Spaces:
Paused
Paused
Upload 5 files (#1)
Browse files- Upload 5 files (8f357bcd3f560d22cb2bf4be80d4acd8968e8d1c)
- Update app.py (bb302f80696b7444a25a70a9aa7903838df2ec3c)
- Update utils/image2image.py (48da7fb81fb9bf5e6ada6f0dd08c544f105f3645)
- app.py +65 -2
- requirements.txt +2 -1
- utils/inpaint.py +53 -0
app.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
from utils.image2image import stable_diffusion_img2img
|
| 2 |
from utils.text2image import stable_diffusion_text2img
|
| 3 |
-
|
| 4 |
import gradio as gr
|
| 5 |
|
| 6 |
stable_model_list = [
|
|
@@ -10,6 +10,12 @@ stable_model_list = [
|
|
| 10 |
"stabilityai/stable-diffusion-2-1",
|
| 11 |
"stabilityai/stable-diffusion-2-1-base"
|
| 12 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
stable_prompt_list = [
|
| 14 |
"a photo of a man.",
|
| 15 |
"a photo of a girl."
|
|
@@ -21,7 +27,7 @@ stable_negative_prompt_list = [
|
|
| 21 |
]
|
| 22 |
app = gr.Blocks()
|
| 23 |
with app:
|
| 24 |
-
gr.Markdown("# **<h2 align='center'>Stable Diffusion WebUI<h2>**")
|
| 25 |
gr.Markdown(
|
| 26 |
"""
|
| 27 |
<h5 style='text-align: center'>
|
|
@@ -127,6 +133,50 @@ with app:
|
|
| 127 |
|
| 128 |
image2image_predict = gr.Button(value='Generator')
|
| 129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
with gr.Tab('Generator'):
|
| 132 |
with gr.Column():
|
|
@@ -159,4 +209,17 @@ with app:
|
|
| 159 |
outputs = [output_image],
|
| 160 |
)
|
| 161 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
app.launch()
|
|
|
|
| 1 |
from utils.image2image import stable_diffusion_img2img
|
| 2 |
from utils.text2image import stable_diffusion_text2img
|
| 3 |
+
from utils.inpaint import stable_diffusion_inpaint
|
| 4 |
import gradio as gr
|
| 5 |
|
| 6 |
stable_model_list = [
|
|
|
|
| 10 |
"stabilityai/stable-diffusion-2-1",
|
| 11 |
"stabilityai/stable-diffusion-2-1-base"
|
| 12 |
]
|
| 13 |
+
|
| 14 |
+
stable_inpiant_model_list = [
|
| 15 |
+
"stabilityai/stable-diffusion-2-inpainting",
|
| 16 |
+
"runwayml/stable-diffusion-inpainting"
|
| 17 |
+
]
|
| 18 |
+
|
| 19 |
stable_prompt_list = [
|
| 20 |
"a photo of a man.",
|
| 21 |
"a photo of a girl."
|
|
|
|
| 27 |
]
|
| 28 |
app = gr.Blocks()
|
| 29 |
with app:
|
| 30 |
+
gr.Markdown("# **<h2 align='center'>Stable Diffusion + ControlNet WebUI<h2>**")
|
| 31 |
gr.Markdown(
|
| 32 |
"""
|
| 33 |
<h5 style='text-align: center'>
|
|
|
|
| 133 |
|
| 134 |
image2image_predict = gr.Button(value='Generator')
|
| 135 |
|
| 136 |
+
with gr.Tab('Inpaint'):
|
| 137 |
+
inpaint_image_file = gr.Image(
|
| 138 |
+
source="upload",
|
| 139 |
+
type="numpy",
|
| 140 |
+
tool="sketch",
|
| 141 |
+
elem_id="source_container"
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
inpaint_model_id = gr.Dropdown(
|
| 145 |
+
choices=stable_inpiant_model_list,
|
| 146 |
+
value=stable_inpiant_model_list[0],
|
| 147 |
+
label='Inpaint Model Id'
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
inpaint_prompt = gr.Textbox(
|
| 151 |
+
lines=1,
|
| 152 |
+
value=stable_prompt_list[0],
|
| 153 |
+
label='Prompt'
|
| 154 |
+
)
|
| 155 |
+
|
| 156 |
+
inpaint_negative_prompt = gr.Textbox(
|
| 157 |
+
lines=1,
|
| 158 |
+
value=stable_negative_prompt_list[0],
|
| 159 |
+
label='Negative Prompt'
|
| 160 |
+
)
|
| 161 |
+
|
| 162 |
+
with gr.Accordion("Advanced Options", open=False):
|
| 163 |
+
inpaint_guidance_scale = gr.Slider(
|
| 164 |
+
minimum=0.1,
|
| 165 |
+
maximum=15,
|
| 166 |
+
step=0.1,
|
| 167 |
+
value=7.5,
|
| 168 |
+
label='Guidance Scale'
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
inpaint_num_inference_step = gr.Slider(
|
| 172 |
+
minimum=1,
|
| 173 |
+
maximum=100,
|
| 174 |
+
step=1,
|
| 175 |
+
value=50,
|
| 176 |
+
label='Num Inference Step'
|
| 177 |
+
)
|
| 178 |
+
|
| 179 |
+
inpaint_predict = gr.Button(value='Generator')
|
| 180 |
|
| 181 |
with gr.Tab('Generator'):
|
| 182 |
with gr.Column():
|
|
|
|
| 209 |
outputs = [output_image],
|
| 210 |
)
|
| 211 |
|
| 212 |
+
inpaint_predict.click(
|
| 213 |
+
fn = stable_diffusion_inpaint,
|
| 214 |
+
inputs = [
|
| 215 |
+
inpaint_image_file,
|
| 216 |
+
inpaint_model_id,
|
| 217 |
+
inpaint_prompt,
|
| 218 |
+
inpaint_negative_prompt,
|
| 219 |
+
inpaint_guidance_scale,
|
| 220 |
+
inpaint_num_inference_step,
|
| 221 |
+
],
|
| 222 |
+
outputs = [output_image],
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
app.launch()
|
requirements.txt
CHANGED
|
@@ -2,4 +2,5 @@ transformers
|
|
| 2 |
bitsandbytes==0.35.0
|
| 3 |
xformers
|
| 4 |
controlnet_aux
|
| 5 |
-
diffusers
|
|
|
|
|
|
| 2 |
bitsandbytes==0.35.0
|
| 3 |
xformers
|
| 4 |
controlnet_aux
|
| 5 |
+
diffusers
|
| 6 |
+
imageio
|
utils/inpaint.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from diffusers import DiffusionPipeline, DDIMScheduler
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import imageio
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
# https://huggingface.co/spaces/Manjushri/SD-2.0-Inpainting-CPU/blob/main/app.py
|
| 7 |
+
|
| 8 |
+
def resize(height,img):
|
| 9 |
+
baseheight = height
|
| 10 |
+
img = Image.open(img)
|
| 11 |
+
hpercent = (baseheight/float(img.size[1]))
|
| 12 |
+
wsize = int((float(img.size[0])*float(hpercent)))
|
| 13 |
+
img = img.resize((wsize,baseheight), Image.Resampling.LANCZOS)
|
| 14 |
+
return img
|
| 15 |
+
|
| 16 |
+
def img_preprocces(source_img, prompt, negative_prompt):
|
| 17 |
+
imageio.imwrite("data.png", source_img["image"])
|
| 18 |
+
imageio.imwrite("data_mask.png", source_img["mask"])
|
| 19 |
+
src = resize(512, "data.png")
|
| 20 |
+
src.save("src.png")
|
| 21 |
+
mask = resize(512, "data_mask.png")
|
| 22 |
+
mask.save("mask.png")
|
| 23 |
+
return src, mask
|
| 24 |
+
|
| 25 |
+
def stable_diffusion_inpaint(
|
| 26 |
+
image_path:str,
|
| 27 |
+
model_path:str,
|
| 28 |
+
prompt:str,
|
| 29 |
+
negative_prompt:str,
|
| 30 |
+
guidance_scale:int,
|
| 31 |
+
num_inference_step:int,
|
| 32 |
+
):
|
| 33 |
+
|
| 34 |
+
image, mask_image = img_preprocces(image_path, prompt, negative_prompt)
|
| 35 |
+
pipe = DiffusionPipeline.from_pretrained(
|
| 36 |
+
model_path,
|
| 37 |
+
revision="fp16",
|
| 38 |
+
torch_dtype=torch.float16,
|
| 39 |
+
)
|
| 40 |
+
pipe.to('cuda')
|
| 41 |
+
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
|
| 42 |
+
pipe.enable_xformers_memory_efficient_attention()
|
| 43 |
+
|
| 44 |
+
output = pipe(
|
| 45 |
+
prompt = prompt,
|
| 46 |
+
image = image,
|
| 47 |
+
mask_image=mask_image,
|
| 48 |
+
negative_prompt = negative_prompt,
|
| 49 |
+
num_inference_steps = num_inference_step,
|
| 50 |
+
guidance_scale = guidance_scale,
|
| 51 |
+
).images
|
| 52 |
+
|
| 53 |
+
return output
|