File size: 18,545 Bytes
5b79694 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
"""
Complete normalizers for ALL 22+ scheduled Indian languages
Enhanced with proper script-specific normalization and IndicWhisper compatibility
Integrated with IndicNLP library for production use
"""
import re
import unicodedata
from typing import Dict, Optional, Union
import logging
# Enhanced IndicNLP integration
try:
from indic_nlp import common
from indic_nlp.normalize.indic_normalize import IndicNormalizerFactory
INDIC_NLP_AVAILABLE = True
except ImportError:
INDIC_NLP_AVAILABLE = False
logger = logging.getLogger(__name__)
class BaseIndicNormalizer:
"""Enhanced base class for Indic language normalizers with IndicNLP integration"""
def __init__(self, language_code: str):
self.language_code = language_code
# Common patterns
self.extra_spaces = re.compile(r'\s+')
self.punctuation_normalize = re.compile(r'[।॥]')
# Initialize IndicNLP normalizer if available
self.indic_normalizer = None
if INDIC_NLP_AVAILABLE:
try:
factory = IndicNormalizerFactory()
self.indic_normalizer = factory.get_normalizer(language_code, remove_nuktas=False)
except Exception as e:
logger.warning(f"Could not initialize IndicNLP normalizer for {language_code}: {e}")
def normalize(self, text: str) -> str:
"""Enhanced normalization with IndicNLP integration"""
if not text or not text.strip():
return ""
# First try IndicNLP normalization if available
if self.indic_normalizer and self.language_code != 'en':
try:
text = self.indic_normalizer.normalize(text)
except Exception as e:
logger.warning(f"IndicNLP normalization failed for {self.language_code}: {e}")
# Apply NFC normalization (canonical composition)
text = unicodedata.normalize('NFC', text)
# Basic cleanup
text = text.strip()
text = self.extra_spaces.sub(' ', text)
text = self.punctuation_normalize.sub('।', text)
return text
# DRAVIDIAN LANGUAGES
class MalayalamNormalizer(BaseIndicNormalizer):
"""Malayalam-specific normalizer preserving chillu forms and complex conjuncts"""
def __init__(self):
super().__init__('ml')
self.malayalam_range = r'[\u0d00-\u0d7f]'
# Malayalam chillu forms (critical for proper Malayalam rendering)
self.chillu_forms = {
'\u0d7a': 'ണ്\u200d', # chillu nn
'\u0d7b': 'ന്\u200d', # chillu n
'\u0d7c': 'ര്\u200d', # chillu rr
'\u0d7d': 'ല്\u200d', # chillu l
'\u0d7e': 'ള്\u200d', # chillu ll
'\u0d7f': 'ക്\u200d', # chillu k
}
self.conjunct_pattern = re.compile(r'([' + self.malayalam_range + r'])്([' + self.malayalam_range + r'])')
def normalize(self, text: str) -> str:
text = super().normalize(text)
# Preserve chillu forms
for standard, chillu in self.chillu_forms.items():
text = text.replace(chillu, standard)
# Preserve Malayalam conjuncts with virama
text = self.conjunct_pattern.sub(r'\1്\2', text)
return text
class TamilNormalizer(BaseIndicNormalizer):
"""Tamil-specific normalizer with proper pulli handling"""
def __init__(self):
super().__init__('ta')
self.tamil_range = r'[\u0b80-\u0bff]'
self.pulli_pattern = re.compile(r'([' + self.tamil_range + r'])्')
def normalize(self, text: str) -> str:
text = super().normalize(text)
# Preserve Tamil pulli (்)
text = self.pulli_pattern.sub(r'\1்', text)
# Handle Tamil vowel combinations
text = re.sub(r'([' + self.tamil_range + r'])([ாிீுூெேைொோௌ])', r'\1\2', text)
return text
class TeluguNormalizer(BaseIndicNormalizer):
"""Telugu-specific normalizer with proper halant handling"""
def __init__(self):
super().__init__('te')
self.telugu_range = r'[\u0c00-\u0c7f]'
self.halant_pattern = re.compile(r'([' + self.telugu_range + r'])्')
def normalize(self, text: str) -> str:
text = super().normalize(text)
# Preserve Telugu halant (్)
text = self.halant_pattern.sub(r'\1్', text)
# Handle Telugu vowel signs
text = re.sub(r'([' + self.telugu_range + r'])([ాిీుూెేైొోౌ])', r'\1\2', text)
return text
class KannadaNormalizer(BaseIndicNormalizer):
"""Kannada-specific normalizer with script preservation"""
def __init__(self):
super().__init__('kn')
self.kannada_range = r'[\u0c80-\u0cff]'
self.halant_pattern = re.compile(r'([' + self.kannada_range + r'])्')
def normalize(self, text: str) -> str:
text = super().normalize(text)
# Preserve Kannada halant (್)
text = self.halant_pattern.sub(r'\1್', text)
# Handle Kannada vowel signs
text = re.sub(r'([' + self.kannada_range + r'])([ಾಿೀುೂೆೇೈೊೋೌ])', r'\1\2', text)
return text
# INDO-ARYAN LANGUAGES (Devanagari Script)
class HindiNormalizer(BaseIndicNormalizer):
"""Enhanced Hindi/Devanagari normalizer for IndicWhisper"""
def __init__(self):
super().__init__('hi')
self.devanagari_range = r'[\u0900-\u097f]'
# ✅ FIXED - Use correct Devanagari vowel signs
self.vowel_signs = re.compile(r'([' + self.devanagari_range + r'])([ािीुूृेैोौ])')
self.conjunct_pattern = re.compile(r'([' + self.devanagari_range + r'])्([' + self.devanagari_range + r'])')
def normalize(self, text: str) -> str:
text = super().normalize(text)
# Preserve Devanagari conjuncts and halant
text = self.conjunct_pattern.sub(r'\1्\2', text)
# Preserve vowel signs (matras)
text = self.vowel_signs.sub(r'\1\2', text)
# Handle nukta (़) preservation
text = re.sub(r'([कखगजफ])़', r'\1़', text)
return text
class MarathiNormalizer(BaseIndicNormalizer):
"""Marathi-specific Devanagari normalizer"""
def __init__(self):
super().__init__('mr')
self.devanagari_range = r'[\u0900-\u097f]'
def normalize(self, text: str) -> str:
text = super().normalize(text)
# Marathi-specific conjuncts
marathi_conjuncts = ['क्ष', 'त्र', 'ज्ञ', 'श्र']
for conjunct in marathi_conjuncts:
text = re.sub(conjunct, conjunct, text)
return text
class SanskritNormalizer(BaseIndicNormalizer):
"""Sanskrit normalizer with classical Devanagari handling"""
def __init__(self):
super().__init__('sa')
class NepaliNormalizer(BaseIndicNormalizer):
"""Nepali normalizer using Devanagari script"""
def __init__(self):
super().__init__('ne')
# EASTERN INDO-ARYAN
class BengaliNormalizer(BaseIndicNormalizer):
"""Enhanced Bengali normalizer with proper script handling"""
def __init__(self):
super().__init__('bn')
self.bengali_range = r'[\u0980-\u09ff]'
self.halant_pattern = re.compile(r'([' + self.bengali_range + r'])्')
self.vowel_signs = re.compile(r'([' + self.bengali_range + r'])([ািীুূৃেৈোৌ])')
def normalize(self, text: str) -> str:
text = super().normalize(text)
# Preserve Bengali halant (্)
text = self.halant_pattern.sub(r'\1্', text)
# Preserve Bengali vowel signs
text = self.vowel_signs.sub(r'\1\2', text)
# Handle Bengali conjuncts
text = re.sub(r'([' + self.bengali_range + r'])্([' + self.bengali_range + r'])', r'\1্\2', text)
return text
class AssameeseNormalizer(BaseIndicNormalizer):
"""Assamese normalizer (Bengali script variant)"""
def __init__(self):
super().__init__('as')
self.assamese_range = r'[\u0980-\u09ff]'
self.halant_pattern = re.compile(r'([' + self.assamese_range + r'])्')
def normalize(self, text: str) -> str:
text = super().normalize(text)
text = self.halant_pattern.sub(r'\1্', text)
return text
class OdiaNormalizer(BaseIndicNormalizer):
"""Odia normalizer with proper script handling"""
def __init__(self):
super().__init__('or')
self.odia_range = r'[\u0b00-\u0b7f]'
self.halant_pattern = re.compile(r'([' + self.odia_range + r'])्')
def normalize(self, text: str) -> str:
text = super().normalize(text)
# Preserve Odia halant (୍)
text = self.halant_pattern.sub(r'\1୍', text)
# Handle Odia vowel signs
text = re.sub(r'([' + self.odia_range + r'])([ାିୀୁୂୃେୈୋୌ])', r'\1\2', text)
return text
# WESTERN INDO-ARYAN
class GujaratiNormalizer(BaseIndicNormalizer):
"""Gujarati normalizer with proper script handling"""
def __init__(self):
super().__init__('gu')
self.gujarati_range = r'[\u0a80-\u0aff]'
self.halant_pattern = re.compile(r'([' + self.gujarati_range + r'])्')
def normalize(self, text: str) -> str:
text = super().normalize(text)
# Preserve Gujarati halant (્)
text = self.halant_pattern.sub(r'\1્', text)
# Handle Gujarati vowel signs
text = re.sub(r'([' + self.gujarati_range + r'])([ાિીુૂેૈોૌ])', r'\1\2', text)
return text
class PunjabiNormalizer(BaseIndicNormalizer):
"""Punjabi normalizer for Gurmukhi script"""
def __init__(self):
super().__init__('pa')
self.punjabi_range = r'[\u0a00-\u0a7f]'
def normalize(self, text: str) -> str:
text = super().normalize(text)
# Handle Punjabi vowel signs
text = re.sub(r'([' + self.punjabi_range + r'])([ਾਿੀੁੂੇੈੋੌ])', r'\1\2', text)
return text
class SindhiNormalizer(BaseIndicNormalizer):
"""Sindhi normalizer (Arabic script)"""
def __init__(self):
super().__init__('sd')
# PERSO-ARABIC SCRIPT
class UrduNormalizer(BaseIndicNormalizer):
"""Enhanced Urdu normalizer for Arabic script"""
def __init__(self):
super().__init__('ur')
self.arabic_range = r'[\u0600-\u06ff]'
self.urdu_range = r'[\u0620-\u065f\u06a0-\u06ef]'
class KashmiriNormalizer(BaseIndicNormalizer):
"""Kashmiri normalizer (Arabic script)"""
def __init__(self):
super().__init__('ks')
# TIBETO-BURMAN AND OTHERS
class BodoNormalizer(BaseIndicNormalizer):
"""Bodo normalizer (Devanagari script)"""
def __init__(self):
super().__init__('brx')
class SantaliNormalizer(BaseIndicNormalizer):
"""Santali normalizer (Ol Chiki script)"""
def __init__(self):
super().__init__('sat')
self.olchiki_range = r'[\u1c50-\u1c7f]'
class ManipuriNormalizer(BaseIndicNormalizer):
"""Manipuri/Meitei normalizer (Meitei Mayek script)"""
def __init__(self):
super().__init__('mni')
self.meitei_range = r'[\uabc0-\uabff]'
class DogriNormalizer(BaseIndicNormalizer):
"""Dogri normalizer (Devanagari script)"""
def __init__(self):
super().__init__('doi')
class KonkaniNormalizer(BaseIndicNormalizer):
"""Konkani normalizer (Devanagari script)"""
def __init__(self):
super().__init__('kok')
class MaithiliNormalizer(BaseIndicNormalizer):
"""Maithili normalizer (Devanagari script)"""
def __init__(self):
super().__init__('mai')
# COMPLETE NORMALIZER MAPPING
NORMALIZERS = {
'ml': MalayalamNormalizer, 'ta': TamilNormalizer, 'te': TeluguNormalizer, 'kn': KannadaNormalizer,
'hi': HindiNormalizer, 'mr': MarathiNormalizer, 'sa': SanskritNormalizer, 'ne': NepaliNormalizer,
'brx': BodoNormalizer, 'doi': DogriNormalizer, 'kok': KonkaniNormalizer, 'mai': MaithiliNormalizer,
'bn': BengaliNormalizer, 'as': AssameeseNormalizer, 'or': OdiaNormalizer,
'gu': GujaratiNormalizer, 'pa': PunjabiNormalizer, 'sd': SindhiNormalizer,
'ur': UrduNormalizer, 'ks': KashmiriNormalizer,
'sat': SantaliNormalizer, 'mni': ManipuriNormalizer,
'en': BaseIndicNormalizer,
}
def get_normalizer(language_code: str) -> BaseIndicNormalizer:
"""Get appropriate normalizer with enhanced error handling"""
if not language_code:
return BaseIndicNormalizer('hi')
normalizer_class = NORMALIZERS.get(language_code.lower(), BaseIndicNormalizer)
try:
if normalizer_class == BaseIndicNormalizer:
return normalizer_class(language_code)
return normalizer_class()
except Exception as e:
logger.warning(f"Normalizer initialization failed for {language_code}: {e}")
return BaseIndicNormalizer(language_code)
# Standalone functions for backward compatibility
def normalize_hindi(text: str) -> str:
"""Standalone Hindi normalization function"""
normalizer = HindiNormalizer()
return normalizer.normalize(text)
def normalize_bengali(text: str) -> str:
"""Standalone Bengali normalization function"""
normalizer = BengaliNormalizer()
return normalizer.normalize(text)
def normalize_tamil(text: str) -> str:
"""Standalone Tamil normalization function"""
normalizer = TamilNormalizer()
return normalizer.normalize(text)
def normalize_telugu(text: str) -> str:
"""Standalone Telugu normalization function"""
normalizer = TeluguNormalizer()
return normalizer.normalize(text)
def normalize_malayalam(text: str) -> str:
"""Standalone Malayalam normalization function"""
normalizer = MalayalamNormalizer()
return normalizer.normalize(text)
def normalize_kannada(text: str) -> str:
"""Standalone Kannada normalization function"""
normalizer = KannadaNormalizer()
return normalizer.normalize(text)
def normalize_gujarati(text: str) -> str:
"""Standalone Gujarati normalization function"""
normalizer = GujaratiNormalizer()
return normalizer.normalize(text)
def normalize_punjabi(text: str) -> str:
"""Standalone Punjabi normalization function"""
normalizer = PunjabiNormalizer()
return normalizer.normalize(text)
def normalize_marathi(text: str) -> str:
"""Standalone Marathi normalization function"""
normalizer = MarathiNormalizer()
return normalizer.normalize(text)
def normalize_odia(text: str) -> str:
"""Standalone Odia normalization function"""
normalizer = OdiaNormalizer()
return normalizer.normalize(text)
def normalize_urdu(text: str) -> str:
"""Standalone Urdu normalization function"""
normalizer = UrduNormalizer()
return normalizer.normalize(text)
# Language metadata
LANGUAGE_INFO = {
'hi': {'name': 'Hindi', 'script': 'Devanagari', 'family': 'Indo-Aryan', 'speakers': '600M+'},
'bn': {'name': 'Bengali', 'script': 'Bengali', 'family': 'Indo-Aryan', 'speakers': '300M+'},
'te': {'name': 'Telugu', 'script': 'Telugu', 'family': 'Dravidian', 'speakers': '95M+'},
'mr': {'name': 'Marathi', 'script': 'Devanagari', 'family': 'Indo-Aryan', 'speakers': '90M+'},
'ta': {'name': 'Tamil', 'script': 'Tamil', 'family': 'Dravidian', 'speakers': '80M+'},
'ur': {'name': 'Urdu', 'script': 'Arabic', 'family': 'Indo-Aryan', 'speakers': '70M+'},
'gu': {'name': 'Gujarati', 'script': 'Gujarati', 'family': 'Indo-Aryan', 'speakers': '60M+'},
'kn': {'name': 'Kannada', 'script': 'Kannada', 'family': 'Dravidian', 'speakers': '50M+'},
'ml': {'name': 'Malayalam', 'script': 'Malayalam', 'family': 'Dravidian', 'speakers': '40M+'},
'or': {'name': 'Odia', 'script': 'Odia', 'family': 'Indo-Aryan', 'speakers': '40M+'},
'pa': {'name': 'Punjabi', 'script': 'Gurmukhi', 'family': 'Indo-Aryan', 'speakers': '35M+'},
'as': {'name': 'Assamese', 'script': 'Bengali', 'family': 'Indo-Aryan', 'speakers': '15M+'},
'mai': {'name': 'Maithili', 'script': 'Devanagari', 'family': 'Indo-Aryan', 'speakers': '13M+'},
'sa': {'name': 'Sanskrit', 'script': 'Devanagari', 'family': 'Indo-Aryan', 'speakers': 'Classical'},
'ne': {'name': 'Nepali', 'script': 'Devanagari', 'family': 'Indo-Aryan', 'speakers': '17M+'},
'ks': {'name': 'Kashmiri', 'script': 'Arabic', 'family': 'Indo-Aryan', 'speakers': '7M+'},
'sd': {'name': 'Sindhi', 'script': 'Arabic', 'family': 'Indo-Aryan', 'speakers': '3M+'},
'brx': {'name': 'Bodo', 'script': 'Devanagari', 'family': 'Tibeto-Burman', 'speakers': '1.5M+'},
'doi': {'name': 'Dogri', 'script': 'Devanagari', 'family': 'Indo-Aryan', 'speakers': '2.5M+'},
'kok': {'name': 'Konkani', 'script': 'Devanagari', 'family': 'Indo-Aryan', 'speakers': '2M+'},
'mni': {'name': 'Manipuri', 'script': 'Meitei Mayek', 'family': 'Tibeto-Burman', 'speakers': '1.8M+'},
'sat': {'name': 'Santali', 'script': 'Ol Chiki', 'family': 'Austroasiatic', 'speakers': '7M+'},
'en': {'name': 'English', 'script': 'Latin', 'family': 'Germanic', 'speakers': 'Global'},
}
def get_language_info(language_code: str) -> Dict[str, str]:
"""Get comprehensive language information"""
return LANGUAGE_INFO.get(language_code.lower(), {
'name': 'Unknown', 'script': 'Unknown', 'family': 'Unknown', 'speakers': 'Unknown'
})
def get_supported_languages() -> Dict[str, str]:
"""Get list of all supported languages"""
return {code: info['name'] for code, info in LANGUAGE_INFO.items()}
if __name__ == "__main__":
# Test normalization
test_texts = {
'hi': 'नमस्ते, आप कैसे हैं?',
'bn': 'নমস্কার, আপনি কেমন আছেন?',
'ta': 'வணக்கம், நீங்கள் எப்படி இருக்கிறீர்கள்?',
}
print("Testing Enhanced Normalizers:")
print("=" * 50)
for lang_code, text in test_texts.items():
normalizer = get_normalizer(lang_code)
normalized = normalizer.normalize(text)
print(f"\n{lang_code.upper()}: {normalized}")
|