Spaces:
Paused
Paused
| from diffusers import StableDiffusionPipeline, DDIMScheduler | |
| import gradio as gr | |
| import torch | |
| stable_model_list = [ | |
| "runwayml/stable-diffusion-v1-5", | |
| "stabilityai/stable-diffusion-2", | |
| "stabilityai/stable-diffusion-2-base", | |
| "stabilityai/stable-diffusion-2-1", | |
| "stabilityai/stable-diffusion-2-1-base" | |
| ] | |
| stable_inpiant_model_list = [ | |
| "stabilityai/stable-diffusion-2-inpainting", | |
| "runwayml/stable-diffusion-inpainting" | |
| ] | |
| stable_prompt_list = [ | |
| "a photo of a man.", | |
| "a photo of a girl." | |
| ] | |
| stable_negative_prompt_list = [ | |
| "bad, ugly", | |
| "deformed" | |
| ] | |
| def stable_diffusion_text2img( | |
| model_path:str, | |
| prompt:str, | |
| negative_prompt:str, | |
| guidance_scale:int, | |
| num_inference_step:int, | |
| height:int, | |
| width:int, | |
| ): | |
| pipe = StableDiffusionPipeline.from_pretrained( | |
| model_path, | |
| safety_checker=None, | |
| torch_dtype=torch.float16 | |
| ).to("cuda") | |
| pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) | |
| pipe.enable_xformers_memory_efficient_attention() | |
| images = pipe( | |
| prompt, | |
| height=height, | |
| width=width, | |
| negative_prompt=negative_prompt, | |
| num_inference_steps=num_inference_step, | |
| guidance_scale=guidance_scale, | |
| ).images | |
| return images[0] | |
| def stable_diffusion_text2img_app(): | |
| with gr.Tab('Text2Image'): | |
| text2image_model_path = gr.Dropdown( | |
| choices=stable_model_list, | |
| value=stable_model_list[0], | |
| label='Text-Image Model Id' | |
| ) | |
| text2image_prompt = gr.Textbox( | |
| lines=1, | |
| value=stable_prompt_list[0], | |
| label='Prompt' | |
| ) | |
| text2image_negative_prompt = gr.Textbox( | |
| lines=1, | |
| value=stable_negative_prompt_list[0], | |
| label='Negative Prompt' | |
| ) | |
| with gr.Accordion("Advanced Options", open=False): | |
| text2image_guidance_scale = gr.Slider( | |
| minimum=0.1, | |
| maximum=15, | |
| step=0.1, | |
| value=7.5, | |
| label='Guidance Scale' | |
| ) | |
| text2image_num_inference_step = gr.Slider( | |
| minimum=1, | |
| maximum=100, | |
| step=1, | |
| value=50, | |
| label='Num Inference Step' | |
| ) | |
| text2image_height = gr.Slider( | |
| minimum=128, | |
| maximum=1280, | |
| step=32, | |
| value=512, | |
| label='Image Height' | |
| ) | |
| text2image_width = gr.Slider( | |
| minimum=128, | |
| maximum=1280, | |
| step=32, | |
| value=768, | |
| label='Image Height' | |
| ) | |
| text2image_predict = gr.Button(value='Generator') | |
| variables = { | |
| "model_path": text2image_model_path, | |
| "prompt": text2image_prompt, | |
| "negative_prompt": text2image_negative_prompt, | |
| "guidance_scale": text2image_guidance_scale, | |
| "num_inference_step": text2image_num_inference_step, | |
| "height": text2image_height, | |
| "width": text2image_width, | |
| "predict": text2image_predict | |
| } | |
| return variables | |