File size: 14,412 Bytes
5b79694 08c72af 5b79694 08c72af 5b79694 08c72af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
import io
import os
import torch
import logging
import tempfile
import numpy as np
from typing import Optional, Dict, Any
# NEW: FastAPI imports
from fastapi import FastAPI, UploadFile, File, HTTPException
from fastapi.responses import JSONResponse, HTMLResponse
from fastapi.middleware.cors import CORSMiddleware
import uvicorn
# Keep Gradio imports in case you still want to run locally with UI
import gradio as gr
import librosa
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Import your custom modules with proper error handling
try:
from normalizers import get_normalizer, NORMALIZERS, normalize_hindi, normalize_bengali, normalize_tamil, get_language_info
NORMALIZERS_AVAILABLE = True
logger.info("β
Enhanced normalizers loaded successfully")
except ImportError as e:
logger.warning(f"Normalizers not available: {e}")
NORMALIZERS_AVAILABLE = False
NORMALIZERS = {}
try:
from language_detector import detect_language, IndicLanguageDetector, get_language_name
LANGUAGE_DETECTOR_AVAILABLE = True
logger.info("β
Enhanced language detector loaded successfully")
except ImportError as e:
logger.warning(f"Language detector not available: {e}")
LANGUAGE_DETECTOR_AVAILABLE = False
# Try to setup IndicNLP resources
try:
from indic_nlp import common
INDIC_RESOURCES_PATH = "./indic_nlp_resources"
if os.path.exists(INDIC_RESOURCES_PATH):
common.set_resources_path(INDIC_RESOURCES_PATH)
logger.info("β
IndicNLP resources configured")
except ImportError:
logger.warning("IndicNLP not available")
# Global variables
conformer_model = None
models_loaded = False
language_detector_instance = None
# Constants
SAMPLE_RATE = 16000
MAX_FILE_SIZE = 25 * 1024 * 1024 # 25MB
SUPPORTED_FORMATS = {'.wav', '.mp3', '.m4a', '.flac', '.ogg'}
# All 22+ Indian languages
SUPPORTED_LANGUAGES = {
'hi': 'Hindi', 'bn': 'Bengali', 'te': 'Telugu', 'ta': 'Tamil',
'mr': 'Marathi', 'gu': 'Gujarati', 'kn': 'Kannada', 'ml': 'Malayalam',
'pa': 'Punjabi', 'or': 'Odia', 'as': 'Assamese', 'ur': 'Urdu',
'sa': 'Sanskrit', 'ne': 'Nepali', 'ks': 'Kashmiri', 'sd': 'Sindhi',
'doi': 'Dogri', 'brx': 'Bodo', 'sat': 'Santali', 'mai': 'Maithili',
'mni': 'Manipuri', 'gom': 'Konkani', 'en': 'English'
}
class MultiIndicASR:
"""Enhanced Multi-language ASR system for all 22 Indian languages"""
def __init__(self):
self.model = None
self.tokenizer = None
self.device = self.get_device()
self.language_detector = None
if LANGUAGE_DETECTOR_AVAILABLE:
try:
self.language_detector = IndicLanguageDetector()
logger.info("β
Enhanced language detector initialized")
except Exception as e:
logger.warning(f"Language detector initialization failed: {e}")
def get_device(self):
if torch.cuda.is_available():
return "cuda"
elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
return "mps"
else:
return "cpu"
def load_models(self):
try:
logger.info("π Loading IndicConformer-600M-Multilingual...")
model_name = "ai4bharat/indic-conformer-600m-multilingual"
try:
from transformers import AutoModel, AutoTokenizer
self.model = AutoModel.from_pretrained(
model_name,
torch_dtype=torch.float32 if self.device == "cpu" else torch.float16,
trust_remote_code=True,
cache_dir="./models"
)
self.tokenizer = AutoTokenizer.from_pretrained(
model_name,
trust_remote_code=True,
cache_dir="./models"
)
except Exception as e:
logger.warning(f"Primary model failed: {e}, trying fallback...")
model_name = "parthiv11/indic_whisper_nodcil"
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor
self.model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_name,
torch_dtype=torch.float32,
trust_remote_code=True,
cache_dir="./models"
)
self.tokenizer = AutoProcessor.from_pretrained(
model_name,
trust_remote_code=True,
cache_dir="./models"
)
self.model = self.model.to(self.device)
self.model.eval()
logger.info(f"β
Model loaded successfully on {self.device}")
return True
except Exception as e:
logger.error(f"β Model loading failed completely: {e}")
return False
def detect_language_enhanced(self, text: str, audio_duration: float = 0) -> Dict[str, Any]:
if self.language_detector:
try:
language = self.language_detector.detect_language(text)
confidence = self.language_detector.get_language_confidence(text, language)
if audio_duration > 0:
duration_boost = min(audio_duration / 10.0, 0.1)
confidence = min(confidence + duration_boost, 1.0)
return {
"language": language,
"confidence": confidence,
"language_name": get_language_name(language) if LANGUAGE_DETECTOR_AVAILABLE else SUPPORTED_LANGUAGES.get(language, 'Unknown'),
"detection_method": "multi_strategy"
}
except Exception as e:
logger.warning(f"Enhanced language detection failed: {e}")
return {
"language": "hi",
"confidence": 0.5,
"language_name": "Hindi",
"detection_method": "fallback"
}
def preprocess_audio(self, audio_data: bytes) -> np.ndarray:
try:
audio_array, sr = librosa.load(io.BytesIO(audio_data), sr=SAMPLE_RATE, mono=True)
if len(audio_array) > 0:
max_val = np.max(np.abs(audio_array))
if max_val > 0:
audio_array = audio_array / max_val
min_samples = SAMPLE_RATE * 3
if len(audio_array) < min_samples:
padding = min_samples - len(audio_array)
audio_array = np.pad(audio_array, (0, padding))
return audio_array
except Exception as e:
logger.error(f"Audio preprocessing failed: {e}")
raise e
def transcribe_with_model(self, audio_array: np.ndarray, language: str) -> Dict[str, Any]:
try:
audio_tensor = torch.FloatTensor(audio_array).unsqueeze(0)
if self.device != "cpu":
audio_tensor = audio_tensor.to(self.device)
with torch.no_grad():
if hasattr(self.model, '__call__') and hasattr(self.model, '__module__'):
try:
if self.model is not None:
result = self.model(audio_tensor, language, "rnnt")
return {
'text': result,
'confidence': 0.95,
'model': 'IndicConformer-600M'
}
else:
logger.error("Model is not loaded (None).")
return {'text': "", 'confidence': 0.0, 'model': 'None', 'error': 'Model not loaded'}
except:
pass
if self.tokenizer is not None and hasattr(self.tokenizer, '__call__'):
if self.model is None:
logger.error("Model is not loaded (None).")
return {'text': "", 'confidence': 0.0, 'model': 'None', 'error': 'Model not loaded'}
inputs = self.tokenizer(
audio_array,
sampling_rate=SAMPLE_RATE,
return_tensors="pt"
)
input_features = inputs["input_features"].to(self.device)
predicted_ids = self.model.generate(
input_features,
max_length=448,
num_beams=1,
temperature=0.0
)
transcription = self.tokenizer.batch_decode(
predicted_ids,
skip_special_tokens=True
)[0].strip()
return {'text': transcription, 'confidence': 0.9, 'model': 'IndicWhisper'}
elif self.tokenizer is None:
logger.error("Tokenizer is not loaded (None).")
return {'text': "", 'confidence': 0.0, 'model': 'None', 'error': 'Tokenizer not loaded'}
return {'text': "", 'confidence': 0.0, 'model': 'Unknown', 'error': 'Model type not recognized'}
except Exception as e:
logger.error(f"Model transcription failed: {e}")
return {'text': '', 'confidence': 0.0, 'model': 'Failed', 'error': str(e)}
def normalize_text_enhanced(self, text: str, language: str) -> str:
if not text.strip():
return ""
if NORMALIZERS_AVAILABLE:
try:
normalizer = get_normalizer(language)
normalized = normalizer.normalize(text)
return normalized
except Exception as e:
logger.warning(f"Normalization failed for {language}: {e}")
return text.strip()
def transcribe(self, audio_data: bytes, target_language: Optional[str] = None) -> Dict[str, Any]:
try:
audio_array = self.preprocess_audio(audio_data)
audio_duration = len(audio_array) / SAMPLE_RATE
if not target_language:
quick_result = self.transcribe_with_model(audio_array, 'hi')
if quick_result['text']:
lang_detection = self.detect_language_enhanced(quick_result['text'], audio_duration)
target_language = lang_detection['language']
else:
target_language = 'hi'
if target_language not in SUPPORTED_LANGUAGES:
target_language = 'hi'
transcription_result = self.transcribe_with_model(audio_array, target_language)
raw_text = transcription_result['text']
normalized_text = self.normalize_text_enhanced(raw_text, target_language)
lang_detection = self.detect_language_enhanced(raw_text, audio_duration)
return {
"transcription": normalized_text,
"raw_transcription": raw_text,
"language": target_language,
"language_info": get_language_info(target_language) if NORMALIZERS_AVAILABLE else {"name": SUPPORTED_LANGUAGES.get(target_language, "Unknown")},
"detected_language": lang_detection.get("language", target_language),
"language_confidence": lang_detection.get("confidence", 0.5),
"confidence": transcription_result['confidence'],
"model": transcription_result['model'],
"audio_duration_seconds": audio_duration,
"normalization_applied": NORMALIZERS_AVAILABLE,
"detection_method": lang_detection.get("detection_method", "fallback"),
"status": "success"
}
except Exception as e:
logger.error(f"Complete transcription failed: {e}")
return {
"error": f"Transcription failed: {str(e)}",
"transcription": "",
"language": "unknown",
"status": "error"
}
# Initialize ASR engine globally
asr_engine = MultiIndicASR()
def load_models():
global models_loaded
try:
models_loaded = asr_engine.load_models()
if models_loaded:
logger.info("β
All models loaded successfully!")
else:
logger.error("β Model loading failed")
except Exception as e:
logger.error(f"β Model loading error: {e}")
models_loaded = False
# Load models at startup
logger.info("π Loading models for API...")
load_models()
# ----------------- FASTAPI APP START -------------------
app = FastAPI(
title="Enhanced Multi-Indic ASR API",
description="Enhanced ASR for 22+ Indian languages with normalization and detection",
version="1.0.0",
docs_url="/docs",
redoc_url="/redoc"
)
# Allow all origins (CORS)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/", response_class=HTMLResponse)
async def root():
return """
<html>
<head><title>Enhanced Multi-Indic ASR API</title></head>
<body>
<h1>π€ Enhanced Multi-Indic ASR API</h1>
<p>Go to <a href="/docs">/docs</a> for Swagger UI.</p>
</body>
</html>
"""
@app.get("/health")
async def health():
return {
"status": "healthy" if models_loaded else "loading",
"models_loaded": models_loaded,
"device": asr_engine.device,
"normalizers_available": NORMALIZERS_AVAILABLE,
"language_detector_available": LANGUAGE_DETECTOR_AVAILABLE
}
@app.post("/transcribe")
async def transcribe_api(file: UploadFile = File(...), language: Optional[str] = None):
if not file.filename:
raise HTTPException(status_code=400, detail="No file uploaded")
audio_data = await file.read()
if len(audio_data) > MAX_FILE_SIZE:
raise HTTPException(status_code=413, detail="File too large")
result = asr_engine.transcribe(audio_data, target_language=language)
return JSONResponse(result)
# ----------------- FASTAPI APP END -------------------
if __name__ == "__main__":
import uvicorn
port = int(os.environ.get("PORT", 7860))
uvicorn.run(
"app:app",
host="0.0.0.0",
port=port,
reload=False
)
|