File size: 18,545 Bytes
5b79694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
"""
Complete normalizers for ALL 22+ scheduled Indian languages
Enhanced with proper script-specific normalization and IndicWhisper compatibility
Integrated with IndicNLP library for production use
"""
import re
import unicodedata
from typing import Dict, Optional, Union
import logging

# Enhanced IndicNLP integration
try:
    from indic_nlp import common
    from indic_nlp.normalize.indic_normalize import IndicNormalizerFactory
    INDIC_NLP_AVAILABLE = True
except ImportError:
    INDIC_NLP_AVAILABLE = False

logger = logging.getLogger(__name__)

class BaseIndicNormalizer:
    """Enhanced base class for Indic language normalizers with IndicNLP integration"""
    
    def __init__(self, language_code: str):
        self.language_code = language_code
        
        # Common patterns
        self.extra_spaces = re.compile(r'\s+')
        self.punctuation_normalize = re.compile(r'[।॥]')
        
        # Initialize IndicNLP normalizer if available
        self.indic_normalizer = None
        if INDIC_NLP_AVAILABLE:
            try:
                factory = IndicNormalizerFactory()
                self.indic_normalizer = factory.get_normalizer(language_code, remove_nuktas=False)
            except Exception as e:
                logger.warning(f"Could not initialize IndicNLP normalizer for {language_code}: {e}")
        
    def normalize(self, text: str) -> str:
        """Enhanced normalization with IndicNLP integration"""
        if not text or not text.strip():
            return ""
        
        # First try IndicNLP normalization if available
        if self.indic_normalizer and self.language_code != 'en':
            try:
                text = self.indic_normalizer.normalize(text)
            except Exception as e:
                logger.warning(f"IndicNLP normalization failed for {self.language_code}: {e}")
        
        # Apply NFC normalization (canonical composition)
        text = unicodedata.normalize('NFC', text)
        
        # Basic cleanup
        text = text.strip()
        text = self.extra_spaces.sub(' ', text)
        text = self.punctuation_normalize.sub('।', text)
        
        return text

# DRAVIDIAN LANGUAGES
class MalayalamNormalizer(BaseIndicNormalizer):
    """Malayalam-specific normalizer preserving chillu forms and complex conjuncts"""
    
    def __init__(self):
        super().__init__('ml')
        self.malayalam_range = r'[\u0d00-\u0d7f]'
        
        # Malayalam chillu forms (critical for proper Malayalam rendering)
        self.chillu_forms = {
            '\u0d7a': 'ണ്\u200d',  # chillu nn
            '\u0d7b': 'ന്\u200d',  # chillu n
            '\u0d7c': 'ര്\u200d',  # chillu rr
            '\u0d7d': 'ല്\u200d',  # chillu l
            '\u0d7e': 'ള്\u200d',  # chillu ll
            '\u0d7f': 'ക്\u200d',  # chillu k
        }
        
        self.conjunct_pattern = re.compile(r'([' + self.malayalam_range + r'])്([' + self.malayalam_range + r'])')
    
    def normalize(self, text: str) -> str:
        text = super().normalize(text)
        
        # Preserve chillu forms
        for standard, chillu in self.chillu_forms.items():
            text = text.replace(chillu, standard)
        
        # Preserve Malayalam conjuncts with virama
        text = self.conjunct_pattern.sub(r'\1്\2', text)
        
        return text

class TamilNormalizer(BaseIndicNormalizer):
    """Tamil-specific normalizer with proper pulli handling"""
    
    def __init__(self):
        super().__init__('ta')
        self.tamil_range = r'[\u0b80-\u0bff]'
        self.pulli_pattern = re.compile(r'([' + self.tamil_range + r'])्')
    
    def normalize(self, text: str) -> str:
        text = super().normalize(text)
        
        # Preserve Tamil pulli (்)
        text = self.pulli_pattern.sub(r'\1்', text)
        
        # Handle Tamil vowel combinations
        text = re.sub(r'([' + self.tamil_range + r'])([ாிீுூெேைொோௌ])', r'\1\2', text)
        
        return text

class TeluguNormalizer(BaseIndicNormalizer):
    """Telugu-specific normalizer with proper halant handling"""
    
    def __init__(self):
        super().__init__('te')
        self.telugu_range = r'[\u0c00-\u0c7f]'
        self.halant_pattern = re.compile(r'([' + self.telugu_range + r'])्')
    
    def normalize(self, text: str) -> str:
        text = super().normalize(text)
        
        # Preserve Telugu halant (్)
        text = self.halant_pattern.sub(r'\1్', text)
        
        # Handle Telugu vowel signs
        text = re.sub(r'([' + self.telugu_range + r'])([ాిీుూెేైొోౌ])', r'\1\2', text)
        
        return text

class KannadaNormalizer(BaseIndicNormalizer):
    """Kannada-specific normalizer with script preservation"""
    
    def __init__(self):
        super().__init__('kn')
        self.kannada_range = r'[\u0c80-\u0cff]'
        self.halant_pattern = re.compile(r'([' + self.kannada_range + r'])्')
    
    def normalize(self, text: str) -> str:
        text = super().normalize(text)
        
        # Preserve Kannada halant (್)
        text = self.halant_pattern.sub(r'\1್', text)
        
        # Handle Kannada vowel signs
        text = re.sub(r'([' + self.kannada_range + r'])([ಾಿೀುೂೆೇೈೊೋೌ])', r'\1\2', text)
        
        return text

# INDO-ARYAN LANGUAGES (Devanagari Script)
class HindiNormalizer(BaseIndicNormalizer):
    """Enhanced Hindi/Devanagari normalizer for IndicWhisper"""
    
    def __init__(self):
        super().__init__('hi')
        self.devanagari_range = r'[\u0900-\u097f]'
        # ✅ FIXED - Use correct Devanagari vowel signs
        self.vowel_signs = re.compile(r'([' + self.devanagari_range + r'])([ािीुूृेैोौ])')
        self.conjunct_pattern = re.compile(r'([' + self.devanagari_range + r'])्([' + self.devanagari_range + r'])')
    
    def normalize(self, text: str) -> str:
        text = super().normalize(text)
        
        # Preserve Devanagari conjuncts and halant
        text = self.conjunct_pattern.sub(r'\1्\2', text)
        
        # Preserve vowel signs (matras)
        text = self.vowel_signs.sub(r'\1\2', text)
        
        # Handle nukta (़) preservation
        text = re.sub(r'([कखगजफ])़', r'\1़', text)
        
        return text

class MarathiNormalizer(BaseIndicNormalizer):
    """Marathi-specific Devanagari normalizer"""
    
    def __init__(self):
        super().__init__('mr')
        self.devanagari_range = r'[\u0900-\u097f]'
    
    def normalize(self, text: str) -> str:
        text = super().normalize(text)
        
        # Marathi-specific conjuncts
        marathi_conjuncts = ['क्ष', 'त्र', 'ज्ञ', 'श्र']
        for conjunct in marathi_conjuncts:
            text = re.sub(conjunct, conjunct, text)
        
        return text

class SanskritNormalizer(BaseIndicNormalizer):
    """Sanskrit normalizer with classical Devanagari handling"""
    
    def __init__(self):
        super().__init__('sa')

class NepaliNormalizer(BaseIndicNormalizer):
    """Nepali normalizer using Devanagari script"""
    
    def __init__(self):
        super().__init__('ne')

# EASTERN INDO-ARYAN
class BengaliNormalizer(BaseIndicNormalizer):
    """Enhanced Bengali normalizer with proper script handling"""
    
    def __init__(self):
        super().__init__('bn')
        self.bengali_range = r'[\u0980-\u09ff]'
        self.halant_pattern = re.compile(r'([' + self.bengali_range + r'])्')
        self.vowel_signs = re.compile(r'([' + self.bengali_range + r'])([ািীুূৃেৈোৌ])')
    
    def normalize(self, text: str) -> str:
        text = super().normalize(text)
        
        # Preserve Bengali halant (্)
        text = self.halant_pattern.sub(r'\1্', text)
        
        # Preserve Bengali vowel signs
        text = self.vowel_signs.sub(r'\1\2', text)
        
        # Handle Bengali conjuncts
        text = re.sub(r'([' + self.bengali_range + r'])্([' + self.bengali_range + r'])', r'\1্\2', text)
        
        return text

class AssameeseNormalizer(BaseIndicNormalizer):
    """Assamese normalizer (Bengali script variant)"""
    
    def __init__(self):
        super().__init__('as')
        self.assamese_range = r'[\u0980-\u09ff]'
        self.halant_pattern = re.compile(r'([' + self.assamese_range + r'])्')
    
    def normalize(self, text: str) -> str:
        text = super().normalize(text)
        text = self.halant_pattern.sub(r'\1্', text)
        return text

class OdiaNormalizer(BaseIndicNormalizer):
    """Odia normalizer with proper script handling"""
    
    def __init__(self):
        super().__init__('or')
        self.odia_range = r'[\u0b00-\u0b7f]'
        self.halant_pattern = re.compile(r'([' + self.odia_range + r'])्')
    
    def normalize(self, text: str) -> str:
        text = super().normalize(text)
        
        # Preserve Odia halant (୍)
        text = self.halant_pattern.sub(r'\1୍', text)
        
        # Handle Odia vowel signs
        text = re.sub(r'([' + self.odia_range + r'])([ାିୀୁୂୃେୈୋୌ])', r'\1\2', text)
        
        return text

# WESTERN INDO-ARYAN
class GujaratiNormalizer(BaseIndicNormalizer):
    """Gujarati normalizer with proper script handling"""
    
    def __init__(self):
        super().__init__('gu')
        self.gujarati_range = r'[\u0a80-\u0aff]'
        self.halant_pattern = re.compile(r'([' + self.gujarati_range + r'])्')
    
    def normalize(self, text: str) -> str:
        text = super().normalize(text)
        
        # Preserve Gujarati halant (્)
        text = self.halant_pattern.sub(r'\1્', text)
        
        # Handle Gujarati vowel signs
        text = re.sub(r'([' + self.gujarati_range + r'])([ાિીુૂેૈોૌ])', r'\1\2', text)
        
        return text

class PunjabiNormalizer(BaseIndicNormalizer):
    """Punjabi normalizer for Gurmukhi script"""
    
    def __init__(self):
        super().__init__('pa')
        self.punjabi_range = r'[\u0a00-\u0a7f]'
    
    def normalize(self, text: str) -> str:
        text = super().normalize(text)
        
        # Handle Punjabi vowel signs
        text = re.sub(r'([' + self.punjabi_range + r'])([ਾਿੀੁੂੇੈੋੌ])', r'\1\2', text)
        
        return text

class SindhiNormalizer(BaseIndicNormalizer):
    """Sindhi normalizer (Arabic script)"""
    
    def __init__(self):
        super().__init__('sd')

# PERSO-ARABIC SCRIPT
class UrduNormalizer(BaseIndicNormalizer):
    """Enhanced Urdu normalizer for Arabic script"""
    
    def __init__(self):
        super().__init__('ur')
        self.arabic_range = r'[\u0600-\u06ff]'
        self.urdu_range = r'[\u0620-\u065f\u06a0-\u06ef]'

class KashmiriNormalizer(BaseIndicNormalizer):
    """Kashmiri normalizer (Arabic script)"""
    
    def __init__(self):
        super().__init__('ks')

# TIBETO-BURMAN AND OTHERS
class BodoNormalizer(BaseIndicNormalizer):
    """Bodo normalizer (Devanagari script)"""
    
    def __init__(self):
        super().__init__('brx')

class SantaliNormalizer(BaseIndicNormalizer):
    """Santali normalizer (Ol Chiki script)"""
    
    def __init__(self):
        super().__init__('sat')
        self.olchiki_range = r'[\u1c50-\u1c7f]'

class ManipuriNormalizer(BaseIndicNormalizer):
    """Manipuri/Meitei normalizer (Meitei Mayek script)"""
    
    def __init__(self):
        super().__init__('mni')
        self.meitei_range = r'[\uabc0-\uabff]'

class DogriNormalizer(BaseIndicNormalizer):
    """Dogri normalizer (Devanagari script)"""
    
    def __init__(self):
        super().__init__('doi')

class KonkaniNormalizer(BaseIndicNormalizer):
    """Konkani normalizer (Devanagari script)"""
    
    def __init__(self):
        super().__init__('kok')

class MaithiliNormalizer(BaseIndicNormalizer):
    """Maithili normalizer (Devanagari script)"""
    
    def __init__(self):
        super().__init__('mai')

# COMPLETE NORMALIZER MAPPING
NORMALIZERS = {
    'ml': MalayalamNormalizer, 'ta': TamilNormalizer, 'te': TeluguNormalizer, 'kn': KannadaNormalizer,
    'hi': HindiNormalizer, 'mr': MarathiNormalizer, 'sa': SanskritNormalizer, 'ne': NepaliNormalizer,
    'brx': BodoNormalizer, 'doi': DogriNormalizer, 'kok': KonkaniNormalizer, 'mai': MaithiliNormalizer,
    'bn': BengaliNormalizer, 'as': AssameeseNormalizer, 'or': OdiaNormalizer,
    'gu': GujaratiNormalizer, 'pa': PunjabiNormalizer, 'sd': SindhiNormalizer,
    'ur': UrduNormalizer, 'ks': KashmiriNormalizer,
    'sat': SantaliNormalizer, 'mni': ManipuriNormalizer,
    'en': BaseIndicNormalizer,
}

def get_normalizer(language_code: str) -> BaseIndicNormalizer:
    """Get appropriate normalizer with enhanced error handling"""
    if not language_code:
        return BaseIndicNormalizer('hi')
    
    normalizer_class = NORMALIZERS.get(language_code.lower(), BaseIndicNormalizer)
    
    try:
        if normalizer_class == BaseIndicNormalizer:
            return normalizer_class(language_code)
        return normalizer_class()
    except Exception as e:
        logger.warning(f"Normalizer initialization failed for {language_code}: {e}")
        return BaseIndicNormalizer(language_code)

# Standalone functions for backward compatibility
def normalize_hindi(text: str) -> str:
    """Standalone Hindi normalization function"""
    normalizer = HindiNormalizer()
    return normalizer.normalize(text)

def normalize_bengali(text: str) -> str:
    """Standalone Bengali normalization function"""
    normalizer = BengaliNormalizer()
    return normalizer.normalize(text)

def normalize_tamil(text: str) -> str:
    """Standalone Tamil normalization function"""
    normalizer = TamilNormalizer()
    return normalizer.normalize(text)

def normalize_telugu(text: str) -> str:
    """Standalone Telugu normalization function"""
    normalizer = TeluguNormalizer()
    return normalizer.normalize(text)

def normalize_malayalam(text: str) -> str:
    """Standalone Malayalam normalization function"""
    normalizer = MalayalamNormalizer()
    return normalizer.normalize(text)

def normalize_kannada(text: str) -> str:
    """Standalone Kannada normalization function"""
    normalizer = KannadaNormalizer()
    return normalizer.normalize(text)

def normalize_gujarati(text: str) -> str:
    """Standalone Gujarati normalization function"""
    normalizer = GujaratiNormalizer()
    return normalizer.normalize(text)

def normalize_punjabi(text: str) -> str:
    """Standalone Punjabi normalization function"""
    normalizer = PunjabiNormalizer()
    return normalizer.normalize(text)

def normalize_marathi(text: str) -> str:
    """Standalone Marathi normalization function"""
    normalizer = MarathiNormalizer()
    return normalizer.normalize(text)

def normalize_odia(text: str) -> str:
    """Standalone Odia normalization function"""
    normalizer = OdiaNormalizer()
    return normalizer.normalize(text)

def normalize_urdu(text: str) -> str:
    """Standalone Urdu normalization function"""
    normalizer = UrduNormalizer()
    return normalizer.normalize(text)

# Language metadata
LANGUAGE_INFO = {
    'hi': {'name': 'Hindi', 'script': 'Devanagari', 'family': 'Indo-Aryan', 'speakers': '600M+'},
    'bn': {'name': 'Bengali', 'script': 'Bengali', 'family': 'Indo-Aryan', 'speakers': '300M+'},
    'te': {'name': 'Telugu', 'script': 'Telugu', 'family': 'Dravidian', 'speakers': '95M+'},
    'mr': {'name': 'Marathi', 'script': 'Devanagari', 'family': 'Indo-Aryan', 'speakers': '90M+'},
    'ta': {'name': 'Tamil', 'script': 'Tamil', 'family': 'Dravidian', 'speakers': '80M+'},
    'ur': {'name': 'Urdu', 'script': 'Arabic', 'family': 'Indo-Aryan', 'speakers': '70M+'},
    'gu': {'name': 'Gujarati', 'script': 'Gujarati', 'family': 'Indo-Aryan', 'speakers': '60M+'},
    'kn': {'name': 'Kannada', 'script': 'Kannada', 'family': 'Dravidian', 'speakers': '50M+'},
    'ml': {'name': 'Malayalam', 'script': 'Malayalam', 'family': 'Dravidian', 'speakers': '40M+'},
    'or': {'name': 'Odia', 'script': 'Odia', 'family': 'Indo-Aryan', 'speakers': '40M+'},
    'pa': {'name': 'Punjabi', 'script': 'Gurmukhi', 'family': 'Indo-Aryan', 'speakers': '35M+'},
    'as': {'name': 'Assamese', 'script': 'Bengali', 'family': 'Indo-Aryan', 'speakers': '15M+'},
    'mai': {'name': 'Maithili', 'script': 'Devanagari', 'family': 'Indo-Aryan', 'speakers': '13M+'},
    'sa': {'name': 'Sanskrit', 'script': 'Devanagari', 'family': 'Indo-Aryan', 'speakers': 'Classical'},
    'ne': {'name': 'Nepali', 'script': 'Devanagari', 'family': 'Indo-Aryan', 'speakers': '17M+'},
    'ks': {'name': 'Kashmiri', 'script': 'Arabic', 'family': 'Indo-Aryan', 'speakers': '7M+'},
    'sd': {'name': 'Sindhi', 'script': 'Arabic', 'family': 'Indo-Aryan', 'speakers': '3M+'},
    'brx': {'name': 'Bodo', 'script': 'Devanagari', 'family': 'Tibeto-Burman', 'speakers': '1.5M+'},
    'doi': {'name': 'Dogri', 'script': 'Devanagari', 'family': 'Indo-Aryan', 'speakers': '2.5M+'},
    'kok': {'name': 'Konkani', 'script': 'Devanagari', 'family': 'Indo-Aryan', 'speakers': '2M+'},
    'mni': {'name': 'Manipuri', 'script': 'Meitei Mayek', 'family': 'Tibeto-Burman', 'speakers': '1.8M+'},
    'sat': {'name': 'Santali', 'script': 'Ol Chiki', 'family': 'Austroasiatic', 'speakers': '7M+'},
    'en': {'name': 'English', 'script': 'Latin', 'family': 'Germanic', 'speakers': 'Global'},
}

def get_language_info(language_code: str) -> Dict[str, str]:
    """Get comprehensive language information"""
    return LANGUAGE_INFO.get(language_code.lower(), {
        'name': 'Unknown', 'script': 'Unknown', 'family': 'Unknown', 'speakers': 'Unknown'
    })

def get_supported_languages() -> Dict[str, str]:
    """Get list of all supported languages"""
    return {code: info['name'] for code, info in LANGUAGE_INFO.items()}

if __name__ == "__main__":
    # Test normalization
    test_texts = {
        'hi': 'नमस्ते, आप कैसे हैं?',
        'bn': 'নমস্কার, আপনি কেমন আছেন?',
        'ta': 'வணக்கம், நீங்கள் எப்படி இருக்கிறீர்கள்?',
    }
    
    print("Testing Enhanced Normalizers:")
    print("=" * 50)
    
    for lang_code, text in test_texts.items():
        normalizer = get_normalizer(lang_code)
        normalized = normalizer.normalize(text)
        print(f"\n{lang_code.upper()}: {normalized}")