Spaces:
Running
Running
| from dac.nn.quantize import ResidualVectorQuantize | |
| from torch import nn | |
| from modules.wavenet import WN | |
| from modules.style_encoder import StyleEncoder | |
| from gradient_reversal import GradientReversal | |
| import torch | |
| import torchaudio | |
| import torchaudio.functional as audio_F | |
| import numpy as np | |
| from alias_free_torch import * | |
| from torch.nn.utils import weight_norm | |
| from torch import nn, sin, pow | |
| from einops.layers.torch import Rearrange | |
| from dac.model.encodec import SConv1d | |
| def init_weights(m): | |
| if isinstance(m, nn.Conv1d): | |
| nn.init.trunc_normal_(m.weight, std=0.02) | |
| nn.init.constant_(m.bias, 0) | |
| def WNConv1d(*args, **kwargs): | |
| return weight_norm(nn.Conv1d(*args, **kwargs)) | |
| def WNConvTranspose1d(*args, **kwargs): | |
| return weight_norm(nn.ConvTranspose1d(*args, **kwargs)) | |
| class SnakeBeta(nn.Module): | |
| """ | |
| A modified Snake function which uses separate parameters for the magnitude of the periodic components | |
| Shape: | |
| - Input: (B, C, T) | |
| - Output: (B, C, T), same shape as the input | |
| Parameters: | |
| - alpha - trainable parameter that controls frequency | |
| - beta - trainable parameter that controls magnitude | |
| References: | |
| - This activation function is a modified version based on this paper by Liu Ziyin, Tilman Hartwig, Masahito Ueda: | |
| https://arxiv.org/abs/2006.08195 | |
| Examples: | |
| >>> a1 = snakebeta(256) | |
| >>> x = torch.randn(256) | |
| >>> x = a1(x) | |
| """ | |
| def __init__( | |
| self, in_features, alpha=1.0, alpha_trainable=True, alpha_logscale=False | |
| ): | |
| """ | |
| Initialization. | |
| INPUT: | |
| - in_features: shape of the input | |
| - alpha - trainable parameter that controls frequency | |
| - beta - trainable parameter that controls magnitude | |
| alpha is initialized to 1 by default, higher values = higher-frequency. | |
| beta is initialized to 1 by default, higher values = higher-magnitude. | |
| alpha will be trained along with the rest of your model. | |
| """ | |
| super(SnakeBeta, self).__init__() | |
| self.in_features = in_features | |
| # initialize alpha | |
| self.alpha_logscale = alpha_logscale | |
| if self.alpha_logscale: # log scale alphas initialized to zeros | |
| self.alpha = nn.Parameter(torch.zeros(in_features) * alpha) | |
| self.beta = nn.Parameter(torch.zeros(in_features) * alpha) | |
| else: # linear scale alphas initialized to ones | |
| self.alpha = nn.Parameter(torch.ones(in_features) * alpha) | |
| self.beta = nn.Parameter(torch.ones(in_features) * alpha) | |
| self.alpha.requires_grad = alpha_trainable | |
| self.beta.requires_grad = alpha_trainable | |
| self.no_div_by_zero = 0.000000001 | |
| def forward(self, x): | |
| """ | |
| Forward pass of the function. | |
| Applies the function to the input elementwise. | |
| SnakeBeta := x + 1/b * sin^2 (xa) | |
| """ | |
| alpha = self.alpha.unsqueeze(0).unsqueeze(-1) # line up with x to [B, C, T] | |
| beta = self.beta.unsqueeze(0).unsqueeze(-1) | |
| if self.alpha_logscale: | |
| alpha = torch.exp(alpha) | |
| beta = torch.exp(beta) | |
| x = x + (1.0 / (beta + self.no_div_by_zero)) * pow(sin(x * alpha), 2) | |
| return x | |
| class ResidualUnit(nn.Module): | |
| def __init__(self, dim: int = 16, dilation: int = 1): | |
| super().__init__() | |
| pad = ((7 - 1) * dilation) // 2 | |
| self.block = nn.Sequential( | |
| Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)), | |
| WNConv1d(dim, dim, kernel_size=7, dilation=dilation, padding=pad), | |
| Activation1d(activation=SnakeBeta(dim, alpha_logscale=True)), | |
| WNConv1d(dim, dim, kernel_size=1), | |
| ) | |
| def forward(self, x): | |
| return x + self.block(x) | |
| class CNNLSTM(nn.Module): | |
| def __init__(self, indim, outdim, head, global_pred=False): | |
| super().__init__() | |
| self.global_pred = global_pred | |
| self.model = nn.Sequential( | |
| ResidualUnit(indim, dilation=1), | |
| ResidualUnit(indim, dilation=2), | |
| ResidualUnit(indim, dilation=3), | |
| Activation1d(activation=SnakeBeta(indim, alpha_logscale=True)), | |
| Rearrange("b c t -> b t c"), | |
| ) | |
| self.heads = nn.ModuleList([nn.Linear(indim, outdim) for i in range(head)]) | |
| def forward(self, x): | |
| # x: [B, C, T] | |
| x = self.model(x) | |
| if self.global_pred: | |
| x = torch.mean(x, dim=1, keepdim=False) | |
| outs = [head(x) for head in self.heads] | |
| return outs | |
| def sequence_mask(length, max_length=None): | |
| if max_length is None: | |
| max_length = length.max() | |
| x = torch.arange(max_length, dtype=length.dtype, device=length.device) | |
| return x.unsqueeze(0) < length.unsqueeze(1) | |
| class MFCC(nn.Module): | |
| def __init__(self, n_mfcc=40, n_mels=80): | |
| super(MFCC, self).__init__() | |
| self.n_mfcc = n_mfcc | |
| self.n_mels = n_mels | |
| self.norm = 'ortho' | |
| dct_mat = audio_F.create_dct(self.n_mfcc, self.n_mels, self.norm) | |
| self.register_buffer('dct_mat', dct_mat) | |
| def forward(self, mel_specgram): | |
| if len(mel_specgram.shape) == 2: | |
| mel_specgram = mel_specgram.unsqueeze(0) | |
| unsqueezed = True | |
| else: | |
| unsqueezed = False | |
| # (channel, n_mels, time).tranpose(...) dot (n_mels, n_mfcc) | |
| # -> (channel, time, n_mfcc).tranpose(...) | |
| mfcc = torch.matmul(mel_specgram.transpose(1, 2), self.dct_mat).transpose(1, 2) | |
| # unpack batch | |
| if unsqueezed: | |
| mfcc = mfcc.squeeze(0) | |
| return mfcc | |
| class FAquantizer(nn.Module): | |
| def __init__(self, in_dim=1024, | |
| n_p_codebooks=1, | |
| n_c_codebooks=2, | |
| n_t_codebooks=2, | |
| n_r_codebooks=3, | |
| codebook_size=1024, | |
| codebook_dim=8, | |
| quantizer_dropout=0.5, | |
| causal=False, | |
| separate_prosody_encoder=False, | |
| timbre_norm=False,): | |
| super(FAquantizer, self).__init__() | |
| conv1d_type = SConv1d# if causal else nn.Conv1d | |
| self.prosody_quantizer = ResidualVectorQuantize( | |
| input_dim=in_dim, | |
| n_codebooks=n_p_codebooks, | |
| codebook_size=codebook_size, | |
| codebook_dim=codebook_dim, | |
| quantizer_dropout=quantizer_dropout, | |
| ) | |
| self.content_quantizer = ResidualVectorQuantize( | |
| input_dim=in_dim, | |
| n_codebooks=n_c_codebooks, | |
| codebook_size=codebook_size, | |
| codebook_dim=codebook_dim, | |
| quantizer_dropout=quantizer_dropout, | |
| ) | |
| if not timbre_norm: | |
| self.timbre_quantizer = ResidualVectorQuantize( | |
| input_dim=in_dim, | |
| n_codebooks=n_t_codebooks, | |
| codebook_size=codebook_size, | |
| codebook_dim=codebook_dim, | |
| quantizer_dropout=quantizer_dropout, | |
| ) | |
| else: | |
| self.timbre_encoder = StyleEncoder(in_dim=80, hidden_dim=512, out_dim=in_dim) | |
| self.timbre_linear = nn.Linear(1024, 1024 * 2) | |
| self.timbre_linear.bias.data[:1024] = 1 | |
| self.timbre_linear.bias.data[1024:] = 0 | |
| self.timbre_norm = nn.LayerNorm(1024, elementwise_affine=False) | |
| self.residual_quantizer = ResidualVectorQuantize( | |
| input_dim=in_dim, | |
| n_codebooks=n_r_codebooks, | |
| codebook_size=codebook_size, | |
| codebook_dim=codebook_dim, | |
| quantizer_dropout=quantizer_dropout, | |
| ) | |
| if separate_prosody_encoder: | |
| self.melspec_linear = conv1d_type(in_channels=20, out_channels=256, kernel_size=1, causal=causal) | |
| self.melspec_encoder = WN(hidden_channels=256, kernel_size=5, dilation_rate=1, n_layers=8, gin_channels=0, p_dropout=0.2, causal=causal) | |
| self.melspec_linear2 = conv1d_type(in_channels=256, out_channels=1024, kernel_size=1, causal=causal) | |
| else: | |
| pass | |
| self.separate_prosody_encoder = separate_prosody_encoder | |
| self.prob_random_mask_residual = 0.75 | |
| SPECT_PARAMS = { | |
| "n_fft": 2048, | |
| "win_length": 1200, | |
| "hop_length": 300, | |
| } | |
| MEL_PARAMS = { | |
| "n_mels": 80, | |
| } | |
| self.to_mel = torchaudio.transforms.MelSpectrogram( | |
| n_mels=MEL_PARAMS["n_mels"], sample_rate=24000, **SPECT_PARAMS | |
| ) | |
| self.mel_mean, self.mel_std = -4, 4 | |
| self.frame_rate = 24000 / 300 | |
| self.hop_length = 300 | |
| self.is_timbre_norm = timbre_norm | |
| if timbre_norm: | |
| self.forward = self.forward_v2 | |
| def preprocess(self, wave_tensor, n_bins=20): | |
| mel_tensor = self.to_mel(wave_tensor.squeeze(1)) | |
| mel_tensor = (torch.log(1e-5 + mel_tensor) - self.mel_mean) / self.mel_std | |
| return mel_tensor[:, :n_bins, :int(wave_tensor.size(-1) / self.hop_length)] | |
| def decode(self, codes): | |
| code_c, code_p, code_t = codes.split([1, 1, 2], dim=1) | |
| z_c = self.content_quantizer.from_codes(code_c)[0] | |
| z_p = self.prosody_quantizer.from_codes(code_p)[0] | |
| z_t = self.timbre_quantizer.from_codes(code_t)[0] | |
| z = z_c + z_p + z_t | |
| return z, [z_c, z_p, z_t] | |
| def encode(self, x, wave_segments, n_c=1): | |
| outs = 0 | |
| if self.separate_prosody_encoder: | |
| prosody_feature = self.preprocess(wave_segments) | |
| f0_input = prosody_feature # (B, T, 20) | |
| f0_input = self.melspec_linear(f0_input) | |
| f0_input = self.melspec_encoder(f0_input, torch.ones(f0_input.shape[0], 1, f0_input.shape[2]).to( | |
| f0_input.device).bool()) | |
| f0_input = self.melspec_linear2(f0_input) | |
| common_min_size = min(f0_input.size(2), x.size(2)) | |
| f0_input = f0_input[:, :, :common_min_size] | |
| x = x[:, :, :common_min_size] | |
| z_p, codes_p, latents_p, commitment_loss_p, codebook_loss_p = self.prosody_quantizer( | |
| f0_input, 1 | |
| ) | |
| outs += z_p.detach() | |
| else: | |
| z_p, codes_p, latents_p, commitment_loss_p, codebook_loss_p = self.prosody_quantizer( | |
| x, 1 | |
| ) | |
| outs += z_p.detach() | |
| z_c, codes_c, latents_c, commitment_loss_c, codebook_loss_c = self.content_quantizer( | |
| x, n_c | |
| ) | |
| outs += z_c.detach() | |
| timbre_residual_feature = x - z_p.detach() - z_c.detach() | |
| z_t, codes_t, latents_t, commitment_loss_t, codebook_loss_t = self.timbre_quantizer( | |
| timbre_residual_feature, 2 | |
| ) | |
| outs += z_t # we should not detach timbre | |
| residual_feature = timbre_residual_feature - z_t | |
| z_r, codes_r, latents_r, commitment_loss_r, codebook_loss_r = self.residual_quantizer( | |
| residual_feature, 3 | |
| ) | |
| return [codes_c, codes_p, codes_t, codes_r], [z_c, z_p, z_t, z_r] | |
| def forward(self, x, wave_segments, noise_added_flags, recon_noisy_flags, n_c=2, n_t=2): | |
| # timbre = self.timbre_encoder(mels, sequence_mask(mel_lens, mels.size(-1)).unsqueeze(1)) | |
| # timbre = self.timbre_encoder(mel_segments, torch.ones(mel_segments.size(0), 1, mel_segments.size(2)).bool().to(mel_segments.device)) | |
| outs = 0 | |
| if self.separate_prosody_encoder: | |
| prosody_feature = self.preprocess(wave_segments) | |
| f0_input = prosody_feature # (B, T, 20) | |
| f0_input = self.melspec_linear(f0_input) | |
| f0_input = self.melspec_encoder(f0_input, torch.ones(f0_input.shape[0], 1, f0_input.shape[2]).to(f0_input.device).bool()) | |
| f0_input = self.melspec_linear2(f0_input) | |
| common_min_size = min(f0_input.size(2), x.size(2)) | |
| f0_input = f0_input[:, :, :common_min_size] | |
| x = x[:, :, :common_min_size] | |
| z_p, codes_p, latents_p, commitment_loss_p, codebook_loss_p = self.prosody_quantizer( | |
| f0_input, 1 | |
| ) | |
| outs += z_p.detach() | |
| else: | |
| z_p, codes_p, latents_p, commitment_loss_p, codebook_loss_p = self.prosody_quantizer( | |
| x, 1 | |
| ) | |
| outs += z_p.detach() | |
| z_c, codes_c, latents_c, commitment_loss_c, codebook_loss_c = self.content_quantizer( | |
| x, n_c | |
| ) | |
| outs += z_c.detach() | |
| timbre_residual_feature = x - z_p.detach() - z_c.detach() | |
| z_t, codes_t, latents_t, commitment_loss_t, codebook_loss_t = self.timbre_quantizer( | |
| timbre_residual_feature, n_t | |
| ) | |
| outs += z_t # we should not detach timbre | |
| residual_feature = timbre_residual_feature - z_t | |
| z_r, codes_r, latents_r, commitment_loss_r, codebook_loss_r = self.residual_quantizer( | |
| residual_feature, 3 | |
| ) | |
| bsz = z_r.shape[0] | |
| res_mask = np.random.choice( | |
| [0, 1], | |
| size=bsz, | |
| p=[ | |
| self.prob_random_mask_residual, | |
| 1 - self.prob_random_mask_residual, | |
| ], | |
| ) | |
| res_mask = ( | |
| torch.from_numpy(res_mask).unsqueeze(1).unsqueeze(1) | |
| ) # (B, 1, 1) | |
| res_mask = res_mask.to( | |
| device=z_r.device, dtype=z_r.dtype | |
| ) | |
| noise_must_on = noise_added_flags * recon_noisy_flags | |
| noise_must_off = noise_added_flags * (~recon_noisy_flags) | |
| res_mask[noise_must_on] = 1 | |
| res_mask[noise_must_off] = 0 | |
| outs += z_r * res_mask | |
| quantized = [z_p, z_c, z_t, z_r] | |
| commitment_losses = commitment_loss_p + commitment_loss_c + commitment_loss_t + commitment_loss_r | |
| codebook_losses = codebook_loss_p + codebook_loss_c + codebook_loss_t + codebook_loss_r | |
| return outs, quantized, commitment_losses, codebook_losses | |
| def forward_v2(self, x, wave_segments, n_c=1, n_t=2, full_waves=None, wave_lens=None, return_codes=False): | |
| # timbre = self.timbre_encoder(x, sequence_mask(mel_lens, mels.size(-1)).unsqueeze(1)) | |
| if full_waves is None: | |
| mel = self.preprocess(wave_segments, n_bins=80) | |
| timbre = self.timbre_encoder(mel, torch.ones(mel.size(0), 1, mel.size(2)).bool().to(mel.device)) | |
| else: | |
| mel = self.preprocess(full_waves, n_bins=80) | |
| timbre = self.timbre_encoder(mel, sequence_mask(wave_lens // self.hop_length, mel.size(-1)).unsqueeze(1)) | |
| outs = 0 | |
| if self.separate_prosody_encoder: | |
| prosody_feature = self.preprocess(wave_segments) | |
| f0_input = prosody_feature # (B, T, 20) | |
| f0_input = self.melspec_linear(f0_input) | |
| f0_input = self.melspec_encoder(f0_input, torch.ones(f0_input.shape[0], 1, f0_input.shape[2]).to( | |
| f0_input.device).bool()) | |
| f0_input = self.melspec_linear2(f0_input) | |
| common_min_size = min(f0_input.size(2), x.size(2)) | |
| f0_input = f0_input[:, :, :common_min_size] | |
| x = x[:, :, :common_min_size] | |
| z_p, codes_p, latents_p, commitment_loss_p, codebook_loss_p = self.prosody_quantizer( | |
| f0_input, 1 | |
| ) | |
| outs += z_p.detach() | |
| else: | |
| z_p, codes_p, latents_p, commitment_loss_p, codebook_loss_p = self.prosody_quantizer( | |
| x, 1 | |
| ) | |
| outs += z_p.detach() | |
| z_c, codes_c, latents_c, commitment_loss_c, codebook_loss_c = self.content_quantizer( | |
| x, n_c | |
| ) | |
| outs += z_c.detach() | |
| residual_feature = x - z_p.detach() - z_c.detach() | |
| z_r, codes_r, latents_r, commitment_loss_r, codebook_loss_r = self.residual_quantizer( | |
| residual_feature, 3 | |
| ) | |
| bsz = z_r.shape[0] | |
| res_mask = np.random.choice( | |
| [0, 1], | |
| size=bsz, | |
| p=[ | |
| self.prob_random_mask_residual, | |
| 1 - self.prob_random_mask_residual, | |
| ], | |
| ) | |
| res_mask = ( | |
| torch.from_numpy(res_mask).unsqueeze(1).unsqueeze(1) | |
| ) # (B, 1, 1) | |
| res_mask = res_mask.to( | |
| device=z_r.device, dtype=z_r.dtype | |
| ) | |
| if not self.training: | |
| res_mask = torch.ones_like(res_mask) | |
| outs += z_r * res_mask | |
| quantized = [z_p, z_c, z_r] | |
| codes = [codes_p, codes_c, codes_r] | |
| commitment_losses = commitment_loss_p + commitment_loss_c + commitment_loss_r | |
| codebook_losses = codebook_loss_p + codebook_loss_c + codebook_loss_r | |
| style = self.timbre_linear(timbre).unsqueeze(2) # (B, 2d, 1) | |
| gamma, beta = style.chunk(2, 1) # (B, d, 1) | |
| outs = outs.transpose(1, 2) | |
| outs = self.timbre_norm(outs) | |
| outs = outs.transpose(1, 2) | |
| outs = outs * gamma + beta | |
| if return_codes: | |
| return outs, quantized, commitment_losses, codebook_losses, timbre, codes | |
| else: | |
| return outs, quantized, commitment_losses, codebook_losses, timbre | |
| class FApredictors(nn.Module): | |
| def __init__(self, | |
| in_dim=1024, | |
| use_gr_content_f0=False, | |
| use_gr_prosody_phone=False, | |
| use_gr_residual_f0=False, | |
| use_gr_residual_phone=False, | |
| use_gr_timbre_content=True, | |
| use_gr_timbre_prosody=True, | |
| use_gr_x_timbre=False, | |
| norm_f0=True, | |
| timbre_norm=False, | |
| use_gr_content_global_f0=False, | |
| ): | |
| super(FApredictors, self).__init__() | |
| self.f0_predictor = CNNLSTM(in_dim, 1, 2) | |
| self.phone_predictor = CNNLSTM(in_dim, 1024, 1) | |
| if timbre_norm: | |
| self.timbre_predictor = nn.Linear(in_dim, 20000) | |
| else: | |
| self.timbre_predictor = CNNLSTM(in_dim, 20000, 1, global_pred=True) | |
| self.use_gr_content_f0 = use_gr_content_f0 | |
| self.use_gr_prosody_phone = use_gr_prosody_phone | |
| self.use_gr_residual_f0 = use_gr_residual_f0 | |
| self.use_gr_residual_phone = use_gr_residual_phone | |
| self.use_gr_timbre_content = use_gr_timbre_content | |
| self.use_gr_timbre_prosody = use_gr_timbre_prosody | |
| self.use_gr_x_timbre = use_gr_x_timbre | |
| self.rev_f0_predictor = nn.Sequential( | |
| GradientReversal(alpha=1.0), CNNLSTM(in_dim, 1, 2) | |
| ) | |
| self.rev_content_predictor = nn.Sequential( | |
| GradientReversal(alpha=1.0), CNNLSTM(in_dim, 1024, 1) | |
| ) | |
| self.rev_timbre_predictor = nn.Sequential( | |
| GradientReversal(alpha=1.0), CNNLSTM(in_dim, 20000, 1, global_pred=True) | |
| ) | |
| self.norm_f0 = norm_f0 | |
| self.timbre_norm = timbre_norm | |
| if timbre_norm: | |
| self.forward = self.forward_v2 | |
| self.global_f0_predictor = nn.Linear(in_dim, 1) | |
| self.use_gr_content_global_f0 = use_gr_content_global_f0 | |
| if use_gr_content_global_f0: | |
| self.rev_global_f0_predictor = nn.Sequential( | |
| GradientReversal(alpha=1.0), CNNLSTM(in_dim, 1, 1, global_pred=True) | |
| ) | |
| def forward(self, quantized): | |
| prosody_latent = quantized[0] | |
| content_latent = quantized[1] | |
| timbre_latent = quantized[2] | |
| residual_latent = quantized[3] | |
| content_pred = self.phone_predictor(content_latent)[0] | |
| if self.norm_f0: | |
| spk_pred = self.timbre_predictor(timbre_latent)[0] | |
| f0_pred, uv_pred = self.f0_predictor(prosody_latent) | |
| else: | |
| spk_pred = self.timbre_predictor(timbre_latent + prosody_latent)[0] | |
| f0_pred, uv_pred = self.f0_predictor(prosody_latent + timbre_latent) | |
| prosody_rev_latent = torch.zeros_like(quantized[0]) | |
| if self.use_gr_content_f0: | |
| prosody_rev_latent += quantized[1] | |
| if self.use_gr_timbre_prosody: | |
| prosody_rev_latent += quantized[2] | |
| if self.use_gr_residual_f0: | |
| prosody_rev_latent += quantized[3] | |
| rev_f0_pred, rev_uv_pred = self.rev_f0_predictor(prosody_rev_latent) | |
| content_rev_latent = torch.zeros_like(quantized[1]) | |
| if self.use_gr_prosody_phone: | |
| content_rev_latent += quantized[0] | |
| if self.use_gr_timbre_content: | |
| content_rev_latent += quantized[2] | |
| if self.use_gr_residual_phone: | |
| content_rev_latent += quantized[3] | |
| rev_content_pred = self.rev_content_predictor(content_rev_latent)[0] | |
| if self.norm_f0: | |
| timbre_rev_latent = quantized[0] + quantized[1] + quantized[3] | |
| else: | |
| timbre_rev_latent = quantized[1] + quantized[3] | |
| if self.use_gr_x_timbre: | |
| x_spk_pred = self.rev_timbre_predictor(timbre_rev_latent)[0] | |
| else: | |
| x_spk_pred = None | |
| preds = { | |
| 'f0': f0_pred, | |
| 'uv': uv_pred, | |
| 'content': content_pred, | |
| 'timbre': spk_pred, | |
| } | |
| rev_preds = { | |
| 'rev_f0': rev_f0_pred, | |
| 'rev_uv': rev_uv_pred, | |
| 'rev_content': rev_content_pred, | |
| 'x_timbre': x_spk_pred, | |
| } | |
| return preds, rev_preds | |
| def forward_v2(self, quantized, timbre): | |
| assert self.use_gr_content_global_f0 | |
| prosody_latent = quantized[0] | |
| content_latent = quantized[1] | |
| residual_latent = quantized[2] | |
| content_pred = self.phone_predictor(content_latent)[0] | |
| # spk_pred = self.timbre_predictor(timbre)[0] | |
| f0_pred, uv_pred = self.f0_predictor(prosody_latent) | |
| prosody_rev_latent = torch.zeros_like(prosody_latent) | |
| if self.use_gr_content_f0: | |
| prosody_rev_latent += content_latent | |
| if self.use_gr_residual_f0: | |
| prosody_rev_latent += residual_latent | |
| rev_f0_pred, rev_uv_pred = self.rev_f0_predictor(prosody_rev_latent) | |
| content_rev_latent = torch.zeros_like(content_latent) | |
| if self.use_gr_prosody_phone: | |
| content_rev_latent += prosody_latent | |
| if self.use_gr_residual_phone: | |
| content_rev_latent += residual_latent | |
| rev_content_pred = self.rev_content_predictor(content_rev_latent)[0] | |
| timbre_rev_latent = prosody_latent + content_latent + residual_latent | |
| if self.use_gr_x_timbre: | |
| x_spk_pred = self.rev_timbre_predictor(timbre_rev_latent)[0] | |
| else: | |
| x_spk_pred = None | |
| global_f0_pred = self.global_f0_predictor(timbre) | |
| if self.use_gr_content_global_f0: | |
| rev_global_f0_pred = self.rev_global_f0_predictor(content_latent + prosody_latent + residual_latent)[0] | |
| preds = { | |
| 'f0': f0_pred, | |
| 'uv': uv_pred, | |
| 'content': content_pred, | |
| 'timbre': None, | |
| 'global_f0': global_f0_pred, | |
| } | |
| rev_preds = { | |
| 'rev_f0': rev_f0_pred, | |
| 'rev_uv': rev_uv_pred, | |
| 'rev_content': rev_content_pred, | |
| 'x_timbre': x_spk_pred, | |
| 'rev_global_f0': rev_global_f0_pred, | |
| } | |
| return preds, rev_preds | |