Spaces:
Runtime error
Runtime error
File size: 8,484 Bytes
b767f00 e186fb5 b767f00 e186fb5 b767f00 e186fb5 b767f00 e186fb5 b767f00 e186fb5 b767f00 e186fb5 b767f00 e186fb5 b767f00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
try:
import torch
import pandas as pd
import streamlit as st
import re
import streamlit as st
from transformers import BertTokenizer, BertModel
from model import IndoBERTBiLSTM, IndoBERTModel
except Exception as e:
print(e)
STYLE = """
<style>
img {
max-width: 100%;
}
</style>
"""
# Config
MAX_SEQ_LEN = 128
bert_path = './local/base-indobert'
# bert_path = 'indolem/indobert-base-uncased'
# MODELS_PATH = ["kadabengaran/IndoBERT-Useful-App-Review",
# "kadabengaran/IndoBERT-BiLSTM-Useful-App-Review"]
MODELS_PATH = ["./local/indobert1",
"./local/indobert2"]
MODELS_NAME = ["IndoBERT-BiLSTM", "IndoBERT"]
LABELS = {'Not Useful': 0, 'Useful': 1}
# "kadabengaran/IndoBERT-BiLSTM-Useful-App-Review"]
HIDDEN_DIM = 768
OUTPUT_DIM = 2 # 2 if Binary
N_LAYERS = 2
BIDIRECTIONAL = True
DROPOUT = 0.2
# Get the Keys
def get_key(val, my_dict):
for key, value in my_dict.items():
if val == value:
return key
def get_device():
if torch.cuda.is_available():
return torch.device('cuda')
else:
return torch.device('cpu')
def load_tokenizer(model_path):
tokenizer = BertTokenizer.from_pretrained(model_path)
return tokenizer
def remove_special_characters(text):
text = re.sub(r'[^a-zA-Z0-9\s]', '', text)
text = re.sub(r"\s+", " ", text) # replace multiple whitespace characters with a single space
text = re.sub(r'[0-9]', ' ', text) #remove number
text = text.lower()
return text
def preprocess(text, tokenizer, max_seq=MAX_SEQ_LEN):
return tokenizer.encode_plus(text, add_special_tokens=True, max_length=max_seq,
pad_to_max_length=True,
return_attention_mask=True,
return_tensors='pt'
)
def load_model():
bert = BertModel.from_pretrained(bert_path)
# Load the model
model_combined = IndoBERTBiLSTM.from_pretrained(MODELS_PATH[0],
bert,
HIDDEN_DIM,
OUTPUT_DIM,
N_LAYERS, BIDIRECTIONAL,
DROPOUT)
model_base = IndoBERTModel.from_pretrained(MODELS_PATH[1],
bert,
OUTPUT_DIM)
return model_combined, model_base
def predict_single(text, model, tokenizer, device):
if device.type == 'cuda':
model.cuda()
# We need Token IDs and Attention Mask for inference on the new sentence
test_ids = []
test_attention_mask = []
# Apply preprocessing to the new sentence
new_sentence = remove_special_characters(text)
encoding = preprocess(new_sentence, tokenizer)
# Extract IDs and Attention Mask
test_ids.append(encoding['input_ids'])
test_attention_mask.append(encoding['attention_mask'])
test_ids = torch.cat(test_ids, dim=0)
test_attention_mask = torch.cat(test_attention_mask, dim=0)
# Forward pass, calculate logit predictions
with torch.no_grad():
outputs = model(test_ids.to(device),
test_attention_mask.to(device))
print("output ", outputs)
predictions = torch.argmax(outputs, dim=-1)
print("output ", predictions)
return predictions.item()
def predict_multiple(data, model, tokenizer, device):
input_ids = []
attention_masks = []
for row in data.tolist():
# Apply remove_special_characters function to title column
text = remove_special_characters(row)
text = preprocess(text, tokenizer)
input_ids.append(text['input_ids'])
attention_masks.append(text['attention_mask'])
predictions = []
with torch.no_grad():
for i in range(len(input_ids)):
test_ids = input_ids[i]
test_attention_mask = attention_masks[i]
outputs = model(test_ids.to(device), test_attention_mask.to(device))
prediction = torch.argmax(outputs, dim= -1)
prediction_label = get_key(prediction.item(), LABELS)
predictions.append(prediction_label)
return predictions
tab_labels = ["Single Input", "Multiple Input"]
class App:
print("Loading All")
def __init__(self):
self.fileTypes = ["csv"]
self.default_tab_selected = tab_labels[0]
self.input_text = None
self.input_file = None
def run(self):
self.init_session_state() # Initialize session state
tokenizer = load_tokenizer(bert_path)
device = get_device()
model_combined, model_base = load_model()
"""App Review Classifier"""
html_temp = """
<div style="background-color:blue;padding:10px">
<h1 style="color:white;text-align:center;">Klasifikasi Ulasan Aplikasi yang Berguna</h1>
</div>
"""
st.markdown(html_temp, unsafe_allow_html=True)
self.render_tabs()
st.divider()
model_choice = self.render_model_selection()
if model_choice:
if model_choice == MODELS_NAME[0]:
model = model_combined
elif model_choice == MODELS_NAME[1]:
model = model_base
self.render_process_button(model, tokenizer, device)
def init_session_state(self):
if "tab_selected" not in st.session_state:
st.session_state.tab_selected = tab_labels[0]
def render_model_selection(self):
model_choice = st.selectbox("Select Model", MODELS_NAME)
return model_choice
def render_tabs(self):
tab_selected = st.session_state.get('tab_selected', self.default_tab_selected)
tab_selected = st.sidebar.radio("Select Input Type", tab_labels)
# tab1, tab2 = st.tabs(tab_labels)
if tab_selected == tab_labels[0]:
self.render_single_input()
elif tab_selected == tab_labels[1]:
self.render_multiple_input()
st.session_state.tab_selected = tab_selected
def render_single_input(self):
self.input_text = st.text_area("Enter Text Here", placeholder="Type Here")
def render_multiple_input(self):
"""
Upload File
"""
st.markdown(STYLE, unsafe_allow_html=True)
file = st.file_uploader("Upload file", type=self.fileTypes)
if not file:
st.info("Please upload a file of type: " + ", ".join(self.fileTypes))
return
data = pd.read_csv(file)
placeholder = st.empty()
placeholder.dataframe(data.head(10))
header_list = data.columns.tolist()
header_list.insert(0, "---------- select column -------------")
ques = st.radio("Select column to process", header_list, index=0)
if header_list.index(ques) == 0:
st.warning("Please select a column to process")
return
df_process = data[ques]
self.input_file = data
self.process_file = df_process
def render_process_button(self, model, tokenizer, device):
if st.button("Process"):
if st.session_state.tab_selected == tab_labels[0]:
input_text = self.input_text
if input_text:
prediction = predict_single(input_text, model, tokenizer, device)
prediction_label = get_key(prediction, LABELS)
st.write("Prediction:", prediction_label)
elif st.session_state.tab_selected == tab_labels[1]:
df_process = self.process_file
if df_process is not None:
prediction = predict_multiple(df_process, model, tokenizer, device)
st.divider()
st.write("Classification Result")
input_file = self.input_file
input_file["classification_result"] = prediction
st.dataframe(input_file.head(10))
st.download_button(
label="Download Result",
data=input_file.to_csv().encode("utf-8"),
file_name="classification_result.csv",
mime="text/csv",
)
if __name__ == "__main__":
app = App()
app.run() |