#----------- SETUP ----------- from langchain_community.document_loaders import WebBaseLoader from langchain_text_splitters import CharacterTextSplitter from langchain_community.vectorstores import FAISS from langchain_huggingface import HuggingFaceEmbeddings from dotenv import load_dotenv import os import logging logging.getLogger("langchain.text_splitter").setLevel(logging.ERROR) import warnings warnings.filterwarnings("ignore") import yaml # ----------- PARAMS ----------- with open('./config.yaml', 'r', encoding='utf-8') as file: config = yaml.safe_load(file) EMBEDDING_MODEL = config.get('EMBEDDING_MODEL') LLM_MODEL = config.get('LLM_MODEL') REBUILD_VECTOR_STORE = config.get('REBUILD_VECTOR_STORE') CHUNK_SIZE = config.get('CHUNK_SIZE') CHUNK_OVERLAP = config.get('CHUNK_OVERLAP') CACHE_FOLDER = config.get('CACHE_FOLDER') URL_LIST = config.get('URL_LIST') VS_BASE = config.get('VS_BASE') # ----------- VECTOR STORE CREATION ----------- def fn_rebuild_vector_store(REBUILD_VECTOR_STORE, URL_LIST, VS_BASE, EMBEDDING_MODEL, CACHE_FOLDER, CHUNK_SIZE, CHUNK_OVERLAP): if REBUILD_VECTOR_STORE: print("[INFO] REBUILD_VECTOR_STORE was set True. Recreating the vector store...") loader = WebBaseLoader(web_paths=URL_LIST) docs = loader.load() text_splitter = CharacterTextSplitter(chunk_size=CHUNK_SIZE, chunk_overlap=CHUNK_OVERLAP) split_docs = text_splitter.split_documents(docs) embeddings = HuggingFaceEmbeddings( model_name=EMBEDDING_MODEL, cache_folder=CACHE_FOLDER) vector_store = FAISS.from_documents(split_docs, embeddings) os.makedirs(VS_BASE, exist_ok=True) vector_store.save_local(VS_BASE) print(f"[INFO] Vector Store saved in the path: {VS_BASE}") else: print("[INFO] REBUILD_VECTOR_STORE was set False. Using the current vector store...") return print(f"[INFO] End of vector store process")