Spaces:
Runtime error
Runtime error
File size: 1,405 Bytes
dca6e24 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import base64
import json
from io import BytesIO
import pandas as pd
from PIL import Image
import gradio as gr
import requests
def ocr(image):
image = Image.open(image)
img_buffer = BytesIO()
image.save(img_buffer, format=image.format)
byte_data = img_buffer.getvalue()
base64_bytes = base64.b64encode(byte_data) # bytes
base64_str = base64_bytes.decode()
url = "https://www.modelscope.cn/api/v1/studio/damo/ofa_ocr_pipeline/gradio/api/predict/"
payload = json.dumps({
"data": [f"data:image/jpeg;base64,{base64_str}"],
"dataType": ["image"]
})
headers = {
'Content-Type': 'application/json'
}
response = requests.request("POST", url, headers=headers, data=payload)
jobj = json.loads(response.text)
out_img_base64 = jobj['data'][0].replace('data:image/png;base64,','')
out_img = Image.open(BytesIO(base64.urlsafe_b64decode(out_img_base64)))
ocr_result = jobj['data'][1]['data']
result = pd.DataFrame(ocr_result, columns=['Box ID', 'Text'])
return out_img, result
title = "图片识别文字"
io = gr.Interface(fn=ocr, inputs=gr.inputs.Image(type='filepath', label='Image'),
outputs=[gr.outputs.Image(type='pil', label='Image'),
gr.outputs.Dataframe(headers=['Box ID', 'Text'], type='pandas', label='OCR Results')],
title=title)
io.launch() |