import gradio as gr import requests from gtts import gTTS # Import gTTS for Text-to-Speech import tempfile # Function to convert text to speech and transcribe def text_to_speech_transcribe(text): # Convert text to speech tts = gTTS(text, lang='en') with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp_audio: audio_path = tmp_audio.name tts.save(audio_path) # Read audio file in binary mode with open(audio_path, "rb") as audio_file: audio_data = audio_file.read() # Groq API endpoint for audio transcription groq_api_endpoint = "https://api.groq.com/openai/v1/audio/transcriptions" # Replace 'YOUR_GROQ_API_KEY' with your actual Groq API key headers = { "Authorization": "Bearer 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", # Replace with your Groq API key } # Prepare the files and data for the request files = { 'file': ('audio.wav', audio_data, 'audio/wav'), } data = { 'model': 'whisper-large-v3-turbo', # Specify the model to use 'response_format': 'json', # Desired response format 'language': 'en', # Language of the audio } # Send audio to Groq API response = requests.post(groq_api_endpoint, headers=headers, files=files, data=data) # Parse response if response.status_code == 200: result = response.json() return result.get("text", "No transcription available.") else: return f"Error: {response.status_code}, {response.text}" # Gradio interface iface = gr.Interface( fn=text_to_speech_transcribe, inputs="text", # Input text to be converted to speech outputs="text", title="Text to Speech and Transcription", description="Enter text to convert it to audio, then transcribe it with the Groq API." ) iface.launch()