Artifact("run_" + wandb.run.id + "_progress", "evaluation")
|
| 565 |
+
|
| 566 |
+
def finish_run(self):
|
| 567 |
+
"""
|
| 568 |
+
Log metrics if any and finish the current W&B run
|
| 569 |
+
"""
|
| 570 |
+
if self.wandb_run:
|
| 571 |
+
if self.log_dict:
|
| 572 |
+
with all_logging_disabled():
|
| 573 |
+
wandb.log(self.log_dict)
|
| 574 |
+
wandb.run.finish()
|
| 575 |
+
|
| 576 |
+
|
| 577 |
+
@contextmanager
|
| 578 |
+
def all_logging_disabled(highest_level=logging.CRITICAL):
|
| 579 |
+
""" source - https://gist.github.com/simon-weber/7853144
|
| 580 |
+
A context manager that will prevent any logging messages triggered during the body from being processed.
|
| 581 |
+
:param highest_level: the maximum logging level in use.
|
| 582 |
+
This would only need to be changed if a custom level greater than CRITICAL is defined.
|
| 583 |
+
"""
|
| 584 |
+
previous_level = logging.root.manager.disable
|
| 585 |
+
logging.disable(highest_level)
|
| 586 |
+
try:
|
| 587 |
+
yield
|
| 588 |
+
finally:
|
| 589 |
+
logging.disable(previous_level)
|
utils/metrics.py
ADDED
|
@@ -0,0 +1,397 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import warnings
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
import numpy as np
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
+
from utils import TryExcept, threaded
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def fitness(x):
|
| 13 |
+
# Model fitness as a weighted combination of metrics
|
| 14 |
+
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, [email protected], [email protected]:0.95]
|
| 15 |
+
return (x[:, :4] * w).sum(1)
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
def smooth(y, f=0.05):
|
| 19 |
+
# Box filter of fraction f
|
| 20 |
+
nf = round(len(y) * f * 2) // 2 + 1 # number of filter elements (must be odd)
|
| 21 |
+
p = np.ones(nf // 2) # ones padding
|
| 22 |
+
yp = np.concatenate((p * y[0], y, p * y[-1]), 0) # y padded
|
| 23 |
+
return np.convolve(yp, np.ones(nf) / nf, mode='valid') # y-smoothed
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def ap_per_class(tp, conf, pred_cls, target_cls, plot=False, save_dir='.', names=(), eps=1e-16, prefix=""):
|
| 27 |
+
""" Compute the average precision, given the recall and precision curves.
|
| 28 |
+
Source: https://github.com/rafaelpadilla/Object-Detection-Metrics.
|
| 29 |
+
# Arguments
|
| 30 |
+
tp: True positives (nparray, nx1 or nx10).
|
| 31 |
+
conf: Objectness value from 0-1 (nparray).
|
| 32 |
+
pred_cls: Predicted object classes (nparray).
|
| 33 |
+
target_cls: True object classes (nparray).
|
| 34 |
+
plot: Plot precision-recall curve at [email protected]
|
| 35 |
+
save_dir: Plot save directory
|
| 36 |
+
# Returns
|
| 37 |
+
The average precision as computed in py-faster-rcnn.
|
| 38 |
+
"""
|
| 39 |
+
|
| 40 |
+
# Sort by objectness
|
| 41 |
+
i = np.argsort(-conf)
|
| 42 |
+
tp, conf, pred_cls = tp[i], conf[i], pred_cls[i]
|
| 43 |
+
|
| 44 |
+
# Find unique classes
|
| 45 |
+
unique_classes, nt = np.unique(target_cls, return_counts=True)
|
| 46 |
+
nc = unique_classes.shape[0] # number of classes, number of detections
|
| 47 |
+
|
| 48 |
+
# Create Precision-Recall curve and compute AP for each class
|
| 49 |
+
px, py = np.linspace(0, 1, 1000), [] # for plotting
|
| 50 |
+
ap, p, r = np.zeros((nc, tp.shape[1])), np.zeros((nc, 1000)), np.zeros((nc, 1000))
|
| 51 |
+
for ci, c in enumerate(unique_classes):
|
| 52 |
+
i = pred_cls == c
|
| 53 |
+
n_l = nt[ci] # number of labels
|
| 54 |
+
n_p = i.sum() # number of predictions
|
| 55 |
+
if n_p == 0 or n_l == 0:
|
| 56 |
+
continue
|
| 57 |
+
|
| 58 |
+
# Accumulate FPs and TPs
|
| 59 |
+
fpc = (1 - tp[i]).cumsum(0)
|
| 60 |
+
tpc = tp[i].cumsum(0)
|
| 61 |
+
|
| 62 |
+
# Recall
|
| 63 |
+
recall = tpc / (n_l + eps) # recall curve
|
| 64 |
+
r[ci] = np.interp(-px, -conf[i], recall[:, 0], left=0) # negative x, xp because xp decreases
|
| 65 |
+
|
| 66 |
+
# Precision
|
| 67 |
+
precision = tpc / (tpc + fpc) # precision curve
|
| 68 |
+
p[ci] = np.interp(-px, -conf[i], precision[:, 0], left=1) # p at pr_score
|
| 69 |
+
|
| 70 |
+
# AP from recall-precision curve
|
| 71 |
+
for j in range(tp.shape[1]):
|
| 72 |
+
ap[ci, j], mpre, mrec = compute_ap(recall[:, j], precision[:, j])
|
| 73 |
+
if plot and j == 0:
|
| 74 |
+
py.append(np.interp(px, mrec, mpre)) # precision at [email protected]
|
| 75 |
+
|
| 76 |
+
# Compute F1 (harmonic mean of precision and recall)
|
| 77 |
+
f1 = 2 * p * r / (p + r + eps)
|
| 78 |
+
names = [v for k, v in names.items() if k in unique_classes] # list: only classes that have data
|
| 79 |
+
names = dict(enumerate(names)) # to dict
|
| 80 |
+
if plot:
|
| 81 |
+
plot_pr_curve(px, py, ap, Path(save_dir) / f'{prefix}PR_curve.png', names)
|
| 82 |
+
plot_mc_curve(px, f1, Path(save_dir) / f'{prefix}F1_curve.png', names, ylabel='F1')
|
| 83 |
+
plot_mc_curve(px, p, Path(save_dir) / f'{prefix}P_curve.png', names, ylabel='Precision')
|
| 84 |
+
plot_mc_curve(px, r, Path(save_dir) / f'{prefix}R_curve.png', names, ylabel='Recall')
|
| 85 |
+
|
| 86 |
+
i = smooth(f1.mean(0), 0.1).argmax() # max F1 index
|
| 87 |
+
p, r, f1 = p[:, i], r[:, i], f1[:, i]
|
| 88 |
+
tp = (r * nt).round() # true positives
|
| 89 |
+
fp = (tp / (p + eps) - tp).round() # false positives
|
| 90 |
+
return tp, fp, p, r, f1, ap, unique_classes.astype(int)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def compute_ap(recall, precision):
|
| 94 |
+
""" Compute the average precision, given the recall and precision curves
|
| 95 |
+
# Arguments
|
| 96 |
+
recall: The recall curve (list)
|
| 97 |
+
precision: The precision curve (list)
|
| 98 |
+
# Returns
|
| 99 |
+
Average precision, precision curve, recall curve
|
| 100 |
+
"""
|
| 101 |
+
|
| 102 |
+
# Append sentinel values to beginning and end
|
| 103 |
+
mrec = np.concatenate(([0.0], recall, [1.0]))
|
| 104 |
+
mpre = np.concatenate(([1.0], precision, [0.0]))
|
| 105 |
+
|
| 106 |
+
# Compute the precision envelope
|
| 107 |
+
mpre = np.flip(np.maximum.accumulate(np.flip(mpre)))
|
| 108 |
+
|
| 109 |
+
# Integrate area under curve
|
| 110 |
+
method = 'interp' # methods: 'continuous', 'interp'
|
| 111 |
+
if method == 'interp':
|
| 112 |
+
x = np.linspace(0, 1, 101) # 101-point interp (COCO)
|
| 113 |
+
ap = np.trapz(np.interp(x, mrec, mpre), x) # integrate
|
| 114 |
+
else: # 'continuous'
|
| 115 |
+
i = np.where(mrec[1:] != mrec[:-1])[0] # points where x axis (recall) changes
|
| 116 |
+
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) # area under curve
|
| 117 |
+
|
| 118 |
+
return ap, mpre, mrec
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
class ConfusionMatrix:
|
| 122 |
+
# Updated version of https://github.com/kaanakan/object_detection_confusion_matrix
|
| 123 |
+
def __init__(self, nc, conf=0.25, iou_thres=0.45):
|
| 124 |
+
self.matrix = np.zeros((nc + 1, nc + 1))
|
| 125 |
+
self.nc = nc # number of classes
|
| 126 |
+
self.conf = conf
|
| 127 |
+
self.iou_thres = iou_thres
|
| 128 |
+
|
| 129 |
+
def process_batch(self, detections, labels):
|
| 130 |
+
"""
|
| 131 |
+
Return intersection-over-union (Jaccard index) of boxes.
|
| 132 |
+
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
| 133 |
+
Arguments:
|
| 134 |
+
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
|
| 135 |
+
labels (Array[M, 5]), class, x1, y1, x2, y2
|
| 136 |
+
Returns:
|
| 137 |
+
None, updates confusion matrix accordingly
|
| 138 |
+
"""
|
| 139 |
+
if detections is None:
|
| 140 |
+
gt_classes = labels.int()
|
| 141 |
+
for gc in gt_classes:
|
| 142 |
+
self.matrix[self.nc, gc] += 1 # background FN
|
| 143 |
+
return
|
| 144 |
+
|
| 145 |
+
detections = detections[detections[:, 4] > self.conf]
|
| 146 |
+
gt_classes = labels[:, 0].int()
|
| 147 |
+
detection_classes = detections[:, 5].int()
|
| 148 |
+
iou = box_iou(labels[:, 1:], detections[:, :4])
|
| 149 |
+
|
| 150 |
+
x = torch.where(iou > self.iou_thres)
|
| 151 |
+
if x[0].shape[0]:
|
| 152 |
+
matches = torch.cat((torch.stack(x, 1), iou[x[0], x[1]][:, None]), 1).cpu().numpy()
|
| 153 |
+
if x[0].shape[0] > 1:
|
| 154 |
+
matches = matches[matches[:, 2].argsort()[::-1]]
|
| 155 |
+
matches = matches[np.unique(matches[:, 1], return_index=True)[1]]
|
| 156 |
+
matches = matches[matches[:, 2].argsort()[::-1]]
|
| 157 |
+
matches = matches[np.unique(matches[:, 0], return_index=True)[1]]
|
| 158 |
+
else:
|
| 159 |
+
matches = np.zeros((0, 3))
|
| 160 |
+
|
| 161 |
+
n = matches.shape[0] > 0
|
| 162 |
+
m0, m1, _ = matches.transpose().astype(int)
|
| 163 |
+
for i, gc in enumerate(gt_classes):
|
| 164 |
+
j = m0 == i
|
| 165 |
+
if n and sum(j) == 1:
|
| 166 |
+
self.matrix[detection_classes[m1[j]], gc] += 1 # correct
|
| 167 |
+
else:
|
| 168 |
+
self.matrix[self.nc, gc] += 1 # true background
|
| 169 |
+
|
| 170 |
+
if n:
|
| 171 |
+
for i, dc in enumerate(detection_classes):
|
| 172 |
+
if not any(m1 == i):
|
| 173 |
+
self.matrix[dc, self.nc] += 1 # predicted background
|
| 174 |
+
|
| 175 |
+
def matrix(self):
|
| 176 |
+
return self.matrix
|
| 177 |
+
|
| 178 |
+
def tp_fp(self):
|
| 179 |
+
tp = self.matrix.diagonal() # true positives
|
| 180 |
+
fp = self.matrix.sum(1) - tp # false positives
|
| 181 |
+
# fn = self.matrix.sum(0) - tp # false negatives (missed detections)
|
| 182 |
+
return tp[:-1], fp[:-1] # remove background class
|
| 183 |
+
|
| 184 |
+
@TryExcept('WARNING ⚠️ ConfusionMatrix plot failure')
|
| 185 |
+
def plot(self, normalize=True, save_dir='', names=()):
|
| 186 |
+
import seaborn as sn
|
| 187 |
+
|
| 188 |
+
array = self.matrix / ((self.matrix.sum(0).reshape(1, -1) + 1E-9) if normalize else 1) # normalize columns
|
| 189 |
+
array[array < 0.005] = np.nan # don't annotate (would appear as 0.00)
|
| 190 |
+
|
| 191 |
+
fig, ax = plt.subplots(1, 1, figsize=(12, 9), tight_layout=True)
|
| 192 |
+
nc, nn = self.nc, len(names) # number of classes, names
|
| 193 |
+
sn.set(font_scale=1.0 if nc < 50 else 0.8) # for label size
|
| 194 |
+
labels = (0 < nn < 99) and (nn == nc) # apply names to ticklabels
|
| 195 |
+
ticklabels = (names + ['background']) if labels else "auto"
|
| 196 |
+
with warnings.catch_warnings():
|
| 197 |
+
warnings.simplefilter('ignore') # suppress empty matrix RuntimeWarning: All-NaN slice encountered
|
| 198 |
+
sn.heatmap(array,
|
| 199 |
+
ax=ax,
|
| 200 |
+
annot=nc < 30,
|
| 201 |
+
annot_kws={
|
| 202 |
+
"size": 8},
|
| 203 |
+
cmap='Blues',
|
| 204 |
+
fmt='.2f',
|
| 205 |
+
square=True,
|
| 206 |
+
vmin=0.0,
|
| 207 |
+
xticklabels=ticklabels,
|
| 208 |
+
yticklabels=ticklabels).set_facecolor((1, 1, 1))
|
| 209 |
+
ax.set_ylabel('True')
|
| 210 |
+
ax.set_ylabel('Predicted')
|
| 211 |
+
ax.set_title('Confusion Matrix')
|
| 212 |
+
fig.savefig(Path(save_dir) / 'confusion_matrix.png', dpi=250)
|
| 213 |
+
plt.close(fig)
|
| 214 |
+
|
| 215 |
+
def print(self):
|
| 216 |
+
for i in range(self.nc + 1):
|
| 217 |
+
print(' '.join(map(str, self.matrix[i])))
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
class WIoU_Scale:
|
| 221 |
+
''' monotonous: {
|
| 222 |
+
None: origin v1
|
| 223 |
+
True: monotonic FM v2
|
| 224 |
+
False: non-monotonic FM v3
|
| 225 |
+
}
|
| 226 |
+
momentum: The momentum of running mean'''
|
| 227 |
+
|
| 228 |
+
iou_mean = 1.
|
| 229 |
+
monotonous = False
|
| 230 |
+
_momentum = 1 - 0.5 ** (1 / 7000)
|
| 231 |
+
_is_train = True
|
| 232 |
+
|
| 233 |
+
def __init__(self, iou):
|
| 234 |
+
self.iou = iou
|
| 235 |
+
self._update(self)
|
| 236 |
+
|
| 237 |
+
@classmethod
|
| 238 |
+
def _update(cls, self):
|
| 239 |
+
if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \
|
| 240 |
+
cls._momentum * self.iou.detach().mean().item()
|
| 241 |
+
|
| 242 |
+
@classmethod
|
| 243 |
+
def _scaled_loss(cls, self, gamma=1.9, delta=3):
|
| 244 |
+
if isinstance(self.monotonous, bool):
|
| 245 |
+
if self.monotonous:
|
| 246 |
+
return (self.iou.detach() / self.iou_mean).sqrt()
|
| 247 |
+
else:
|
| 248 |
+
beta = self.iou.detach() / self.iou_mean
|
| 249 |
+
alpha = delta * torch.pow(gamma, beta - delta)
|
| 250 |
+
return beta / alpha
|
| 251 |
+
return 1
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, MDPIoU=False, feat_h=640, feat_w=640, eps=1e-7):
|
| 255 |
+
# Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)
|
| 256 |
+
|
| 257 |
+
# Get the coordinates of bounding boxes
|
| 258 |
+
if xywh: # transform from xywh to xyxy
|
| 259 |
+
(x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
|
| 260 |
+
w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
|
| 261 |
+
b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
|
| 262 |
+
b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
|
| 263 |
+
else: # x1, y1, x2, y2 = box1
|
| 264 |
+
b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
|
| 265 |
+
b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
|
| 266 |
+
w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
|
| 267 |
+
w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
|
| 268 |
+
|
| 269 |
+
# Intersection area
|
| 270 |
+
inter = (torch.min(b1_x2, b2_x2) - torch.max(b1_x1, b2_x1)).clamp(0) * \
|
| 271 |
+
(torch.min(b1_y2, b2_y2) - torch.max(b1_y1, b2_y1)).clamp(0)
|
| 272 |
+
|
| 273 |
+
# Union Area
|
| 274 |
+
union = w1 * h1 + w2 * h2 - inter + eps
|
| 275 |
+
|
| 276 |
+
# IoU
|
| 277 |
+
iou = inter / union
|
| 278 |
+
if CIoU or DIoU or GIoU:
|
| 279 |
+
cw = torch.max(b1_x2, b2_x2) - torch.min(b1_x1, b2_x1) # convex (smallest enclosing box) width
|
| 280 |
+
ch = torch.max(b1_y2, b2_y2) - torch.min(b1_y1, b2_y1) # convex height
|
| 281 |
+
if CIoU or DIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
|
| 282 |
+
c2 = cw ** 2 + ch ** 2 + eps # convex diagonal squared
|
| 283 |
+
rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4 # center dist ** 2
|
| 284 |
+
if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
|
| 285 |
+
v = (4 / math.pi ** 2) * torch.pow(torch.atan(w2 / h2) - torch.atan(w1 / h1), 2)
|
| 286 |
+
with torch.no_grad():
|
| 287 |
+
alpha = v / (v - iou + (1 + eps))
|
| 288 |
+
return iou - (rho2 / c2 + v * alpha) # CIoU
|
| 289 |
+
return iou - rho2 / c2 # DIoU
|
| 290 |
+
c_area = cw * ch + eps # convex area
|
| 291 |
+
return iou - (c_area - union) / c_area # GIoU https://arxiv.org/pdf/1902.09630.pdf
|
| 292 |
+
elif MDPIoU:
|
| 293 |
+
d1 = (b2_x1 - b1_x1) ** 2 + (b2_y1 - b1_y1) ** 2
|
| 294 |
+
d2 = (b2_x2 - b1_x2) ** 2 + (b2_y2 - b1_y2) ** 2
|
| 295 |
+
mpdiou_hw_pow = feat_h ** 2 + feat_w ** 2
|
| 296 |
+
return iou - d1 / mpdiou_hw_pow - d2 / mpdiou_hw_pow # MPDIoU
|
| 297 |
+
return iou # IoU
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
def box_iou(box1, box2, eps=1e-7):
|
| 301 |
+
# https://github.com/pytorch/vision/blob/master/torchvision/ops/boxes.py
|
| 302 |
+
"""
|
| 303 |
+
Return intersection-over-union (Jaccard index) of boxes.
|
| 304 |
+
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
|
| 305 |
+
Arguments:
|
| 306 |
+
box1 (Tensor[N, 4])
|
| 307 |
+
box2 (Tensor[M, 4])
|
| 308 |
+
Returns:
|
| 309 |
+
iou (Tensor[N, M]): the NxM matrix containing the pairwise
|
| 310 |
+
IoU values for every element in boxes1 and boxes2
|
| 311 |
+
"""
|
| 312 |
+
|
| 313 |
+
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
|
| 314 |
+
(a1, a2), (b1, b2) = box1.unsqueeze(1).chunk(2, 2), box2.unsqueeze(0).chunk(2, 2)
|
| 315 |
+
inter = (torch.min(a2, b2) - torch.max(a1, b1)).clamp(0).prod(2)
|
| 316 |
+
|
| 317 |
+
# IoU = inter / (area1 + area2 - inter)
|
| 318 |
+
return inter / ((a2 - a1).prod(2) + (b2 - b1).prod(2) - inter + eps)
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
def bbox_ioa(box1, box2, eps=1e-7):
|
| 322 |
+
"""Returns the intersection over box2 area given box1, box2. Boxes are x1y1x2y2
|
| 323 |
+
box1: np.array of shape(nx4)
|
| 324 |
+
box2: np.array of shape(mx4)
|
| 325 |
+
returns: np.array of shape(nxm)
|
| 326 |
+
"""
|
| 327 |
+
|
| 328 |
+
# Get the coordinates of bounding boxes
|
| 329 |
+
b1_x1, b1_y1, b1_x2, b1_y2 = box1.T
|
| 330 |
+
b2_x1, b2_y1, b2_x2, b2_y2 = box2.T
|
| 331 |
+
|
| 332 |
+
# Intersection area
|
| 333 |
+
inter_area = (np.minimum(b1_x2[:, None], b2_x2) - np.maximum(b1_x1[:, None], b2_x1)).clip(0) * \
|
| 334 |
+
(np.minimum(b1_y2[:, None], b2_y2) - np.maximum(b1_y1[:, None], b2_y1)).clip(0)
|
| 335 |
+
|
| 336 |
+
# box2 area
|
| 337 |
+
box2_area = (b2_x2 - b2_x1) * (b2_y2 - b2_y1) + eps
|
| 338 |
+
|
| 339 |
+
# Intersection over box2 area
|
| 340 |
+
return inter_area / box2_area
|
| 341 |
+
|
| 342 |
+
|
| 343 |
+
def wh_iou(wh1, wh2, eps=1e-7):
|
| 344 |
+
# Returns the nxm IoU matrix. wh1 is nx2, wh2 is mx2
|
| 345 |
+
wh1 = wh1[:, None] # [N,1,2]
|
| 346 |
+
wh2 = wh2[None] # [1,M,2]
|
| 347 |
+
inter = torch.min(wh1, wh2).prod(2) # [N,M]
|
| 348 |
+
return inter / (wh1.prod(2) + wh2.prod(2) - inter + eps) # iou = inter / (area1 + area2 - inter)
|
| 349 |
+
|
| 350 |
+
|
| 351 |
+
# Plots ----------------------------------------------------------------------------------------------------------------
|
| 352 |
+
|
| 353 |
+
|
| 354 |
+
@threaded
|
| 355 |
+
def plot_pr_curve(px, py, ap, save_dir=Path('pr_curve.png'), names=()):
|
| 356 |
+
# Precision-recall curve
|
| 357 |
+
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
|
| 358 |
+
py = np.stack(py, axis=1)
|
| 359 |
+
|
| 360 |
+
if 0 < len(names) < 21: # display per-class legend if < 21 classes
|
| 361 |
+
for i, y in enumerate(py.T):
|
| 362 |
+
ax.plot(px, y, linewidth=1, label=f'{names[i]} {ap[i, 0]:.3f}') # plot(recall, precision)
|
| 363 |
+
else:
|
| 364 |
+
ax.plot(px, py, linewidth=1, color='grey') # plot(recall, precision)
|
| 365 |
+
|
| 366 |
+
ax.plot(px, py.mean(1), linewidth=3, color='blue', label='all classes %.3f [email protected]' % ap[:, 0].mean())
|
| 367 |
+
ax.set_xlabel('Recall')
|
| 368 |
+
ax.set_ylabel('Precision')
|
| 369 |
+
ax.set_xlim(0, 1)
|
| 370 |
+
ax.set_ylim(0, 1)
|
| 371 |
+
ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
|
| 372 |
+
ax.set_title('Precision-Recall Curve')
|
| 373 |
+
fig.savefig(save_dir, dpi=250)
|
| 374 |
+
plt.close(fig)
|
| 375 |
+
|
| 376 |
+
|
| 377 |
+
@threaded
|
| 378 |
+
def plot_mc_curve(px, py, save_dir=Path('mc_curve.png'), names=(), xlabel='Confidence', ylabel='Metric'):
|
| 379 |
+
# Metric-confidence curve
|
| 380 |
+
fig, ax = plt.subplots(1, 1, figsize=(9, 6), tight_layout=True)
|
| 381 |
+
|
| 382 |
+
if 0 < len(names) < 21: # display per-class legend if < 21 classes
|
| 383 |
+
for i, y in enumerate(py):
|
| 384 |
+
ax.plot(px, y, linewidth=1, label=f'{names[i]}') # plot(confidence, metric)
|
| 385 |
+
else:
|
| 386 |
+
ax.plot(px, py.T, linewidth=1, color='grey') # plot(confidence, metric)
|
| 387 |
+
|
| 388 |
+
y = smooth(py.mean(0), 0.05)
|
| 389 |
+
ax.plot(px, y, linewidth=3, color='blue', label=f'all classes {y.max():.2f} at {px[y.argmax()]:.3f}')
|
| 390 |
+
ax.set_xlabel(xlabel)
|
| 391 |
+
ax.set_ylabel(ylabel)
|
| 392 |
+
ax.set_xlim(0, 1)
|
| 393 |
+
ax.set_ylim(0, 1)
|
| 394 |
+
ax.legend(bbox_to_anchor=(1.04, 1), loc="upper left")
|
| 395 |
+
ax.set_title(f'{ylabel}-Confidence Curve')
|
| 396 |
+
fig.savefig(save_dir, dpi=250)
|
| 397 |
+
plt.close(fig)
|
utils/panoptic/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
# init
|
utils/panoptic/augmentations.py
ADDED
|
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import random
|
| 3 |
+
|
| 4 |
+
import cv2
|
| 5 |
+
import numpy as np
|
| 6 |
+
|
| 7 |
+
from ..augmentations import box_candidates
|
| 8 |
+
from ..general import resample_segments, segment2box
|
| 9 |
+
from ..metrics import bbox_ioa
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def mixup(im, labels, segments, seg_cls, semantic_masks, im2, labels2, segments2, seg_cls2, semantic_masks2):
|
| 13 |
+
# Applies MixUp augmentation https://arxiv.org/pdf/1710.09412.pdf
|
| 14 |
+
r = np.random.beta(32.0, 32.0) # mixup ratio, alpha=beta=32.0
|
| 15 |
+
im = (im * r + im2 * (1 - r)).astype(np.uint8)
|
| 16 |
+
labels = np.concatenate((labels, labels2), 0)
|
| 17 |
+
segments = np.concatenate((segments, segments2), 0)
|
| 18 |
+
seg_cls = np.concatenate((seg_cls, seg_cls2), 0)
|
| 19 |
+
semantic_masks = np.concatenate((semantic_masks, semantic_masks2), 0)
|
| 20 |
+
return im, labels, segments, seg_cls, semantic_masks
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
def random_perspective(im,
|
| 24 |
+
targets=(),
|
| 25 |
+
segments=(),
|
| 26 |
+
semantic_masks = (),
|
| 27 |
+
degrees=10,
|
| 28 |
+
translate=.1,
|
| 29 |
+
scale=.1,
|
| 30 |
+
shear=10,
|
| 31 |
+
perspective=0.0,
|
| 32 |
+
border=(0, 0)):
|
| 33 |
+
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
|
| 34 |
+
# targets = [cls, xyxy]
|
| 35 |
+
|
| 36 |
+
height = im.shape[0] + border[0] * 2 # shape(h,w,c)
|
| 37 |
+
width = im.shape[1] + border[1] * 2
|
| 38 |
+
|
| 39 |
+
# Center
|
| 40 |
+
C = np.eye(3)
|
| 41 |
+
C[0, 2] = -im.shape[1] / 2 # x translation (pixels)
|
| 42 |
+
C[1, 2] = -im.shape[0] / 2 # y translation (pixels)
|
| 43 |
+
|
| 44 |
+
# Perspective
|
| 45 |
+
P = np.eye(3)
|
| 46 |
+
P[2, 0] = random.uniform(-perspective, perspective) # x perspective (about y)
|
| 47 |
+
P[2, 1] = random.uniform(-perspective, perspective) # y perspective (about x)
|
| 48 |
+
|
| 49 |
+
# Rotation and Scale
|
| 50 |
+
R = np.eye(3)
|
| 51 |
+
a = random.uniform(-degrees, degrees)
|
| 52 |
+
# a += random.choice([-180, -90, 0, 90]) # add 90deg rotations to small rotations
|
| 53 |
+
s = random.uniform(1 - scale, 1 + scale)
|
| 54 |
+
# s = 2 ** random.uniform(-scale, scale)
|
| 55 |
+
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(0, 0), scale=s)
|
| 56 |
+
|
| 57 |
+
# Shear
|
| 58 |
+
S = np.eye(3)
|
| 59 |
+
S[0, 1] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # x shear (deg)
|
| 60 |
+
S[1, 0] = math.tan(random.uniform(-shear, shear) * math.pi / 180) # y shear (deg)
|
| 61 |
+
|
| 62 |
+
# Translation
|
| 63 |
+
T = np.eye(3)
|
| 64 |
+
T[0, 2] = (random.uniform(0.5 - translate, 0.5 + translate) * width) # x translation (pixels)
|
| 65 |
+
T[1, 2] = (random.uniform(0.5 - translate, 0.5 + translate) * height) # y translation (pixels)
|
| 66 |
+
|
| 67 |
+
# Combined rotation matrix
|
| 68 |
+
M = T @ S @ R @ P @ C # order of operations (right to left) is IMPORTANT
|
| 69 |
+
if (border[0] != 0) or (border[1] != 0) or (M != np.eye(3)).any(): # image changed
|
| 70 |
+
if perspective:
|
| 71 |
+
im = cv2.warpPerspective(im, M, dsize=(width, height), borderValue=(114, 114, 114))
|
| 72 |
+
else: # affine
|
| 73 |
+
im = cv2.warpAffine(im, M[:2], dsize=(width, height), borderValue=(114, 114, 114))
|
| 74 |
+
|
| 75 |
+
# Visualize
|
| 76 |
+
# import matplotlib.pyplot as plt
|
| 77 |
+
# ax = plt.subplots(1, 2, figsize=(12, 6))[1].ravel()
|
| 78 |
+
# ax[0].imshow(im[:, :, ::-1]) # base
|
| 79 |
+
# ax[1].imshow(im2[:, :, ::-1]) # warped
|
| 80 |
+
|
| 81 |
+
# Transform label coordinates
|
| 82 |
+
n = len(targets)
|
| 83 |
+
new_segments = []
|
| 84 |
+
new_semantic_masks = []
|
| 85 |
+
if n:
|
| 86 |
+
new = np.zeros((n, 4))
|
| 87 |
+
segments = resample_segments(segments) # upsample
|
| 88 |
+
for i, segment in enumerate(segments):
|
| 89 |
+
xy = np.ones((len(segment), 3))
|
| 90 |
+
xy[:, :2] = segment
|
| 91 |
+
xy = xy @ M.T # transform
|
| 92 |
+
xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]) # perspective rescale or affine
|
| 93 |
+
|
| 94 |
+
# clip
|
| 95 |
+
new[i] = segment2box(xy, width, height)
|
| 96 |
+
new_segments.append(xy)
|
| 97 |
+
|
| 98 |
+
semantic_masks = resample_segments(semantic_masks)
|
| 99 |
+
for i, semantic_mask in enumerate(semantic_masks):
|
| 100 |
+
#if i < n:
|
| 101 |
+
# xy = np.ones((len(segments[i]), 3))
|
| 102 |
+
# xy[:, :2] = segments[i]
|
| 103 |
+
# xy = xy @ M.T # transform
|
| 104 |
+
# xy = (xy[:, :2] / xy[:, 2:3] if perspective else xy[:, :2]) # perspective rescale or affine
|
| 105 |
+
|
| 106 |
+
# new[i] = segment2box(xy, width, height)
|
| 107 |
+
# new_segments.append(xy)
|
| 108 |
+
|
| 109 |
+
xy_s = np.ones((len(semantic_mask), 3))
|
| 110 |
+
xy_s[:, :2] = semantic_mask
|
| 111 |
+
xy_s = xy_s @ M.T # transform
|
| 112 |
+
xy_s = (xy_s[:, :2] / xy_s[:, 2:3] if perspective else xy_s[:, :2]) # perspective rescale or affine
|
| 113 |
+
|
| 114 |
+
new_semantic_masks.append(xy_s)
|
| 115 |
+
|
| 116 |
+
# filter candidates
|
| 117 |
+
i = box_candidates(box1=targets[:, 1:5].T * s, box2=new.T, area_thr=0.01)
|
| 118 |
+
targets = targets[i]
|
| 119 |
+
targets[:, 1:5] = new[i]
|
| 120 |
+
new_segments = np.array(new_segments)[i]
|
| 121 |
+
new_semantic_masks = np.array(new_semantic_masks)
|
| 122 |
+
|
| 123 |
+
return im, targets, new_segments, new_semantic_masks
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleFill=False, scaleup=True, stride=32):
|
| 127 |
+
# Resize and pad image while meeting stride-multiple constraints
|
| 128 |
+
shape = im.shape[:2] # current shape [height, width]
|
| 129 |
+
if isinstance(new_shape, int):
|
| 130 |
+
new_shape = (new_shape, new_shape)
|
| 131 |
+
|
| 132 |
+
# Scale ratio (new / old)
|
| 133 |
+
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
|
| 134 |
+
if not scaleup: # only scale down, do not scale up (for better val mAP)
|
| 135 |
+
r = min(r, 1.0)
|
| 136 |
+
|
| 137 |
+
# Compute padding
|
| 138 |
+
ratio = r, r # width, height ratios
|
| 139 |
+
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
|
| 140 |
+
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
|
| 141 |
+
if auto: # minimum rectangle
|
| 142 |
+
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
|
| 143 |
+
elif scaleFill: # stretch
|
| 144 |
+
dw, dh = 0.0, 0.0
|
| 145 |
+
new_unpad = (new_shape[1], new_shape[0])
|
| 146 |
+
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios
|
| 147 |
+
|
| 148 |
+
dw /= 2 # divide padding into 2 sides
|
| 149 |
+
dh /= 2
|
| 150 |
+
|
| 151 |
+
if shape[::-1] != new_unpad: # resize
|
| 152 |
+
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
|
| 153 |
+
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
|
| 154 |
+
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
|
| 155 |
+
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
|
| 156 |
+
return im, ratio, (dw, dh)
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
def copy_paste(im, labels, segments, seg_cls, semantic_masks, p=0.5):
|
| 160 |
+
# Implement Copy-Paste augmentation https://arxiv.org/abs/2012.07177, labels as nx5 np.array(cls, xyxy)
|
| 161 |
+
n = len(segments)
|
| 162 |
+
if p and n:
|
| 163 |
+
h, w, _ = im.shape # height, width, channels
|
| 164 |
+
im_new = np.zeros(im.shape, np.uint8)
|
| 165 |
+
|
| 166 |
+
# calculate ioa first then select indexes randomly
|
| 167 |
+
boxes = np.stack([w - labels[:, 3], labels[:, 2], w - labels[:, 1], labels[:, 4]], axis=-1) # (n, 4)
|
| 168 |
+
ioa = bbox_ioa(boxes, labels[:, 1:5]) # intersection over area
|
| 169 |
+
indexes = np.nonzero((ioa < 0.30).all(1))[0] # (N, )
|
| 170 |
+
n = len(indexes)
|
| 171 |
+
for j in random.sample(list(indexes), k=round(p * n)):
|
| 172 |
+
l, box, s = labels[j], boxes[j], segments[j]
|
| 173 |
+
labels = np.concatenate((labels, [[l[0], *box]]), 0)
|
| 174 |
+
segments.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
|
| 175 |
+
seg_cls.append(l[0].astype(int))
|
| 176 |
+
semantic_masks.append(np.concatenate((w - s[:, 0:1], s[:, 1:2]), 1))
|
| 177 |
+
cv2.drawContours(im_new, [segments[j].astype(np.int32)], -1, (1, 1, 1), cv2.FILLED)
|
| 178 |
+
|
| 179 |
+
result = cv2.flip(im, 1) # augment segments (flip left-right)
|
| 180 |
+
i = cv2.flip(im_new, 1).astype(bool)
|
| 181 |
+
im[i] = result[i] # cv2.imwrite('debug.jpg', im) # debug
|
| 182 |
+
|
| 183 |
+
return im, labels, segments, seg_cls, semantic_masks
|
utils/panoptic/dataloaders.py
ADDED
|
@@ -0,0 +1,478 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import random
|
| 3 |
+
|
| 4 |
+
import pickle
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
|
| 7 |
+
from itertools import repeat
|
| 8 |
+
from multiprocessing.pool import Pool, ThreadPool
|
| 9 |
+
|
| 10 |
+
import cv2
|
| 11 |
+
import numpy as np
|
| 12 |
+
import torch
|
| 13 |
+
from torch.utils.data import DataLoader, distributed
|
| 14 |
+
from tqdm import tqdm
|
| 15 |
+
|
| 16 |
+
from ..augmentations import augment_hsv
|
| 17 |
+
from ..dataloaders import InfiniteDataLoader, LoadImagesAndLabels, seed_worker, get_hash, verify_image_label, HELP_URL, TQDM_BAR_FORMAT, LOCAL_RANK
|
| 18 |
+
from ..general import NUM_THREADS, LOGGER, xyn2xy, xywhn2xyxy, xyxy2xywhn
|
| 19 |
+
from ..torch_utils import torch_distributed_zero_first
|
| 20 |
+
from ..coco_utils import annToMask, getCocoIds
|
| 21 |
+
from .augmentations import mixup, random_perspective, copy_paste, letterbox
|
| 22 |
+
|
| 23 |
+
RANK = int(os.getenv('RANK', -1))
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def create_dataloader(path,
|
| 27 |
+
imgsz,
|
| 28 |
+
batch_size,
|
| 29 |
+
stride,
|
| 30 |
+
single_cls=False,
|
| 31 |
+
hyp=None,
|
| 32 |
+
augment=False,
|
| 33 |
+
cache=False,
|
| 34 |
+
pad=0.0,
|
| 35 |
+
rect=False,
|
| 36 |
+
rank=-1,
|
| 37 |
+
workers=8,
|
| 38 |
+
image_weights=False,
|
| 39 |
+
close_mosaic=False,
|
| 40 |
+
quad=False,
|
| 41 |
+
prefix='',
|
| 42 |
+
shuffle=False,
|
| 43 |
+
mask_downsample_ratio=1,
|
| 44 |
+
overlap_mask=False):
|
| 45 |
+
if rect and shuffle:
|
| 46 |
+
LOGGER.warning('WARNING ⚠️ --rect is incompatible with DataLoader shuffle, setting shuffle=False')
|
| 47 |
+
shuffle = False
|
| 48 |
+
with torch_distributed_zero_first(rank): # init dataset *.cache only once if DDP
|
| 49 |
+
dataset = LoadImagesAndLabelsAndMasks(
|
| 50 |
+
path,
|
| 51 |
+
imgsz,
|
| 52 |
+
batch_size,
|
| 53 |
+
augment=augment, # augmentation
|
| 54 |
+
hyp=hyp, # hyperparameters
|
| 55 |
+
rect=rect, # rectangular batches
|
| 56 |
+
cache_images=cache,
|
| 57 |
+
single_cls=single_cls,
|
| 58 |
+
stride=int(stride),
|
| 59 |
+
pad=pad,
|
| 60 |
+
image_weights=image_weights,
|
| 61 |
+
prefix=prefix,
|
| 62 |
+
downsample_ratio=mask_downsample_ratio,
|
| 63 |
+
overlap=overlap_mask)
|
| 64 |
+
|
| 65 |
+
batch_size = min(batch_size, len(dataset))
|
| 66 |
+
nd = torch.cuda.device_count() # number of CUDA devices
|
| 67 |
+
nw = min([os.cpu_count() // max(nd, 1), batch_size if batch_size > 1 else 0, workers]) # number of workers
|
| 68 |
+
sampler = None if rank == -1 else distributed.DistributedSampler(dataset, shuffle=shuffle)
|
| 69 |
+
#loader = DataLoader if image_weights else InfiniteDataLoader # only DataLoader allows for attribute updates
|
| 70 |
+
loader = DataLoader if image_weights or close_mosaic else InfiniteDataLoader
|
| 71 |
+
generator = torch.Generator()
|
| 72 |
+
generator.manual_seed(6148914691236517205 + RANK)
|
| 73 |
+
return loader(
|
| 74 |
+
dataset,
|
| 75 |
+
batch_size=batch_size,
|
| 76 |
+
shuffle=shuffle and sampler is None,
|
| 77 |
+
num_workers=nw,
|
| 78 |
+
sampler=sampler,
|
| 79 |
+
pin_memory=True,
|
| 80 |
+
collate_fn=LoadImagesAndLabelsAndMasks.collate_fn4 if quad else LoadImagesAndLabelsAndMasks.collate_fn,
|
| 81 |
+
worker_init_fn=seed_worker,
|
| 82 |
+
generator=generator,
|
| 83 |
+
), dataset
|
| 84 |
+
|
| 85 |
+
def img2stuff_paths(img_paths):
|
| 86 |
+
# Define label paths as a function of image paths
|
| 87 |
+
sa, sb = f'{os.sep}images{os.sep}', f'{os.sep}stuff{os.sep}' # /images/, /segmentations/ substrings
|
| 88 |
+
return [sb.join(x.rsplit(sa, 1)).rsplit('.', 1)[0] + '.txt' for x in img_paths]
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
class LoadImagesAndLabelsAndMasks(LoadImagesAndLabels): # for training/testing
|
| 92 |
+
|
| 93 |
+
def __init__(
|
| 94 |
+
self,
|
| 95 |
+
path,
|
| 96 |
+
img_size=640,
|
| 97 |
+
batch_size=16,
|
| 98 |
+
augment=False,
|
| 99 |
+
hyp=None,
|
| 100 |
+
rect=False,
|
| 101 |
+
image_weights=False,
|
| 102 |
+
cache_images=False,
|
| 103 |
+
single_cls=False,
|
| 104 |
+
stride=32,
|
| 105 |
+
pad=0,
|
| 106 |
+
min_items=0,
|
| 107 |
+
prefix="",
|
| 108 |
+
downsample_ratio=1,
|
| 109 |
+
overlap=False,
|
| 110 |
+
):
|
| 111 |
+
super().__init__(
|
| 112 |
+
path,
|
| 113 |
+
img_size,
|
| 114 |
+
batch_size,
|
| 115 |
+
augment,
|
| 116 |
+
hyp,
|
| 117 |
+
rect,
|
| 118 |
+
image_weights,
|
| 119 |
+
cache_images,
|
| 120 |
+
single_cls,
|
| 121 |
+
stride,
|
| 122 |
+
pad,
|
| 123 |
+
min_items,
|
| 124 |
+
prefix)
|
| 125 |
+
self.downsample_ratio = downsample_ratio
|
| 126 |
+
self.overlap = overlap
|
| 127 |
+
|
| 128 |
+
# semantic segmentation
|
| 129 |
+
self.coco_ids = getCocoIds()
|
| 130 |
+
|
| 131 |
+
# Check cache
|
| 132 |
+
self.seg_files = img2stuff_paths(self.im_files) # labels
|
| 133 |
+
p = Path(path)
|
| 134 |
+
cache_path = (p.with_suffix('') if p.is_file() else Path(self.seg_files[0]).parent)
|
| 135 |
+
cache_path = Path(str(cache_path) + '_stuff').with_suffix('.cache')
|
| 136 |
+
try:
|
| 137 |
+
cache, exists = np.load(cache_path, allow_pickle = True).item(), True # load dict
|
| 138 |
+
#assert cache['version'] == self.cache_version # matches current version
|
| 139 |
+
#assert cache['hash'] == get_hash(self.seg_files + self.im_files) # identical hash
|
| 140 |
+
except Exception:
|
| 141 |
+
cache, exists = self.cache_seg_labels(cache_path, prefix), False # run cache ops
|
| 142 |
+
|
| 143 |
+
# Display cache
|
| 144 |
+
nf, nm, ne, nc, n = cache.pop('results') # found, missing, empty, corrupt, total
|
| 145 |
+
if exists and LOCAL_RANK in {-1, 0}:
|
| 146 |
+
d = f"Scanning '{cache_path}' images and labels... {nf} found, {nm} missing, {ne} empty, {nc} corrupt"
|
| 147 |
+
tqdm(None, desc = (prefix + d), total = n, initial = n, bar_format = TQDM_BAR_FORMAT) # display cache results
|
| 148 |
+
if cache['msgs']:
|
| 149 |
+
LOGGER.info('\n'.join(cache['msgs'])) # display warnings
|
| 150 |
+
assert (0 < nf) or (not augment), f'{prefix}No labels found in {cache_path}, can not start training. {HELP_URL}'
|
| 151 |
+
|
| 152 |
+
# Read cache
|
| 153 |
+
[cache.pop(k) for k in ('hash', 'version', 'msgs')] # remove items
|
| 154 |
+
seg_labels, _, self.semantic_masks = zip(*cache.values())
|
| 155 |
+
nl = len(np.concatenate(seg_labels, 0)) # number of labels
|
| 156 |
+
assert nl > 0 or not augment, f'{prefix}All labels empty in {cache_path}, can not start training. {HELP_URL}'
|
| 157 |
+
|
| 158 |
+
# Update labels
|
| 159 |
+
self.seg_cls = []
|
| 160 |
+
include_class = [] # filter labels to include only these classes (optional)
|
| 161 |
+
include_class_array = np.array(include_class).reshape(1, -1)
|
| 162 |
+
for i, (label, semantic_masks) in enumerate(zip(seg_labels, self.semantic_masks)):
|
| 163 |
+
self.seg_cls.append((label[:, 0].astype(int)).tolist())
|
| 164 |
+
if include_class:
|
| 165 |
+
j = (label[:, 0:1] == include_class_array).any(1)
|
| 166 |
+
if semantic_masks:
|
| 167 |
+
self.semantic_masks[i] = semantic_masks[j]
|
| 168 |
+
if single_cls: # single-class training, merge all classes into 0
|
| 169 |
+
if semantic_masks:
|
| 170 |
+
self.semantic_masks[i][:, 0] = 0
|
| 171 |
+
|
| 172 |
+
def __getitem__(self, index):
|
| 173 |
+
index = self.indices[index] # linear, shuffled, or image_weights
|
| 174 |
+
|
| 175 |
+
hyp = self.hyp
|
| 176 |
+
mosaic = self.mosaic and random.random() < hyp['mosaic']
|
| 177 |
+
masks = []
|
| 178 |
+
if mosaic:
|
| 179 |
+
# Load mosaic
|
| 180 |
+
img, labels, segments, seg_cls, semantic_masks = self.load_mosaic(index)
|
| 181 |
+
shapes = None
|
| 182 |
+
|
| 183 |
+
# MixUp augmentation
|
| 184 |
+
if random.random() < hyp["mixup"]:
|
| 185 |
+
img, labels, segments, seg_cls, semantic_masks = mixup(img, labels, segments, seg_cls, semantic_masks,
|
| 186 |
+
*self.load_mosaic(random.randint(0, self.n - 1)))
|
| 187 |
+
|
| 188 |
+
else:
|
| 189 |
+
# Load image
|
| 190 |
+
img, (h0, w0), (h, w) = self.load_image(index)
|
| 191 |
+
|
| 192 |
+
# Letterbox
|
| 193 |
+
shape = self.batch_shapes[self.batch[index]] if self.rect else self.img_size # final letterboxed shape
|
| 194 |
+
img, ratio, pad = letterbox(img, shape, auto=False, scaleup=self.augment)
|
| 195 |
+
shapes = (h0, w0), ((h / h0, w / w0), pad) # for COCO mAP rescaling
|
| 196 |
+
|
| 197 |
+
labels = self.labels[index].copy()
|
| 198 |
+
# [array, array, ....], array.shape=(num_points, 2), xyxyxyxy
|
| 199 |
+
segments = self.segments[index].copy()
|
| 200 |
+
if len(segments):
|
| 201 |
+
for i_s in range(len(segments)):
|
| 202 |
+
segments[i_s] = xyn2xy(
|
| 203 |
+
segments[i_s],
|
| 204 |
+
ratio[0] * w,
|
| 205 |
+
ratio[1] * h,
|
| 206 |
+
padw=pad[0],
|
| 207 |
+
padh=pad[1],
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
seg_cls = self.seg_cls[index].copy()
|
| 211 |
+
semantic_masks = self.semantic_masks[index].copy()
|
| 212 |
+
#semantic_masks = [xyn2xy(x, ratio[0] * w, ratio[1] * h, padw = pad[0], padh = pad[1]) for x in semantic_masks]
|
| 213 |
+
if len(semantic_masks):
|
| 214 |
+
for ss in range(len(semantic_masks)):
|
| 215 |
+
semantic_masks[ss] = xyn2xy(
|
| 216 |
+
semantic_masks[ss],
|
| 217 |
+
ratio[0] * w,
|
| 218 |
+
ratio[1] * h,
|
| 219 |
+
padw = pad[0],
|
| 220 |
+
padh = pad[1],
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
if labels.size: # normalized xywh to pixel xyxy format
|
| 224 |
+
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], ratio[0] * w, ratio[1] * h, padw=pad[0], padh=pad[1])
|
| 225 |
+
|
| 226 |
+
if self.augment:
|
| 227 |
+
img, labels, segments, semantic_masks = random_perspective(
|
| 228 |
+
img,
|
| 229 |
+
labels,
|
| 230 |
+
segments=segments,
|
| 231 |
+
semantic_masks = semantic_masks,
|
| 232 |
+
degrees=hyp["degrees"],
|
| 233 |
+
translate=hyp["translate"],
|
| 234 |
+
scale=hyp["scale"],
|
| 235 |
+
shear=hyp["shear"],
|
| 236 |
+
perspective=hyp["perspective"])
|
| 237 |
+
|
| 238 |
+
nl = len(labels) # number of labels
|
| 239 |
+
if nl:
|
| 240 |
+
labels[:, 1:5] = xyxy2xywhn(labels[:, 1:5], w=img.shape[1], h=img.shape[0], clip=True, eps=1e-3)
|
| 241 |
+
if self.overlap:
|
| 242 |
+
masks, sorted_idx = polygons2masks_overlap(img.shape[:2],
|
| 243 |
+
segments,
|
| 244 |
+
downsample_ratio=self.downsample_ratio)
|
| 245 |
+
masks = masks[None] # (640, 640) -> (1, 640, 640)
|
| 246 |
+
labels = labels[sorted_idx]
|
| 247 |
+
else:
|
| 248 |
+
masks = polygons2masks(img.shape[:2], segments, color=1, downsample_ratio=self.downsample_ratio)
|
| 249 |
+
|
| 250 |
+
masks = (torch.from_numpy(masks) if len(masks) else torch.zeros(1 if self.overlap else nl, img.shape[0] //
|
| 251 |
+
self.downsample_ratio, img.shape[1] //
|
| 252 |
+
self.downsample_ratio))
|
| 253 |
+
semantic_masks = polygons2masks(img.shape[:2], semantic_masks, color = 1, downsample_ratio=self.downsample_ratio)
|
| 254 |
+
#semantic_masks = polygons2masks(img.shape[:2], semantic_masks, color = 1, downsample_ratio=1)
|
| 255 |
+
semantic_masks = torch.from_numpy(semantic_masks)
|
| 256 |
+
# TODO: albumentations support
|
| 257 |
+
if self.augment:
|
| 258 |
+
# Albumentations
|
| 259 |
+
# there are some augmentation that won't change boxes and masks,
|
| 260 |
+
# so just be it for now.
|
| 261 |
+
img, labels = self.albumentations(img, labels)
|
| 262 |
+
nl = len(labels) # update after albumentations
|
| 263 |
+
ns = len(semantic_masks)
|
| 264 |
+
|
| 265 |
+
# HSV color-space
|
| 266 |
+
augment_hsv(img, hgain=hyp["hsv_h"], sgain=hyp["hsv_s"], vgain=hyp["hsv_v"])
|
| 267 |
+
|
| 268 |
+
# Flip up-down
|
| 269 |
+
if random.random() < hyp["flipud"]:
|
| 270 |
+
img = np.flipud(img)
|
| 271 |
+
if nl:
|
| 272 |
+
labels[:, 2] = 1 - labels[:, 2]
|
| 273 |
+
masks = torch.flip(masks, dims=[1])
|
| 274 |
+
if ns:
|
| 275 |
+
semantic_masks = torch.flip(semantic_masks, dims = [1])
|
| 276 |
+
|
| 277 |
+
# Flip left-right
|
| 278 |
+
if random.random() < hyp["fliplr"]:
|
| 279 |
+
img = np.fliplr(img)
|
| 280 |
+
if nl:
|
| 281 |
+
labels[:, 1] = 1 - labels[:, 1]
|
| 282 |
+
masks = torch.flip(masks, dims=[2])
|
| 283 |
+
if ns:
|
| 284 |
+
semantic_masks = torch.flip(semantic_masks, dims = [2])
|
| 285 |
+
|
| 286 |
+
# Cutouts # labels = cutout(img, labels, p=0.5)
|
| 287 |
+
|
| 288 |
+
labels_out = torch.zeros((nl, 6))
|
| 289 |
+
if nl:
|
| 290 |
+
labels_out[:, 1:] = torch.from_numpy(labels)
|
| 291 |
+
|
| 292 |
+
# Combine semantic masks
|
| 293 |
+
semantic_seg_masks = torch.zeros((len(self.coco_ids), img.shape[0] // self.downsample_ratio,
|
| 294 |
+
img.shape[1] // self.downsample_ratio), dtype = torch.uint8)
|
| 295 |
+
#semantic_seg_masks = torch.zeros((len(self.coco_ids), img.shape[0], img.shape[1]), dtype = torch.uint8)
|
| 296 |
+
for cls_id, semantic_mask in zip(seg_cls, semantic_masks):
|
| 297 |
+
semantic_seg_masks[cls_id] = (semantic_seg_masks[cls_id].logical_or(semantic_mask)).int()
|
| 298 |
+
|
| 299 |
+
|
| 300 |
+
# Convert
|
| 301 |
+
img = img.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
|
| 302 |
+
img = np.ascontiguousarray(img)
|
| 303 |
+
|
| 304 |
+
return (torch.from_numpy(img), labels_out, self.im_files[index], shapes, masks, semantic_seg_masks)
|
| 305 |
+
|
| 306 |
+
def load_mosaic(self, index):
|
| 307 |
+
# YOLO 4-mosaic loader. Loads 1 image + 3 random images into a 4-image mosaic
|
| 308 |
+
labels4, segments4, seg_cls, semantic_masks4 = [], [], [], []
|
| 309 |
+
s = self.img_size
|
| 310 |
+
yc, xc = (int(random.uniform(-x, 2 * s + x)) for x in self.mosaic_border) # mosaic center x, y
|
| 311 |
+
|
| 312 |
+
# 3 additional image indices
|
| 313 |
+
indices = [index] + random.choices(self.indices, k=3) # 3 additional image indices
|
| 314 |
+
for i, index in enumerate(indices):
|
| 315 |
+
# Load image
|
| 316 |
+
img, _, (h, w) = self.load_image(index)
|
| 317 |
+
|
| 318 |
+
# place img in img4
|
| 319 |
+
if i == 0: # top left
|
| 320 |
+
img4 = np.full((s * 2, s * 2, img.shape[2]), 114, dtype=np.uint8) # base image with 4 tiles
|
| 321 |
+
x1a, y1a, x2a, y2a = max(xc - w, 0), max(yc - h, 0), xc, yc # xmin, ymin, xmax, ymax (large image)
|
| 322 |
+
x1b, y1b, x2b, y2b = w - (x2a - x1a), h - (y2a - y1a), w, h # xmin, ymin, xmax, ymax (small image)
|
| 323 |
+
elif i == 1: # top right
|
| 324 |
+
x1a, y1a, x2a, y2a = xc, max(yc - h, 0), min(xc + w, s * 2), yc
|
| 325 |
+
x1b, y1b, x2b, y2b = 0, h - (y2a - y1a), min(w, x2a - x1a), h
|
| 326 |
+
elif i == 2: # bottom left
|
| 327 |
+
x1a, y1a, x2a, y2a = max(xc - w, 0), yc, xc, min(s * 2, yc + h)
|
| 328 |
+
x1b, y1b, x2b, y2b = w - (x2a - x1a), 0, w, min(y2a - y1a, h)
|
| 329 |
+
elif i == 3: # bottom right
|
| 330 |
+
x1a, y1a, x2a, y2a = xc, yc, min(xc + w, s * 2), min(s * 2, yc + h)
|
| 331 |
+
x1b, y1b, x2b, y2b = 0, 0, min(w, x2a - x1a), min(y2a - y1a, h)
|
| 332 |
+
|
| 333 |
+
img4[y1a:y2a, x1a:x2a] = img[y1b:y2b, x1b:x2b] # img4[ymin:ymax, xmin:xmax]
|
| 334 |
+
padw = x1a - x1b
|
| 335 |
+
padh = y1a - y1b
|
| 336 |
+
|
| 337 |
+
labels, segments, semantic_masks = self.labels[index].copy(), self.segments[index].copy(), self.semantic_masks[index].copy()
|
| 338 |
+
|
| 339 |
+
if labels.size:
|
| 340 |
+
labels[:, 1:] = xywhn2xyxy(labels[:, 1:], w, h, padw, padh) # normalized xywh to pixel xyxy format
|
| 341 |
+
segments = [xyn2xy(x, w, h, padw, padh) for x in segments]
|
| 342 |
+
semantic_masks = [xyn2xy(x, w, h, padw, padh) for x in semantic_masks]
|
| 343 |
+
labels4.append(labels)
|
| 344 |
+
segments4.extend(segments)
|
| 345 |
+
seg_cls.extend(self.seg_cls[index].copy())
|
| 346 |
+
semantic_masks4.extend(semantic_masks)
|
| 347 |
+
|
| 348 |
+
# Concat/clip labels
|
| 349 |
+
labels4 = np.concatenate(labels4, 0)
|
| 350 |
+
for i in range(len(semantic_masks4)):
|
| 351 |
+
if i < len(segments4):
|
| 352 |
+
np.clip(labels4[:, 1:][i], 0, 2 * s, out = labels4[:, 1:][i])
|
| 353 |
+
np.clip(segments4[i], 0, 2 * s, out = segments4[i])
|
| 354 |
+
np.clip(semantic_masks4[i], 0, 2 * s, out = semantic_masks4[i])
|
| 355 |
+
# img4, labels4 = replicate(img4, labels4) # replicate
|
| 356 |
+
|
| 357 |
+
# 3 additional image indices
|
| 358 |
+
# Augment
|
| 359 |
+
img4, labels4, segments4, seg_cls, semantic_masks4 = copy_paste(img4, labels4, segments4, seg_cls, semantic_masks4, p=self.hyp["copy_paste"])
|
| 360 |
+
img4, labels4, segments4, semantic_masks4 = random_perspective(img4,
|
| 361 |
+
labels4,
|
| 362 |
+
segments4,
|
| 363 |
+
semantic_masks4,
|
| 364 |
+
degrees=self.hyp["degrees"],
|
| 365 |
+
translate=self.hyp["translate"],
|
| 366 |
+
scale=self.hyp["scale"],
|
| 367 |
+
shear=self.hyp["shear"],
|
| 368 |
+
perspective=self.hyp["perspective"],
|
| 369 |
+
border=self.mosaic_border) # border to remove
|
| 370 |
+
|
| 371 |
+
return img4, labels4, segments4, seg_cls, semantic_masks4
|
| 372 |
+
|
| 373 |
+
def cache_seg_labels(self, path = Path('./labels_stuff.cache'), prefix = ''):
|
| 374 |
+
# Cache dataset labels, check images and read shapes
|
| 375 |
+
x = {} # dict
|
| 376 |
+
nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages
|
| 377 |
+
desc = f"{prefix}Scanning '{path.parent / path.stem}' images and labels..."
|
| 378 |
+
with Pool(NUM_THREADS) as pool:
|
| 379 |
+
pbar = tqdm(pool.imap(verify_image_label, zip(self.im_files, self.seg_files, repeat(prefix))),
|
| 380 |
+
desc = desc,
|
| 381 |
+
total = len(self.im_files),
|
| 382 |
+
bar_format = TQDM_BAR_FORMAT)
|
| 383 |
+
for im_file, lb, shape, segments, nm_f, nf_f, ne_f, nc_f, msg in pbar:
|
| 384 |
+
nm += nm_f
|
| 385 |
+
nf += nf_f
|
| 386 |
+
ne += ne_f
|
| 387 |
+
nc += nc_f
|
| 388 |
+
if im_file:
|
| 389 |
+
x[im_file] = [lb, shape, segments]
|
| 390 |
+
if msg:
|
| 391 |
+
msgs.append(msg)
|
| 392 |
+
pbar.desc = f"{desc}{nf} found, {nm} missing, {ne} empty, {nc} corrupt"
|
| 393 |
+
|
| 394 |
+
pbar.close()
|
| 395 |
+
if msgs:
|
| 396 |
+
LOGGER.info('\n'.join(msgs))
|
| 397 |
+
if nf == 0:
|
| 398 |
+
LOGGER.warning(f'{prefix}WARNING: No labels found in {path}. {HELP_URL}')
|
| 399 |
+
x['hash'] = get_hash(self.seg_files + self.im_files)
|
| 400 |
+
x['results'] = nf, nm, ne, nc, len(self.im_files)
|
| 401 |
+
x['msgs'] = msgs # warnings
|
| 402 |
+
x['version'] = self.cache_version # cache version
|
| 403 |
+
try:
|
| 404 |
+
np.save(path, x) # save cache for next time
|
| 405 |
+
path.with_suffix('.cache.npy').rename(path) # remove .npy suffix
|
| 406 |
+
LOGGER.info(f'{prefix}New cache created: {path}')
|
| 407 |
+
except Exception as e:
|
| 408 |
+
LOGGER.warning(f'{prefix}WARNING: Cache directory {path.parent} is not writeable: {e}') # not writeable
|
| 409 |
+
return x
|
| 410 |
+
|
| 411 |
+
@staticmethod
|
| 412 |
+
def collate_fn(batch):
|
| 413 |
+
img, label, path, shapes, masks, semantic_masks = zip(*batch) # transposed
|
| 414 |
+
batched_masks = torch.cat(masks, 0)
|
| 415 |
+
for i, l in enumerate(label):
|
| 416 |
+
l[:, 0] = i # add target image index for build_targets()
|
| 417 |
+
return torch.stack(img, 0), torch.cat(label, 0), path, shapes, batched_masks, torch.stack(semantic_masks, 0)
|
| 418 |
+
|
| 419 |
+
|
| 420 |
+
|
| 421 |
+
def polygon2mask(img_size, polygons, color=1, downsample_ratio=1):
|
| 422 |
+
"""
|
| 423 |
+
Args:
|
| 424 |
+
img_size (tuple): The image size.
|
| 425 |
+
polygons (np.ndarray): [N, M], N is the number of polygons,
|
| 426 |
+
M is the number of points(Be divided by 2).
|
| 427 |
+
"""
|
| 428 |
+
mask = np.zeros(img_size, dtype=np.uint8)
|
| 429 |
+
polygons = np.asarray(polygons)
|
| 430 |
+
polygons = polygons.astype(np.int32)
|
| 431 |
+
shape = polygons.shape
|
| 432 |
+
polygons = polygons.reshape(shape[0], -1, 2)
|
| 433 |
+
cv2.fillPoly(mask, polygons, color=color)
|
| 434 |
+
nh, nw = (img_size[0] // downsample_ratio, img_size[1] // downsample_ratio)
|
| 435 |
+
# NOTE: fillPoly firstly then resize is trying the keep the same way
|
| 436 |
+
# of loss calculation when mask-ratio=1.
|
| 437 |
+
mask = cv2.resize(mask, (nw, nh))
|
| 438 |
+
return mask
|
| 439 |
+
|
| 440 |
+
|
| 441 |
+
def polygons2masks(img_size, polygons, color, downsample_ratio=1):
|
| 442 |
+
"""
|
| 443 |
+
Args:
|
| 444 |
+
img_size (tuple): The image size.
|
| 445 |
+
polygons (list[np.ndarray]): each polygon is [N, M],
|
| 446 |
+
N is the number of polygons,
|
| 447 |
+
M is the number of points(Be divided by 2).
|
| 448 |
+
"""
|
| 449 |
+
masks = []
|
| 450 |
+
for si in range(len(polygons)):
|
| 451 |
+
mask = polygon2mask(img_size, [polygons[si].reshape(-1)], color, downsample_ratio)
|
| 452 |
+
masks.append(mask)
|
| 453 |
+
return np.array(masks)
|
| 454 |
+
|
| 455 |
+
|
| 456 |
+
def polygons2masks_overlap(img_size, segments, downsample_ratio=1):
|
| 457 |
+
"""Return a (640, 640) overlap mask."""
|
| 458 |
+
masks = np.zeros((img_size[0] // downsample_ratio, img_size[1] // downsample_ratio),
|
| 459 |
+
dtype=np.int32 if len(segments) > 255 else np.uint8)
|
| 460 |
+
areas = []
|
| 461 |
+
ms = []
|
| 462 |
+
for si in range(len(segments)):
|
| 463 |
+
mask = polygon2mask(
|
| 464 |
+
img_size,
|
| 465 |
+
[segments[si].reshape(-1)],
|
| 466 |
+
downsample_ratio=downsample_ratio,
|
| 467 |
+
color=1,
|
| 468 |
+
)
|
| 469 |
+
ms.append(mask)
|
| 470 |
+
areas.append(mask.sum())
|
| 471 |
+
areas = np.asarray(areas)
|
| 472 |
+
index = np.argsort(-areas)
|
| 473 |
+
ms = np.array(ms)[index]
|
| 474 |
+
for i in range(len(segments)):
|
| 475 |
+
mask = ms[i] * (i + 1)
|
| 476 |
+
masks = masks + mask
|
| 477 |
+
masks = np.clip(masks, a_min=0, a_max=i + 1)
|
| 478 |
+
return masks, index
|
utils/panoptic/general.py
ADDED
|
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import cv2
|
| 2 |
+
import numpy as np
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def crop_mask(masks, boxes):
|
| 8 |
+
"""
|
| 9 |
+
"Crop" predicted masks by zeroing out everything not in the predicted bbox.
|
| 10 |
+
Vectorized by Chong (thanks Chong).
|
| 11 |
+
|
| 12 |
+
Args:
|
| 13 |
+
- masks should be a size [h, w, n] tensor of masks
|
| 14 |
+
- boxes should be a size [n, 4] tensor of bbox coords in relative point form
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
n, h, w = masks.shape
|
| 18 |
+
x1, y1, x2, y2 = torch.chunk(boxes[:, :, None], 4, 1) # x1 shape(1,1,n)
|
| 19 |
+
r = torch.arange(w, device=masks.device, dtype=x1.dtype)[None, None, :] # rows shape(1,w,1)
|
| 20 |
+
c = torch.arange(h, device=masks.device, dtype=x1.dtype)[None, :, None] # cols shape(h,1,1)
|
| 21 |
+
|
| 22 |
+
return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def process_mask_upsample(protos, masks_in, bboxes, shape):
|
| 26 |
+
"""
|
| 27 |
+
Crop after upsample.
|
| 28 |
+
proto_out: [mask_dim, mask_h, mask_w]
|
| 29 |
+
out_masks: [n, mask_dim], n is number of masks after nms
|
| 30 |
+
bboxes: [n, 4], n is number of masks after nms
|
| 31 |
+
shape:input_image_size, (h, w)
|
| 32 |
+
|
| 33 |
+
return: h, w, n
|
| 34 |
+
"""
|
| 35 |
+
|
| 36 |
+
c, mh, mw = protos.shape # CHW
|
| 37 |
+
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw)
|
| 38 |
+
masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW
|
| 39 |
+
masks = crop_mask(masks, bboxes) # CHW
|
| 40 |
+
return masks.gt_(0.5)
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def process_mask(protos, masks_in, bboxes, shape, upsample=False):
|
| 44 |
+
"""
|
| 45 |
+
Crop before upsample.
|
| 46 |
+
proto_out: [mask_dim, mask_h, mask_w]
|
| 47 |
+
out_masks: [n, mask_dim], n is number of masks after nms
|
| 48 |
+
bboxes: [n, 4], n is number of masks after nms
|
| 49 |
+
shape:input_image_size, (h, w)
|
| 50 |
+
|
| 51 |
+
return: h, w, n
|
| 52 |
+
"""
|
| 53 |
+
|
| 54 |
+
c, mh, mw = protos.shape # CHW
|
| 55 |
+
ih, iw = shape
|
| 56 |
+
masks = (masks_in @ protos.float().view(c, -1)).sigmoid().view(-1, mh, mw) # CHW
|
| 57 |
+
|
| 58 |
+
downsampled_bboxes = bboxes.clone()
|
| 59 |
+
downsampled_bboxes[:, 0] *= mw / iw
|
| 60 |
+
downsampled_bboxes[:, 2] *= mw / iw
|
| 61 |
+
downsampled_bboxes[:, 3] *= mh / ih
|
| 62 |
+
downsampled_bboxes[:, 1] *= mh / ih
|
| 63 |
+
|
| 64 |
+
masks = crop_mask(masks, downsampled_bboxes) # CHW
|
| 65 |
+
if upsample:
|
| 66 |
+
masks = F.interpolate(masks[None], shape, mode='bilinear', align_corners=False)[0] # CHW
|
| 67 |
+
return masks.gt_(0.5)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def scale_image(im1_shape, masks, im0_shape, ratio_pad=None):
|
| 71 |
+
"""
|
| 72 |
+
img1_shape: model input shape, [h, w]
|
| 73 |
+
img0_shape: origin pic shape, [h, w, 3]
|
| 74 |
+
masks: [h, w, num]
|
| 75 |
+
"""
|
| 76 |
+
# Rescale coordinates (xyxy) from im1_shape to im0_shape
|
| 77 |
+
if ratio_pad is None: # calculate from im0_shape
|
| 78 |
+
gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1]) # gain = old / new
|
| 79 |
+
pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2 # wh padding
|
| 80 |
+
else:
|
| 81 |
+
pad = ratio_pad[1]
|
| 82 |
+
top, left = int(pad[1]), int(pad[0]) # y, x
|
| 83 |
+
bottom, right = int(im1_shape[0] - pad[1]), int(im1_shape[1] - pad[0])
|
| 84 |
+
|
| 85 |
+
if len(masks.shape) < 2:
|
| 86 |
+
raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}')
|
| 87 |
+
masks = masks[top:bottom, left:right]
|
| 88 |
+
# masks = masks.permute(2, 0, 1).contiguous()
|
| 89 |
+
# masks = F.interpolate(masks[None], im0_shape[:2], mode='bilinear', align_corners=False)[0]
|
| 90 |
+
# masks = masks.permute(1, 2, 0).contiguous()
|
| 91 |
+
masks = cv2.resize(masks, (im0_shape[1], im0_shape[0]))
|
| 92 |
+
|
| 93 |
+
if len(masks.shape) == 2:
|
| 94 |
+
masks = masks[:, :, None]
|
| 95 |
+
return masks
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def mask_iou(mask1, mask2, eps=1e-7):
|
| 99 |
+
"""
|
| 100 |
+
mask1: [N, n] m1 means number of predicted objects
|
| 101 |
+
mask2: [M, n] m2 means number of gt objects
|
| 102 |
+
Note: n means image_w x image_h
|
| 103 |
+
|
| 104 |
+
return: masks iou, [N, M]
|
| 105 |
+
"""
|
| 106 |
+
intersection = torch.matmul(mask1, mask2.t()).clamp(0)
|
| 107 |
+
union = (mask1.sum(1)[:, None] + mask2.sum(1)[None]) - intersection # (area1 + area2) - intersection
|
| 108 |
+
return intersection / (union + eps)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def masks_iou(mask1, mask2, eps=1e-7):
|
| 112 |
+
"""
|
| 113 |
+
mask1: [N, n] m1 means number of predicted objects
|
| 114 |
+
mask2: [N, n] m2 means number of gt objects
|
| 115 |
+
Note: n means image_w x image_h
|
| 116 |
+
|
| 117 |
+
return: masks iou, (N, )
|
| 118 |
+
"""
|
| 119 |
+
intersection = (mask1 * mask2).sum(1).clamp(0) # (N, )
|
| 120 |
+
union = (mask1.sum(1) + mask2.sum(1))[None] - intersection # (area1 + area2) - intersection
|
| 121 |
+
return intersection / (union + eps)
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def masks2segments(masks, strategy='largest'):
|
| 125 |
+
# Convert masks(n,160,160) into segments(n,xy)
|
| 126 |
+
segments = []
|
| 127 |
+
for x in masks.int().cpu().numpy().astype('uint8'):
|
| 128 |
+
c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
|
| 129 |
+
if c:
|
| 130 |
+
if strategy == 'concat': # concatenate all segments
|
| 131 |
+
c = np.concatenate([x.reshape(-1, 2) for x in c])
|
| 132 |
+
elif strategy == 'largest': # select largest segment
|
| 133 |
+
c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2)
|
| 134 |
+
else:
|
| 135 |
+
c = np.zeros((0, 2)) # no segments found
|
| 136 |
+
segments.append(c.astype('float32'))
|
| 137 |
+
return segments
|
utils/panoptic/loss.py
ADDED
|
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
from ..general import xywh2xyxy
|
| 6 |
+
from ..loss import FocalLoss, smooth_BCE
|
| 7 |
+
from ..metrics import bbox_iou
|
| 8 |
+
from ..torch_utils import de_parallel
|
| 9 |
+
from .general import crop_mask
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class ComputeLoss:
|
| 13 |
+
# Compute losses
|
| 14 |
+
def __init__(self, model, autobalance=False, overlap=False):
|
| 15 |
+
self.sort_obj_iou = False
|
| 16 |
+
self.overlap = overlap
|
| 17 |
+
device = next(model.parameters()).device # get model device
|
| 18 |
+
h = model.hyp # hyperparameters
|
| 19 |
+
self.device = device
|
| 20 |
+
|
| 21 |
+
# Define criteria
|
| 22 |
+
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['cls_pw']], device=device))
|
| 23 |
+
BCEobj = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h['obj_pw']], device=device))
|
| 24 |
+
|
| 25 |
+
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
| 26 |
+
self.cp, self.cn = smooth_BCE(eps=h.get('label_smoothing', 0.0)) # positive, negative BCE targets
|
| 27 |
+
|
| 28 |
+
# Focal loss
|
| 29 |
+
g = h['fl_gamma'] # focal loss gamma
|
| 30 |
+
if g > 0:
|
| 31 |
+
BCEcls, BCEobj = FocalLoss(BCEcls, g), FocalLoss(BCEobj, g)
|
| 32 |
+
|
| 33 |
+
m = de_parallel(model).model[-1] # Detect() module
|
| 34 |
+
self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
|
| 35 |
+
self.ssi = list(m.stride).index(16) if autobalance else 0 # stride 16 index
|
| 36 |
+
self.BCEcls, self.BCEobj, self.gr, self.hyp, self.autobalance = BCEcls, BCEobj, 1.0, h, autobalance
|
| 37 |
+
self.na = m.na # number of anchors
|
| 38 |
+
self.nc = m.nc # number of classes
|
| 39 |
+
self.nl = m.nl # number of layers
|
| 40 |
+
self.nm = m.nm # number of masks
|
| 41 |
+
self.anchors = m.anchors
|
| 42 |
+
self.device = device
|
| 43 |
+
|
| 44 |
+
def __call__(self, preds, targets, masks): # predictions, targets, model
|
| 45 |
+
p, proto = preds
|
| 46 |
+
bs, nm, mask_h, mask_w = proto.shape # batch size, number of masks, mask height, mask width
|
| 47 |
+
lcls = torch.zeros(1, device=self.device)
|
| 48 |
+
lbox = torch.zeros(1, device=self.device)
|
| 49 |
+
lobj = torch.zeros(1, device=self.device)
|
| 50 |
+
lseg = torch.zeros(1, device=self.device)
|
| 51 |
+
tcls, tbox, indices, anchors, tidxs, xywhn = self.build_targets(p, targets) # targets
|
| 52 |
+
|
| 53 |
+
# Losses
|
| 54 |
+
for i, pi in enumerate(p): # layer index, layer predictions
|
| 55 |
+
b, a, gj, gi = indices[i] # image, anchor, gridy, gridx
|
| 56 |
+
tobj = torch.zeros(pi.shape[:4], dtype=pi.dtype, device=self.device) # target obj
|
| 57 |
+
|
| 58 |
+
n = b.shape[0] # number of targets
|
| 59 |
+
if n:
|
| 60 |
+
pxy, pwh, _, pcls, pmask = pi[b, a, gj, gi].split((2, 2, 1, self.nc, nm), 1) # subset of predictions
|
| 61 |
+
|
| 62 |
+
# Box regression
|
| 63 |
+
pxy = pxy.sigmoid() * 2 - 0.5
|
| 64 |
+
pwh = (pwh.sigmoid() * 2) ** 2 * anchors[i]
|
| 65 |
+
pbox = torch.cat((pxy, pwh), 1) # predicted box
|
| 66 |
+
iou = bbox_iou(pbox, tbox[i], CIoU=True).squeeze() # iou(prediction, target)
|
| 67 |
+
lbox += (1.0 - iou).mean() # iou loss
|
| 68 |
+
|
| 69 |
+
# Objectness
|
| 70 |
+
iou = iou.detach().clamp(0).type(tobj.dtype)
|
| 71 |
+
if self.sort_obj_iou:
|
| 72 |
+
j = iou.argsort()
|
| 73 |
+
b, a, gj, gi, iou = b[j], a[j], gj[j], gi[j], iou[j]
|
| 74 |
+
if self.gr < 1:
|
| 75 |
+
iou = (1.0 - self.gr) + self.gr * iou
|
| 76 |
+
tobj[b, a, gj, gi] = iou # iou ratio
|
| 77 |
+
|
| 78 |
+
# Classification
|
| 79 |
+
if self.nc > 1: # cls loss (only if multiple classes)
|
| 80 |
+
t = torch.full_like(pcls, self.cn, device=self.device) # targets
|
| 81 |
+
t[range(n), tcls[i]] = self.cp
|
| 82 |
+
lcls += self.BCEcls(pcls, t) # BCE
|
| 83 |
+
|
| 84 |
+
# Mask regression
|
| 85 |
+
if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample
|
| 86 |
+
masks = F.interpolate(masks[None], (mask_h, mask_w), mode="nearest")[0]
|
| 87 |
+
marea = xywhn[i][:, 2:].prod(1) # mask width, height normalized
|
| 88 |
+
mxyxy = xywh2xyxy(xywhn[i] * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device))
|
| 89 |
+
for bi in b.unique():
|
| 90 |
+
j = b == bi # matching index
|
| 91 |
+
if self.overlap:
|
| 92 |
+
mask_gti = torch.where(masks[bi][None] == tidxs[i][j].view(-1, 1, 1), 1.0, 0.0)
|
| 93 |
+
else:
|
| 94 |
+
mask_gti = masks[tidxs[i]][j]
|
| 95 |
+
lseg += self.single_mask_loss(mask_gti, pmask[j], proto[bi], mxyxy[j], marea[j])
|
| 96 |
+
|
| 97 |
+
obji = self.BCEobj(pi[..., 4], tobj)
|
| 98 |
+
lobj += obji * self.balance[i] # obj loss
|
| 99 |
+
if self.autobalance:
|
| 100 |
+
self.balance[i] = self.balance[i] * 0.9999 + 0.0001 / obji.detach().item()
|
| 101 |
+
|
| 102 |
+
if self.autobalance:
|
| 103 |
+
self.balance = [x / self.balance[self.ssi] for x in self.balance]
|
| 104 |
+
lbox *= self.hyp["box"]
|
| 105 |
+
lobj *= self.hyp["obj"]
|
| 106 |
+
lcls *= self.hyp["cls"]
|
| 107 |
+
lseg *= self.hyp["box"] / bs
|
| 108 |
+
|
| 109 |
+
loss = lbox + lobj + lcls + lseg
|
| 110 |
+
return loss * bs, torch.cat((lbox, lseg, lobj, lcls)).detach()
|
| 111 |
+
|
| 112 |
+
def single_mask_loss(self, gt_mask, pred, proto, xyxy, area):
|
| 113 |
+
# Mask loss for one image
|
| 114 |
+
pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:]) # (n,32) @ (32,80,80) -> (n,80,80)
|
| 115 |
+
loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction="none")
|
| 116 |
+
return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()
|
| 117 |
+
|
| 118 |
+
def build_targets(self, p, targets):
|
| 119 |
+
# Build targets for compute_loss(), input targets(image,class,x,y,w,h)
|
| 120 |
+
na, nt = self.na, targets.shape[0] # number of anchors, targets
|
| 121 |
+
tcls, tbox, indices, anch, tidxs, xywhn = [], [], [], [], [], []
|
| 122 |
+
gain = torch.ones(8, device=self.device) # normalized to gridspace gain
|
| 123 |
+
ai = torch.arange(na, device=self.device).float().view(na, 1).repeat(1, nt) # same as .repeat_interleave(nt)
|
| 124 |
+
if self.overlap:
|
| 125 |
+
batch = p[0].shape[0]
|
| 126 |
+
ti = []
|
| 127 |
+
for i in range(batch):
|
| 128 |
+
num = (targets[:, 0] == i).sum() # find number of targets of each image
|
| 129 |
+
ti.append(torch.arange(num, device=self.device).float().view(1, num).repeat(na, 1) + 1) # (na, num)
|
| 130 |
+
ti = torch.cat(ti, 1) # (na, nt)
|
| 131 |
+
else:
|
| 132 |
+
ti = torch.arange(nt, device=self.device).float().view(1, nt).repeat(na, 1)
|
| 133 |
+
targets = torch.cat((targets.repeat(na, 1, 1), ai[..., None], ti[..., None]), 2) # append anchor indices
|
| 134 |
+
|
| 135 |
+
g = 0.5 # bias
|
| 136 |
+
off = torch.tensor(
|
| 137 |
+
[
|
| 138 |
+
[0, 0],
|
| 139 |
+
[1, 0],
|
| 140 |
+
[0, 1],
|
| 141 |
+
[-1, 0],
|
| 142 |
+
[0, -1], # j,k,l,m
|
| 143 |
+
# [1, 1], [1, -1], [-1, 1], [-1, -1], # jk,jm,lk,lm
|
| 144 |
+
],
|
| 145 |
+
device=self.device).float() * g # offsets
|
| 146 |
+
|
| 147 |
+
for i in range(self.nl):
|
| 148 |
+
anchors, shape = self.anchors[i], p[i].shape
|
| 149 |
+
gain[2:6] = torch.tensor(shape)[[3, 2, 3, 2]] # xyxy gain
|
| 150 |
+
|
| 151 |
+
# Match targets to anchors
|
| 152 |
+
t = targets * gain # shape(3,n,7)
|
| 153 |
+
if nt:
|
| 154 |
+
# Matches
|
| 155 |
+
r = t[..., 4:6] / anchors[:, None] # wh ratio
|
| 156 |
+
j = torch.max(r, 1 / r).max(2)[0] < self.hyp['anchor_t'] # compare
|
| 157 |
+
# j = wh_iou(anchors, t[:, 4:6]) > model.hyp['iou_t'] # iou(3,n)=wh_iou(anchors(3,2), gwh(n,2))
|
| 158 |
+
t = t[j] # filter
|
| 159 |
+
|
| 160 |
+
# Offsets
|
| 161 |
+
gxy = t[:, 2:4] # grid xy
|
| 162 |
+
gxi = gain[[2, 3]] - gxy # inverse
|
| 163 |
+
j, k = ((gxy % 1 < g) & (gxy > 1)).T
|
| 164 |
+
l, m = ((gxi % 1 < g) & (gxi > 1)).T
|
| 165 |
+
j = torch.stack((torch.ones_like(j), j, k, l, m))
|
| 166 |
+
t = t.repeat((5, 1, 1))[j]
|
| 167 |
+
offsets = (torch.zeros_like(gxy)[None] + off[:, None])[j]
|
| 168 |
+
else:
|
| 169 |
+
t = targets[0]
|
| 170 |
+
offsets = 0
|
| 171 |
+
|
| 172 |
+
# Define
|
| 173 |
+
bc, gxy, gwh, at = t.chunk(4, 1) # (image, class), grid xy, grid wh, anchors
|
| 174 |
+
(a, tidx), (b, c) = at.long().T, bc.long().T # anchors, image, class
|
| 175 |
+
gij = (gxy - offsets).long()
|
| 176 |
+
gi, gj = gij.T # grid indices
|
| 177 |
+
|
| 178 |
+
# Append
|
| 179 |
+
indices.append((b, a, gj.clamp_(0, shape[2] - 1), gi.clamp_(0, shape[3] - 1))) # image, anchor, grid
|
| 180 |
+
tbox.append(torch.cat((gxy - gij, gwh), 1)) # box
|
| 181 |
+
anch.append(anchors[a]) # anchors
|
| 182 |
+
tcls.append(c) # class
|
| 183 |
+
tidxs.append(tidx)
|
| 184 |
+
xywhn.append(torch.cat((gxy, gwh), 1) / gain[2:6]) # xywh normalized
|
| 185 |
+
|
| 186 |
+
return tcls, tbox, indices, anch, tidxs, xywhn
|
utils/panoptic/loss_tal.py
ADDED
|
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
|
| 7 |
+
from torchvision.ops import sigmoid_focal_loss
|
| 8 |
+
|
| 9 |
+
from utils.general import xywh2xyxy, xyxy2xywh
|
| 10 |
+
from utils.metrics import bbox_iou
|
| 11 |
+
from utils.panoptic.tal.anchor_generator import dist2bbox, make_anchors, bbox2dist
|
| 12 |
+
from utils.panoptic.tal.assigner import TaskAlignedAssigner
|
| 13 |
+
from utils.torch_utils import de_parallel
|
| 14 |
+
from utils.panoptic.general import crop_mask
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
def smooth_BCE(eps=0.1): # https://github.com/ultralytics/yolov3/issues/238#issuecomment-598028441
|
| 18 |
+
# return positive, negative label smoothing BCE targets
|
| 19 |
+
return 1.0 - 0.5 * eps, 0.5 * eps
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class VarifocalLoss(nn.Module):
|
| 23 |
+
# Varifocal loss by Zhang et al. https://arxiv.org/abs/2008.13367
|
| 24 |
+
def __init__(self):
|
| 25 |
+
super().__init__()
|
| 26 |
+
|
| 27 |
+
def forward(self, pred_score, gt_score, label, alpha=0.75, gamma=2.0):
|
| 28 |
+
weight = alpha * pred_score.sigmoid().pow(gamma) * (1 - label) + gt_score * label
|
| 29 |
+
with torch.cuda.amp.autocast(enabled=False):
|
| 30 |
+
loss = (F.binary_cross_entropy_with_logits(pred_score.float(), gt_score.float(),
|
| 31 |
+
reduction="none") * weight).sum()
|
| 32 |
+
return loss
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
class FocalLoss(nn.Module):
|
| 36 |
+
# Wraps focal loss around existing loss_fcn(), i.e. criteria = FocalLoss(nn.BCEWithLogitsLoss(), gamma=1.5)
|
| 37 |
+
def __init__(self, loss_fcn, gamma=1.5, alpha=0.25):
|
| 38 |
+
super().__init__()
|
| 39 |
+
self.loss_fcn = loss_fcn # must be nn.BCEWithLogitsLoss()
|
| 40 |
+
self.gamma = gamma
|
| 41 |
+
self.alpha = alpha
|
| 42 |
+
self.reduction = loss_fcn.reduction
|
| 43 |
+
self.loss_fcn.reduction = "none" # required to apply FL to each element
|
| 44 |
+
|
| 45 |
+
def forward(self, pred, true):
|
| 46 |
+
loss = self.loss_fcn(pred, true)
|
| 47 |
+
# p_t = torch.exp(-loss)
|
| 48 |
+
# loss *= self.alpha * (1.000001 - p_t) ** self.gamma # non-zero power for gradient stability
|
| 49 |
+
|
| 50 |
+
# TF implementation https://github.com/tensorflow/addons/blob/v0.7.1/tensorflow_addons/losses/focal_loss.py
|
| 51 |
+
pred_prob = torch.sigmoid(pred) # prob from logits
|
| 52 |
+
p_t = true * pred_prob + (1 - true) * (1 - pred_prob)
|
| 53 |
+
alpha_factor = true * self.alpha + (1 - true) * (1 - self.alpha)
|
| 54 |
+
modulating_factor = (1.0 - p_t) ** self.gamma
|
| 55 |
+
loss *= alpha_factor * modulating_factor
|
| 56 |
+
|
| 57 |
+
if self.reduction == "mean":
|
| 58 |
+
return loss.mean()
|
| 59 |
+
elif self.reduction == "sum":
|
| 60 |
+
return loss.sum()
|
| 61 |
+
else: # 'none'
|
| 62 |
+
return loss
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
class BboxLoss(nn.Module):
|
| 66 |
+
def __init__(self, reg_max, use_dfl=False):
|
| 67 |
+
super().__init__()
|
| 68 |
+
self.reg_max = reg_max
|
| 69 |
+
self.use_dfl = use_dfl
|
| 70 |
+
|
| 71 |
+
def forward(self, pred_dist, pred_bboxes, anchor_points, target_bboxes, target_scores, target_scores_sum, fg_mask):
|
| 72 |
+
# iou loss
|
| 73 |
+
bbox_mask = fg_mask.unsqueeze(-1).repeat([1, 1, 4]) # (b, h*w, 4)
|
| 74 |
+
pred_bboxes_pos = torch.masked_select(pred_bboxes, bbox_mask).view(-1, 4)
|
| 75 |
+
target_bboxes_pos = torch.masked_select(target_bboxes, bbox_mask).view(-1, 4)
|
| 76 |
+
bbox_weight = torch.masked_select(target_scores.sum(-1), fg_mask).unsqueeze(-1)
|
| 77 |
+
|
| 78 |
+
iou = bbox_iou(pred_bboxes_pos, target_bboxes_pos, xywh=False, CIoU=True)
|
| 79 |
+
loss_iou = 1.0 - iou
|
| 80 |
+
|
| 81 |
+
#### wiou
|
| 82 |
+
#iou = bbox_iou(pred_bboxes_pos, target_bboxes_pos, xywh=False, WIoU=True, scale=True)
|
| 83 |
+
#if type(iou) is tuple:
|
| 84 |
+
# if len(iou) == 2:
|
| 85 |
+
# loss_iou = (iou[1].detach() * (1 - iou[0]))
|
| 86 |
+
# iou = iou[0]
|
| 87 |
+
# else:
|
| 88 |
+
# loss_iou = (iou[0] * iou[1])
|
| 89 |
+
# iou = iou[-1]
|
| 90 |
+
#else:
|
| 91 |
+
# loss_iou = (1.0 - iou) # iou loss
|
| 92 |
+
|
| 93 |
+
loss_iou *= bbox_weight
|
| 94 |
+
loss_iou = loss_iou.sum() / target_scores_sum
|
| 95 |
+
# loss_iou = loss_iou.mean()
|
| 96 |
+
|
| 97 |
+
# dfl loss
|
| 98 |
+
if self.use_dfl:
|
| 99 |
+
dist_mask = fg_mask.unsqueeze(-1).repeat([1, 1, (self.reg_max + 1) * 4])
|
| 100 |
+
pred_dist_pos = torch.masked_select(pred_dist, dist_mask).view(-1, 4, self.reg_max + 1)
|
| 101 |
+
target_ltrb = bbox2dist(anchor_points, target_bboxes, self.reg_max)
|
| 102 |
+
target_ltrb_pos = torch.masked_select(target_ltrb, bbox_mask).view(-1, 4)
|
| 103 |
+
loss_dfl = self._df_loss(pred_dist_pos, target_ltrb_pos) * bbox_weight
|
| 104 |
+
loss_dfl = loss_dfl.sum() / target_scores_sum
|
| 105 |
+
else:
|
| 106 |
+
loss_dfl = torch.tensor(0.0).to(pred_dist.device)
|
| 107 |
+
|
| 108 |
+
return loss_iou, loss_dfl, iou
|
| 109 |
+
|
| 110 |
+
def _df_loss(self, pred_dist, target):
|
| 111 |
+
target_left = target.to(torch.long)
|
| 112 |
+
target_right = target_left + 1
|
| 113 |
+
weight_left = target_right.to(torch.float) - target
|
| 114 |
+
weight_right = 1 - weight_left
|
| 115 |
+
loss_left = F.cross_entropy(pred_dist.view(-1, self.reg_max + 1), target_left.view(-1), reduction="none").view(
|
| 116 |
+
target_left.shape) * weight_left
|
| 117 |
+
loss_right = F.cross_entropy(pred_dist.view(-1, self.reg_max + 1), target_right.view(-1),
|
| 118 |
+
reduction="none").view(target_left.shape) * weight_right
|
| 119 |
+
return (loss_left + loss_right).mean(-1, keepdim=True)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
class ComputeLoss:
|
| 123 |
+
# Compute losses
|
| 124 |
+
def __init__(self, model, use_dfl=True, overlap=True):
|
| 125 |
+
device = next(model.parameters()).device # get model device
|
| 126 |
+
h = model.hyp # hyperparameters
|
| 127 |
+
|
| 128 |
+
# Define criteria
|
| 129 |
+
BCEcls = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([h["cls_pw"]], device=device), reduction='none')
|
| 130 |
+
|
| 131 |
+
# Class label smoothing https://arxiv.org/pdf/1902.04103.pdf eqn 3
|
| 132 |
+
self.cp, self.cn = smooth_BCE(eps=h.get("label_smoothing", 0.0)) # positive, negative BCE targets
|
| 133 |
+
|
| 134 |
+
# Focal loss
|
| 135 |
+
g = h["fl_gamma"] # focal loss gamma
|
| 136 |
+
if g > 0:
|
| 137 |
+
BCEcls = FocalLoss(BCEcls, g)
|
| 138 |
+
|
| 139 |
+
m = de_parallel(model).model[-1] # Detect() module
|
| 140 |
+
self.balance = {3: [4.0, 1.0, 0.4]}.get(m.nl, [4.0, 1.0, 0.25, 0.06, 0.02]) # P3-P7
|
| 141 |
+
self.BCEcls = BCEcls
|
| 142 |
+
self.hyp = h
|
| 143 |
+
self.stride = m.stride # model strides
|
| 144 |
+
self.nc = m.nc # number of classes
|
| 145 |
+
self.nl = m.nl # number of layers
|
| 146 |
+
self.no = m.no
|
| 147 |
+
self.nm = m.nm
|
| 148 |
+
self.overlap = overlap
|
| 149 |
+
self.reg_max = m.reg_max
|
| 150 |
+
self.device = device
|
| 151 |
+
|
| 152 |
+
self.assigner = TaskAlignedAssigner(topk=int(os.getenv('YOLOM', 10)),
|
| 153 |
+
num_classes=self.nc,
|
| 154 |
+
alpha=float(os.getenv('YOLOA', 0.5)),
|
| 155 |
+
beta=float(os.getenv('YOLOB', 6.0)))
|
| 156 |
+
self.bbox_loss = BboxLoss(m.reg_max - 1, use_dfl=use_dfl).to(device)
|
| 157 |
+
self.proj = torch.arange(m.reg_max).float().to(device) # / 120.0
|
| 158 |
+
self.use_dfl = use_dfl
|
| 159 |
+
|
| 160 |
+
def preprocess(self, targets, batch_size, scale_tensor):
|
| 161 |
+
if targets.shape[0] == 0:
|
| 162 |
+
out = torch.zeros(batch_size, 0, 5, device=self.device)
|
| 163 |
+
else:
|
| 164 |
+
i = targets[:, 0] # image index
|
| 165 |
+
_, counts = i.unique(return_counts=True)
|
| 166 |
+
out = torch.zeros(batch_size, counts.max(), 5, device=self.device)
|
| 167 |
+
for j in range(batch_size):
|
| 168 |
+
matches = i == j
|
| 169 |
+
n = matches.sum()
|
| 170 |
+
if n:
|
| 171 |
+
out[j, :n] = targets[matches, 1:]
|
| 172 |
+
out[..., 1:5] = xywh2xyxy(out[..., 1:5].mul_(scale_tensor))
|
| 173 |
+
return out
|
| 174 |
+
|
| 175 |
+
def bbox_decode(self, anchor_points, pred_dist):
|
| 176 |
+
if self.use_dfl:
|
| 177 |
+
b, a, c = pred_dist.shape # batch, anchors, channels
|
| 178 |
+
pred_dist = pred_dist.view(b, a, 4, c // 4).softmax(3).matmul(self.proj.type(pred_dist.dtype))
|
| 179 |
+
# pred_dist = pred_dist.view(b, a, c // 4, 4).transpose(2,3).softmax(3).matmul(self.proj.type(pred_dist.dtype))
|
| 180 |
+
# pred_dist = (pred_dist.view(b, a, c // 4, 4).softmax(2) * self.proj.type(pred_dist.dtype).view(1, 1, -1, 1)).sum(2)
|
| 181 |
+
return dist2bbox(pred_dist, anchor_points, xywh=False)
|
| 182 |
+
|
| 183 |
+
def __call__(self, p, targets, masks, semasks, img=None, epoch=0):
|
| 184 |
+
loss = torch.zeros(6, device=self.device) # box, cls, dfl
|
| 185 |
+
feats, pred_masks, proto, psemasks = p if len(p) == 4 else p[1]
|
| 186 |
+
batch_size, _, mask_h, mask_w = proto.shape
|
| 187 |
+
pred_distri, pred_scores = torch.cat([xi.view(feats[0].shape[0], self.no, -1) for xi in feats], 2).split(
|
| 188 |
+
(self.reg_max * 4, self.nc), 1)
|
| 189 |
+
pred_scores = pred_scores.permute(0, 2, 1).contiguous()
|
| 190 |
+
pred_distri = pred_distri.permute(0, 2, 1).contiguous()
|
| 191 |
+
pred_masks = pred_masks.permute(0, 2, 1).contiguous()
|
| 192 |
+
|
| 193 |
+
dtype = pred_scores.dtype
|
| 194 |
+
batch_size, grid_size = pred_scores.shape[:2]
|
| 195 |
+
imgsz = torch.tensor(feats[0].shape[2:], device=self.device, dtype=dtype) * self.stride[0] # image size (h,w)
|
| 196 |
+
anchor_points, stride_tensor = make_anchors(feats, self.stride, 0.5)
|
| 197 |
+
|
| 198 |
+
# targets
|
| 199 |
+
try:
|
| 200 |
+
batch_idx = targets[:, 0].view(-1, 1)
|
| 201 |
+
targets = self.preprocess(targets.to(self.device), batch_size, scale_tensor=imgsz[[1, 0, 1, 0]])
|
| 202 |
+
gt_labels, gt_bboxes = targets.split((1, 4), 2) # cls, xyxy
|
| 203 |
+
mask_gt = gt_bboxes.sum(2, keepdim=True).gt_(0)
|
| 204 |
+
except RuntimeError as e:
|
| 205 |
+
raise TypeError('ERROR.') from e
|
| 206 |
+
|
| 207 |
+
|
| 208 |
+
# pboxes
|
| 209 |
+
pred_bboxes = self.bbox_decode(anchor_points, pred_distri) # xyxy, (b, h*w, 4)
|
| 210 |
+
|
| 211 |
+
target_labels, target_bboxes, target_scores, fg_mask, target_gt_idx = self.assigner(
|
| 212 |
+
pred_scores.detach().sigmoid(),
|
| 213 |
+
(pred_bboxes.detach() * stride_tensor).type(gt_bboxes.dtype),
|
| 214 |
+
anchor_points * stride_tensor,
|
| 215 |
+
gt_labels,
|
| 216 |
+
gt_bboxes,
|
| 217 |
+
mask_gt)
|
| 218 |
+
|
| 219 |
+
target_scores_sum = target_scores.sum()
|
| 220 |
+
|
| 221 |
+
# cls loss
|
| 222 |
+
# loss[1] = self.varifocal_loss(pred_scores, target_scores, target_labels) / target_scores_sum # VFL way
|
| 223 |
+
loss[2] = self.BCEcls(pred_scores, target_scores.to(dtype)).sum() / target_scores_sum # BCE
|
| 224 |
+
|
| 225 |
+
# bbox loss
|
| 226 |
+
if fg_mask.sum():
|
| 227 |
+
loss[0], loss[3], _ = self.bbox_loss(pred_distri,
|
| 228 |
+
pred_bboxes,
|
| 229 |
+
anchor_points,
|
| 230 |
+
target_bboxes / stride_tensor,
|
| 231 |
+
target_scores,
|
| 232 |
+
target_scores_sum,
|
| 233 |
+
fg_mask)
|
| 234 |
+
|
| 235 |
+
# masks loss
|
| 236 |
+
if tuple(masks.shape[-2:]) != (mask_h, mask_w): # downsample
|
| 237 |
+
masks = F.interpolate(masks[None], (mask_h, mask_w), mode='nearest')[0]
|
| 238 |
+
|
| 239 |
+
for i in range(batch_size):
|
| 240 |
+
if fg_mask[i].sum():
|
| 241 |
+
mask_idx = target_gt_idx[i][fg_mask[i]]
|
| 242 |
+
if self.overlap:
|
| 243 |
+
gt_mask = torch.where(masks[[i]] == (mask_idx + 1).view(-1, 1, 1), 1.0, 0.0)
|
| 244 |
+
else:
|
| 245 |
+
gt_mask = masks[batch_idx.view(-1) == i][mask_idx]
|
| 246 |
+
xyxyn = target_bboxes[i][fg_mask[i]] / imgsz[[1, 0, 1, 0]]
|
| 247 |
+
marea = xyxy2xywh(xyxyn)[:, 2:].prod(1)
|
| 248 |
+
mxyxy = xyxyn * torch.tensor([mask_w, mask_h, mask_w, mask_h], device=self.device)
|
| 249 |
+
loss[1] += self.single_mask_loss(gt_mask, pred_masks[i][fg_mask[i]], proto[i], mxyxy,
|
| 250 |
+
marea) # seg loss
|
| 251 |
+
# Semantic Segmentation
|
| 252 |
+
# focal loss
|
| 253 |
+
pt = torch.flatten(psemasks, start_dim = 2).permute(0, 2, 1)
|
| 254 |
+
gt = torch.flatten(semasks, start_dim = 2).permute(0, 2, 1)
|
| 255 |
+
|
| 256 |
+
bs, _, _ = gt.shape
|
| 257 |
+
#torch.clamp(torch.sigmoid(logits), min=eps, max= 1 - eps)
|
| 258 |
+
#total_loss = (sigmoid_focal_loss(pt.float(), gt.float(), alpha = .25, gamma = 2., reduction = 'mean')) / 2.
|
| 259 |
+
#total_loss = (sigmoid_focal_loss(pt.clamp(-16., 16.), gt, alpha = .25, gamma = 2., reduction = 'mean')) / 2.
|
| 260 |
+
total_loss = (sigmoid_focal_loss(pt, gt, alpha = .25, gamma = 2., reduction = 'mean')) / 2.
|
| 261 |
+
loss[4] += total_loss * 20.
|
| 262 |
+
|
| 263 |
+
# dice loss
|
| 264 |
+
pt = torch.flatten(psemasks.softmax(dim = 1))
|
| 265 |
+
gt = torch.flatten(semasks)
|
| 266 |
+
|
| 267 |
+
inter_mask = torch.sum(torch.mul(pt, gt))
|
| 268 |
+
union_mask = torch.sum(torch.add(pt, gt))
|
| 269 |
+
dice_coef = (2. * inter_mask + 1.) / (union_mask + 1.)
|
| 270 |
+
loss[5] += (1. - dice_coef) / 2.
|
| 271 |
+
|
| 272 |
+
loss[0] *= 7.5 # box gain
|
| 273 |
+
loss[1] *= 2.5 / batch_size
|
| 274 |
+
loss[2] *= 0.5 # cls gain
|
| 275 |
+
loss[3] *= 1.5 # dfl gain
|
| 276 |
+
loss[4] *= 2.5 #/ batch_size
|
| 277 |
+
loss[5] *= 2.5 #/ batch_size
|
| 278 |
+
|
| 279 |
+
return loss.sum() * batch_size, loss.detach() # loss(box, cls, dfl)
|
| 280 |
+
|
| 281 |
+
def single_mask_loss(self, gt_mask, pred, proto, xyxy, area):
|
| 282 |
+
# Mask loss for one image
|
| 283 |
+
pred_mask = (pred @ proto.view(self.nm, -1)).view(-1, *proto.shape[1:]) # (n, 32) @ (32,80,80) -> (n,80,80)
|
| 284 |
+
loss = F.binary_cross_entropy_with_logits(pred_mask, gt_mask, reduction='none')
|
| 285 |
+
return (crop_mask(loss, xyxy).mean(dim=(1, 2)) / area).mean()
|
utils/panoptic/metrics.py
ADDED
|
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
from ..metrics import ap_per_class
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def fitness(x):
|
| 8 |
+
# Model fitness as a weighted combination of metrics
|
| 9 |
+
w = [0.0, 0.0, 0.1, 0.9, 0.0, 0.0, 0.1, 0.9, 0.1, 0.9]
|
| 10 |
+
return (x[:, :len(w)] * w).sum(1)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
def ap_per_class_box_and_mask(
|
| 14 |
+
tp_m,
|
| 15 |
+
tp_b,
|
| 16 |
+
conf,
|
| 17 |
+
pred_cls,
|
| 18 |
+
target_cls,
|
| 19 |
+
plot=False,
|
| 20 |
+
save_dir=".",
|
| 21 |
+
names=(),
|
| 22 |
+
):
|
| 23 |
+
"""
|
| 24 |
+
Args:
|
| 25 |
+
tp_b: tp of boxes.
|
| 26 |
+
tp_m: tp of masks.
|
| 27 |
+
other arguments see `func: ap_per_class`.
|
| 28 |
+
"""
|
| 29 |
+
results_boxes = ap_per_class(tp_b,
|
| 30 |
+
conf,
|
| 31 |
+
pred_cls,
|
| 32 |
+
target_cls,
|
| 33 |
+
plot=plot,
|
| 34 |
+
save_dir=save_dir,
|
| 35 |
+
names=names,
|
| 36 |
+
prefix="Box")[2:]
|
| 37 |
+
results_masks = ap_per_class(tp_m,
|
| 38 |
+
conf,
|
| 39 |
+
pred_cls,
|
| 40 |
+
target_cls,
|
| 41 |
+
plot=plot,
|
| 42 |
+
save_dir=save_dir,
|
| 43 |
+
names=names,
|
| 44 |
+
prefix="Mask")[2:]
|
| 45 |
+
|
| 46 |
+
results = {
|
| 47 |
+
"boxes": {
|
| 48 |
+
"p": results_boxes[0],
|
| 49 |
+
"r": results_boxes[1],
|
| 50 |
+
"ap": results_boxes[3],
|
| 51 |
+
"f1": results_boxes[2],
|
| 52 |
+
"ap_class": results_boxes[4]},
|
| 53 |
+
"masks": {
|
| 54 |
+
"p": results_masks[0],
|
| 55 |
+
"r": results_masks[1],
|
| 56 |
+
"ap": results_masks[3],
|
| 57 |
+
"f1": results_masks[2],
|
| 58 |
+
"ap_class": results_masks[4]}}
|
| 59 |
+
return results
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class Metric:
|
| 63 |
+
|
| 64 |
+
def __init__(self) -> None:
|
| 65 |
+
self.p = [] # (nc, )
|
| 66 |
+
self.r = [] # (nc, )
|
| 67 |
+
self.f1 = [] # (nc, )
|
| 68 |
+
self.all_ap = [] # (nc, 10)
|
| 69 |
+
self.ap_class_index = [] # (nc, )
|
| 70 |
+
|
| 71 |
+
@property
|
| 72 |
+
def ap50(self):
|
| 73 |
+
"""[email protected] of all classes.
|
| 74 |
+
Return:
|
| 75 |
+
(nc, ) or [].
|
| 76 |
+
"""
|
| 77 |
+
return self.all_ap[:, 0] if len(self.all_ap) else []
|
| 78 |
+
|
| 79 |
+
@property
|
| 80 |
+
def ap(self):
|
| 81 |
+
"""[email protected]:0.95
|
| 82 |
+
Return:
|
| 83 |
+
(nc, ) or [].
|
| 84 |
+
"""
|
| 85 |
+
return self.all_ap.mean(1) if len(self.all_ap) else []
|
| 86 |
+
|
| 87 |
+
@property
|
| 88 |
+
def mp(self):
|
| 89 |
+
"""mean precision of all classes.
|
| 90 |
+
Return:
|
| 91 |
+
float.
|
| 92 |
+
"""
|
| 93 |
+
return self.p.mean() if len(self.p) else 0.0
|
| 94 |
+
|
| 95 |
+
@property
|
| 96 |
+
def mr(self):
|
| 97 |
+
"""mean recall of all classes.
|
| 98 |
+
Return:
|
| 99 |
+
float.
|
| 100 |
+
"""
|
| 101 |
+
return self.r.mean() if len(self.r) else 0.0
|
| 102 |
+
|
| 103 |
+
@property
|
| 104 |
+
def map50(self):
|
| 105 |
+
"""Mean [email protected] of all classes.
|
| 106 |
+
Return:
|
| 107 |
+
float.
|
| 108 |
+
"""
|
| 109 |
+
return self.all_ap[:, 0].mean() if len(self.all_ap) else 0.0
|
| 110 |
+
|
| 111 |
+
@property
|
| 112 |
+
def map(self):
|
| 113 |
+
"""Mean [email protected]:0.95 of all classes.
|
| 114 |
+
Return:
|
| 115 |
+
float.
|
| 116 |
+
"""
|
| 117 |
+
return self.all_ap.mean() if len(self.all_ap) else 0.0
|
| 118 |
+
|
| 119 |
+
def mean_results(self):
|
| 120 |
+
"""Mean of results, return mp, mr, map50, map"""
|
| 121 |
+
return (self.mp, self.mr, self.map50, self.map)
|
| 122 |
+
|
| 123 |
+
def class_result(self, i):
|
| 124 |
+
"""class-aware result, return p[i], r[i], ap50[i], ap[i]"""
|
| 125 |
+
return (self.p[i], self.r[i], self.ap50[i], self.ap[i])
|
| 126 |
+
|
| 127 |
+
def get_maps(self, nc):
|
| 128 |
+
maps = np.zeros(nc) + self.map
|
| 129 |
+
for i, c in enumerate(self.ap_class_index):
|
| 130 |
+
maps[c] = self.ap[i]
|
| 131 |
+
return maps
|
| 132 |
+
|
| 133 |
+
def update(self, results):
|
| 134 |
+
"""
|
| 135 |
+
Args:
|
| 136 |
+
results: tuple(p, r, ap, f1, ap_class)
|
| 137 |
+
"""
|
| 138 |
+
p, r, all_ap, f1, ap_class_index = results
|
| 139 |
+
self.p = p
|
| 140 |
+
self.r = r
|
| 141 |
+
self.all_ap = all_ap
|
| 142 |
+
self.f1 = f1
|
| 143 |
+
self.ap_class_index = ap_class_index
|
| 144 |
+
|
| 145 |
+
|
| 146 |
+
class Metrics:
|
| 147 |
+
"""Metric for boxes and masks."""
|
| 148 |
+
|
| 149 |
+
def __init__(self) -> None:
|
| 150 |
+
self.metric_box = Metric()
|
| 151 |
+
self.metric_mask = Metric()
|
| 152 |
+
|
| 153 |
+
def update(self, results):
|
| 154 |
+
"""
|
| 155 |
+
Args:
|
| 156 |
+
results: Dict{'boxes': Dict{}, 'masks': Dict{}}
|
| 157 |
+
"""
|
| 158 |
+
self.metric_box.update(list(results["boxes"].values()))
|
| 159 |
+
self.metric_mask.update(list(results["masks"].values()))
|
| 160 |
+
|
| 161 |
+
def mean_results(self):
|
| 162 |
+
return self.metric_box.mean_results() + self.metric_mask.mean_results()
|
| 163 |
+
|
| 164 |
+
def class_result(self, i):
|
| 165 |
+
return self.metric_box.class_result(i) + self.metric_mask.class_result(i)
|
| 166 |
+
|
| 167 |
+
def get_maps(self, nc):
|
| 168 |
+
return self.metric_box.get_maps(nc) + self.metric_mask.get_maps(nc)
|
| 169 |
+
|
| 170 |
+
@property
|
| 171 |
+
def ap_class_index(self):
|
| 172 |
+
# boxes and masks have the same ap_class_index
|
| 173 |
+
return self.metric_box.ap_class_index
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
class Semantic_Metrics:
|
| 177 |
+
def __init__(self, nc, device):
|
| 178 |
+
self.nc = nc # number of classes
|
| 179 |
+
self.device = device
|
| 180 |
+
self.iou = []
|
| 181 |
+
self.c_bit_counts = torch.zeros(nc, dtype = torch.long).to(device)
|
| 182 |
+
self.c_intersection_counts = torch.zeros(nc, dtype = torch.long).to(device)
|
| 183 |
+
self.c_union_counts = torch.zeros(nc, dtype = torch.long).to(device)
|
| 184 |
+
|
| 185 |
+
def update(self, pred_masks, target_masks):
|
| 186 |
+
nb, nc, h, w = pred_masks.shape
|
| 187 |
+
device = pred_masks.device
|
| 188 |
+
|
| 189 |
+
for b in range(nb):
|
| 190 |
+
onehot_mask = pred_masks[b].to(device)
|
| 191 |
+
# convert predict mask to one hot
|
| 192 |
+
semantic_mask = torch.flatten(onehot_mask, start_dim = 1).permute(1, 0) # class x h x w -> (h x w) x class
|
| 193 |
+
max_idx = semantic_mask.argmax(1)
|
| 194 |
+
output_masks = (torch.zeros(semantic_mask.shape).to(self.device)).scatter(1, max_idx.unsqueeze(1), 1.0) # one hot: (h x w) x class
|
| 195 |
+
output_masks = torch.reshape(output_masks.permute(1, 0), (nc, h, w)) # (h x w) x class -> class x h x w
|
| 196 |
+
onehot_mask = output_masks.int()
|
| 197 |
+
|
| 198 |
+
for c in range(self.nc):
|
| 199 |
+
pred_mask = onehot_mask[c].to(device)
|
| 200 |
+
target_mask = target_masks[b, c].to(device)
|
| 201 |
+
|
| 202 |
+
# calculate IoU
|
| 203 |
+
intersection = (torch.logical_and(pred_mask, target_mask).sum()).item()
|
| 204 |
+
union = (torch.logical_or(pred_mask, target_mask).sum()).item()
|
| 205 |
+
iou = 0. if (0 == union) else (intersection / union)
|
| 206 |
+
|
| 207 |
+
# record class pixel counts, intersection counts, union counts
|
| 208 |
+
self.c_bit_counts[c] += target_mask.int().sum()
|
| 209 |
+
self.c_intersection_counts[c] += intersection
|
| 210 |
+
self.c_union_counts[c] += union
|
| 211 |
+
|
| 212 |
+
self.iou.append(iou)
|
| 213 |
+
|
| 214 |
+
def results(self):
|
| 215 |
+
# Mean IoU
|
| 216 |
+
miou = 0. if (0 == len(self.iou)) else np.sum(self.iou) / (len(self.iou) * self.nc)
|
| 217 |
+
|
| 218 |
+
# Frequency Weighted IoU
|
| 219 |
+
c_iou = self.c_intersection_counts / (self.c_union_counts + 1) # add smooth
|
| 220 |
+
# c_bit_counts = self.c_bit_counts.astype(int)
|
| 221 |
+
total_c_bit_counts = self.c_bit_counts.sum()
|
| 222 |
+
freq_ious = torch.zeros(1, dtype = torch.long).to(self.device) if (0 == total_c_bit_counts) else (self.c_bit_counts / total_c_bit_counts) * c_iou
|
| 223 |
+
fwiou = (freq_ious.sum()).item()
|
| 224 |
+
|
| 225 |
+
return (miou, fwiou)
|
| 226 |
+
|
| 227 |
+
def reset(self):
|
| 228 |
+
self.iou = []
|
| 229 |
+
self.c_bit_counts = torch.zeros(self.nc, dtype = torch.long).to(self.device)
|
| 230 |
+
self.c_intersection_counts = torch.zeros(self.nc, dtype = torch.long).to(self.device)
|
| 231 |
+
self.c_union_counts = torch.zeros(self.nc, dtype = torch.long).to(self.device)
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
KEYS = [
|
| 235 |
+
"train/box_loss",
|
| 236 |
+
"train/seg_loss", # train loss
|
| 237 |
+
"train/cls_loss",
|
| 238 |
+
"train/dfl_loss",
|
| 239 |
+
"train/fcl_loss",
|
| 240 |
+
"train/dic_loss",
|
| 241 |
+
"metrics/precision(B)",
|
| 242 |
+
"metrics/recall(B)",
|
| 243 |
+
"metrics/mAP_0.5(B)",
|
| 244 |
+
"metrics/mAP_0.5:0.95(B)", # metrics
|
| 245 |
+
"metrics/precision(M)",
|
| 246 |
+
"metrics/recall(M)",
|
| 247 |
+
"metrics/mAP_0.5(M)",
|
| 248 |
+
"metrics/mAP_0.5:0.95(M)", # metrics
|
| 249 |
+
"metrics/MIOUS(S)",
|
| 250 |
+
"metrics/FWIOUS(S)", # metrics
|
| 251 |
+
"val/box_loss",
|
| 252 |
+
"val/seg_loss", # val loss
|
| 253 |
+
"val/cls_loss",
|
| 254 |
+
"val/dfl_loss",
|
| 255 |
+
"val/fcl_loss",
|
| 256 |
+
"val/dic_loss",
|
| 257 |
+
"x/lr0",
|
| 258 |
+
"x/lr1",
|
| 259 |
+
"x/lr2",]
|
| 260 |
+
|
| 261 |
+
BEST_KEYS = [
|
| 262 |
+
"best/epoch",
|
| 263 |
+
"best/precision(B)",
|
| 264 |
+
"best/recall(B)",
|
| 265 |
+
"best/mAP_0.5(B)",
|
| 266 |
+
"best/mAP_0.5:0.95(B)",
|
| 267 |
+
"best/precision(M)",
|
| 268 |
+
"best/recall(M)",
|
| 269 |
+
"best/mAP_0.5(M)",
|
| 270 |
+
"best/mAP_0.5:0.95(M)",
|
| 271 |
+
"best/MIOUS(S)",
|
| 272 |
+
"best/FWIOUS(S)",]
|
utils/panoptic/plots.py
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import contextlib
|
| 2 |
+
import math
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
|
| 5 |
+
import cv2
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import numpy as np
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import torch
|
| 10 |
+
from torchvision.utils import draw_segmentation_masks, save_image
|
| 11 |
+
|
| 12 |
+
from .. import threaded
|
| 13 |
+
from ..general import xywh2xyxy
|
| 14 |
+
from ..plots import Annotator, colors
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
@threaded
|
| 18 |
+
def plot_images_and_masks(images, targets, masks, semasks, paths=None, fname='images.jpg', names=None):
|
| 19 |
+
|
| 20 |
+
try:
|
| 21 |
+
if images.shape[-2:] != semasks.shape[-2:]:
|
| 22 |
+
m = torch.nn.Upsample(scale_factor=4, mode='nearest')
|
| 23 |
+
semasks = m(semasks)
|
| 24 |
+
|
| 25 |
+
for idx in range(images.shape[0]):
|
| 26 |
+
output_img = draw_segmentation_masks(
|
| 27 |
+
image = images[idx, :, :, :].cpu().to(dtype = torch.uint8),
|
| 28 |
+
masks = semasks[idx, :, :, :].cpu().to(dtype = torch.bool),
|
| 29 |
+
alpha = 1)
|
| 30 |
+
cv2.imwrite(
|
| 31 |
+
'{}_{}.jpg'.format(fname, idx),
|
| 32 |
+
torch.permute(output_img, (1, 2, 0)).numpy()
|
| 33 |
+
)
|
| 34 |
+
except:
|
| 35 |
+
pass
|
| 36 |
+
|
| 37 |
+
# Plot image grid with labels
|
| 38 |
+
if isinstance(images, torch.Tensor):
|
| 39 |
+
images = images.cpu().float().numpy()
|
| 40 |
+
if isinstance(targets, torch.Tensor):
|
| 41 |
+
targets = targets.cpu().numpy()
|
| 42 |
+
if isinstance(masks, torch.Tensor):
|
| 43 |
+
masks = masks.cpu().numpy().astype(int)
|
| 44 |
+
if isinstance(semasks, torch.Tensor):
|
| 45 |
+
semasks = semasks.cpu().numpy().astype(int)
|
| 46 |
+
|
| 47 |
+
max_size = 1920 # max image size
|
| 48 |
+
max_subplots = 16 # max image subplots, i.e. 4x4
|
| 49 |
+
bs, _, h, w = images.shape # batch size, _, height, width
|
| 50 |
+
bs = min(bs, max_subplots) # limit plot images
|
| 51 |
+
ns = np.ceil(bs ** 0.5) # number of subplots (square)
|
| 52 |
+
if np.max(images[0]) <= 1:
|
| 53 |
+
images *= 255 # de-normalise (optional)
|
| 54 |
+
|
| 55 |
+
# Build Image
|
| 56 |
+
mosaic = np.full((int(ns * h), int(ns * w), 3), 255, dtype=np.uint8) # init
|
| 57 |
+
for i, im in enumerate(images):
|
| 58 |
+
if i == max_subplots: # if last batch has fewer images than we expect
|
| 59 |
+
break
|
| 60 |
+
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
|
| 61 |
+
im = im.transpose(1, 2, 0)
|
| 62 |
+
mosaic[y:y + h, x:x + w, :] = im
|
| 63 |
+
|
| 64 |
+
# Resize (optional)
|
| 65 |
+
scale = max_size / ns / max(h, w)
|
| 66 |
+
if scale < 1:
|
| 67 |
+
h = math.ceil(scale * h)
|
| 68 |
+
w = math.ceil(scale * w)
|
| 69 |
+
mosaic = cv2.resize(mosaic, tuple(int(x * ns) for x in (w, h)))
|
| 70 |
+
|
| 71 |
+
# Annotate
|
| 72 |
+
fs = int((h + w) * ns * 0.01) # font size
|
| 73 |
+
annotator = Annotator(mosaic, line_width=round(fs / 10), font_size=fs, pil=True, example=names)
|
| 74 |
+
for i in range(i + 1):
|
| 75 |
+
x, y = int(w * (i // ns)), int(h * (i % ns)) # block origin
|
| 76 |
+
annotator.rectangle([x, y, x + w, y + h], None, (255, 255, 255), width=2) # borders
|
| 77 |
+
if paths:
|
| 78 |
+
annotator.text((x + 5, y + 5 + h), text=Path(paths[i]).name[:40], txt_color=(220, 220, 220)) # filenames
|
| 79 |
+
if len(targets) > 0:
|
| 80 |
+
idx = targets[:, 0] == i
|
| 81 |
+
ti = targets[idx] # image targets
|
| 82 |
+
|
| 83 |
+
boxes = xywh2xyxy(ti[:, 2:6]).T
|
| 84 |
+
classes = ti[:, 1].astype('int')
|
| 85 |
+
labels = ti.shape[1] == 6 # labels if no conf column
|
| 86 |
+
conf = None if labels else ti[:, 6] # check for confidence presence (label vs pred)
|
| 87 |
+
|
| 88 |
+
if boxes.shape[1]:
|
| 89 |
+
if boxes.max() <= 1.01: # if normalized with tolerance 0.01
|
| 90 |
+
boxes[[0, 2]] *= w # scale to pixels
|
| 91 |
+
boxes[[1, 3]] *= h
|
| 92 |
+
elif scale < 1: # absolute coords need scale if image scales
|
| 93 |
+
boxes *= scale
|
| 94 |
+
boxes[[0, 2]] += x
|
| 95 |
+
boxes[[1, 3]] += y
|
| 96 |
+
for j, box in enumerate(boxes.T.tolist()):
|
| 97 |
+
cls = classes[j]
|
| 98 |
+
color = colors(cls)
|
| 99 |
+
cls = names[cls] if names else cls
|
| 100 |
+
if labels or conf[j] > 0.25: # 0.25 conf thresh
|
| 101 |
+
label = f'{cls}' if labels else f'{cls} {conf[j]:.1f}'
|
| 102 |
+
annotator.box_label(box, label, color=color)
|
| 103 |
+
|
| 104 |
+
# Plot masks
|
| 105 |
+
if len(masks):
|
| 106 |
+
if masks.max() > 1.0: # mean that masks are overlap
|
| 107 |
+
image_masks = masks[[i]] # (1, 640, 640)
|
| 108 |
+
nl = len(ti)
|
| 109 |
+
index = np.arange(nl).reshape(nl, 1, 1) + 1
|
| 110 |
+
image_masks = np.repeat(image_masks, nl, axis=0)
|
| 111 |
+
image_masks = np.where(image_masks == index, 1.0, 0.0)
|
| 112 |
+
else:
|
| 113 |
+
image_masks = masks[idx]
|
| 114 |
+
|
| 115 |
+
im = np.asarray(annotator.im).copy()
|
| 116 |
+
for j, box in enumerate(boxes.T.tolist()):
|
| 117 |
+
if labels or conf[j] > 0.25: # 0.25 conf thresh
|
| 118 |
+
color = colors(classes[j])
|
| 119 |
+
mh, mw = image_masks[j].shape
|
| 120 |
+
if mh != h or mw != w:
|
| 121 |
+
mask = image_masks[j].astype(np.uint8)
|
| 122 |
+
mask = cv2.resize(mask, (w, h))
|
| 123 |
+
mask = mask.astype(bool)
|
| 124 |
+
else:
|
| 125 |
+
mask = image_masks[j].astype(bool)
|
| 126 |
+
with contextlib.suppress(Exception):
|
| 127 |
+
im[y:y + h, x:x + w, :][mask] = im[y:y + h, x:x + w, :][mask] * 0.4 + np.array(color) * 0.6
|
| 128 |
+
annotator.fromarray(im)
|
| 129 |
+
annotator.im.save(fname) # save
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
def plot_results_with_masks(file="path/to/results.csv", dir="", best=True):
|
| 133 |
+
# Plot training results.csv. Usage: from utils.plots import *; plot_results('path/to/results.csv')
|
| 134 |
+
save_dir = Path(file).parent if file else Path(dir)
|
| 135 |
+
fig, ax = plt.subplots(2, 8, figsize=(18, 6), tight_layout=True)
|
| 136 |
+
ax = ax.ravel()
|
| 137 |
+
files = list(save_dir.glob("results*.csv"))
|
| 138 |
+
assert len(files), f"No results.csv files found in {save_dir.resolve()}, nothing to plot."
|
| 139 |
+
for f in files:
|
| 140 |
+
try:
|
| 141 |
+
data = pd.read_csv(f)
|
| 142 |
+
index = np.argmax(0.9 * data.values[:, 8] + 0.1 * data.values[:, 7] + 0.9 * data.values[:, 12] +
|
| 143 |
+
0.1 * data.values[:, 11])
|
| 144 |
+
s = [x.strip() for x in data.columns]
|
| 145 |
+
x = data.values[:, 0]
|
| 146 |
+
for i, j in enumerate([1, 2, 3, 4, 5, 6, 9, 10, 13, 14, 15, 16, 7, 8, 11, 12]):
|
| 147 |
+
y = data.values[:, j]
|
| 148 |
+
# y[y == 0] = np.nan # don't show zero values
|
| 149 |
+
ax[i].plot(x, y, marker=".", label=f.stem, linewidth=2, markersize=2)
|
| 150 |
+
if best:
|
| 151 |
+
# best
|
| 152 |
+
ax[i].scatter(index, y[index], color="r", label=f"best:{index}", marker="*", linewidth=3)
|
| 153 |
+
ax[i].set_title(s[j] + f"\n{round(y[index], 5)}")
|
| 154 |
+
else:
|
| 155 |
+
# last
|
| 156 |
+
ax[i].scatter(x[-1], y[-1], color="r", label="last", marker="*", linewidth=3)
|
| 157 |
+
ax[i].set_title(s[j] + f"\n{round(y[-1], 5)}")
|
| 158 |
+
# if j in [8, 9, 10]: # share train and val loss y axes
|
| 159 |
+
# ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])
|
| 160 |
+
except Exception as e:
|
| 161 |
+
print(f"Warning: Plotting error for {f}: {e}")
|
| 162 |
+
ax[1].legend()
|
| 163 |
+
fig.savefig(save_dir / "results.png", dpi=200)
|
| 164 |
+
plt.close()
|
utils/panoptic/tal/__init__.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
# init
|