File size: 7,329 Bytes
57746f1
 
 
 
 
 
33ab518
57746f1
 
d0cb6f1
57746f1
33ab518
57746f1
 
 
 
 
 
33ab518
57746f1
 
 
d0cb6f1
 
 
 
 
2c2ef94
d0cb6f1
 
2c2ef94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57746f1
 
 
 
d0cb6f1
57746f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0cb6f1
57746f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0cb6f1
 
57746f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0cb6f1
57746f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os, subprocess, shlex, sys, gc
import time
import torch
import numpy as np
import shutil
import argparse
import gradio as gr
import uuid
import spaces
from huggingface_hub import hf_hub_download
#

subprocess.run(shlex.split("pip install wheel/torch_scatter-2.1.2+pt21cu121-cp310-cp310-linux_x86_64.whl"))
subprocess.run(shlex.split("pip install wheel/flash_attn-2.6.3+cu123torch2.1cxx11abiFALSE-cp310-cp310-linux_x86_64.whl"))
subprocess.run(shlex.split("pip install wheel/diff_gaussian_rasterization-0.0.0-cp310-cp310-linux_x86_64.whl"))
subprocess.run(shlex.split("pip install wheel/simple_knn-0.0.0-cp310-cp310-linux_x86_64.whl"))
subprocess.run(shlex.split("pip install wheel/curope-0.0.0-cp310-cp310-linux_x86_64.whl"))
subprocess.run(shlex.split("pip install wheel/pointops-1.0-cp310-cp310-linux_x86_64.whl"))

from src.utils.visualization_utils import render_video_from_file
from src.model import LSM_MASt3R

# Assuming your model has been uploaded to HuggingFace
model_repo = "kairunwen/LSM"  # Replace with the actual repository name
model_filename = "checkpoint-40.pth"  # Model filename

# Download model from HuggingFace
# model_path = hf_hub_download(repo_id=model_repo, filename=model_filename)

# Load model
# model = LSM_MASt3R.from_pretrained(model_path)
# model = model.eval()


try:
    # 下载模型文件
    model_path = hf_hub_download(repo_id=model_repo, filename=model_filename)
    print(f"模型文件已下载到: {model_path}")

    # 加载模型
    model = LSM_MASt3R.from_pretrained(model_path, device='cuda')
    model = model.eval()
    print("模型加载成功并设置为评估模式!")

except FileNotFoundError:
    print(f"错误: 无法找到文件 {model_filename},请检查仓库 {model_repo} 是否正确上传文件。")
except KeyError as e:
    print(f"错误: 检查点文件格式不正确,缺少键 {e}。请确认 checkpoint-40.pth 包含 'args' 和 'model'。")
except Exception as e:
    print(f"发生未知错误: {e}")




@spaces.GPU(duration=80)
def process(inputfiles, input_path=None):
    # Create a unique cache directory
    cache_dir = os.path.join('outputs', str(uuid.uuid4()))
    os.makedirs(cache_dir, exist_ok=True)

    if input_path is not None:
        imgs_path = './assets/examples/' + input_path
        imgs_names = sorted(os.listdir(imgs_path))

        inputfiles = []
        for imgs_name in imgs_names:
            file_path = os.path.join(imgs_path, imgs_name)
            print(file_path)
            inputfiles.append(file_path)
        print(inputfiles)

    filelist = inputfiles
    if len(filelist) != 2:
        gr.Warning("Please select 2 images")
        shutil.rmtree(cache_dir)  # Clean up cache directory
        return None, None, None, None, None, None
    
    ply_path = os.path.join(cache_dir, 'gaussians.ply')
    # render_video_from_file(filelist, model, output_path=cache_dir, resolution=224)
    render_video_from_file(filelist, model, output_path=cache_dir, resolution=512)

    rgb_video_path = os.path.join(cache_dir, 'moved', 'output_images_video.mp4')
    depth_video_path = os.path.join(cache_dir, 'moved', 'output_depth_video.mp4')
    feature_video_path = os.path.join(cache_dir, 'moved', 'output_fmap_video.mp4')

    return filelist, rgb_video_path, depth_video_path, feature_video_path, ply_path, ply_path


_TITLE = 'LargeSpatialModel'
_DESCRIPTION = '''
<div style="display: flex; justify-content: center; align-items: center;">
    <div style="width: 100%; text-align: center; font-size: 30px;">
        <strong>Large Spatial Model: End-to-end Unposed Images to Semantic 3D</strong>
    </div>
</div> 
<p></p>

<div align="center">
    <a style="display:inline-block" href="https://arxiv.org/abs/2410.18956"><img src="https://img.shields.io/badge/ArXiv-2410.18956-b31b1b?logo=arxiv" alt='arxiv'></a>&nbsp;
    <a style="display:inline-block" href="https://largespatialmodel.github.io/"><img src='https://img.shields.io/badge/Project_Page-ff7512?logo=lightning'></a>&nbsp;
    <a title="Social" href="https://x.com/WayneINR" target="_blank" rel="noopener noreferrer" style="display: inline-block;">
        <img src="https://www.obukhov.ai/img/badges/badge-social.svg" alt="social">
    </a>
    
</div>
<p></p>

* Official demo of: [LargeSpatialModel: End-to-end Unposed Images to Semantic 3D](https://largespatialmodel.github.io/).
* Examples for direct viewing: you can simply click the examples (in the bottom of the page), to quickly view the results on representative data.
'''

block = gr.Blocks().queue()
with block:
    gr.Markdown(_DESCRIPTION)
    
    with gr.Column(variant="panel"):
        with gr.Tab("Input"):
            with gr.Row():
                with gr.Column(scale=1):
                    inputfiles = gr.File(file_count="multiple", label="Load Images")
                    input_path = gr.Textbox(visible=False, label="example_path")
                with gr.Column(scale=1):
                    image_gallery = gr.Gallery(
                        label="Gallery",
                        show_label=False,
                        elem_id="gallery",
                        columns=[2],
                        height=300,  # Fixed height
                        object_fit="cover"  # Ensure images fill the space
                    )
        
        button_gen = gr.Button("Start Reconstruction", elem_id="button_gen")
        processing_msg = gr.Markdown("Processing...", visible=False, elem_id="processing_msg")


    with gr.Column(variant="panel"):
        with gr.Tab("Output"):
            with gr.Row():
                with gr.Column(scale=1):
                    rgb_video = gr.Video(label="RGB Video", autoplay=True)
                with gr.Column(scale=1):
                    feature_video = gr.Video(label="Feature Video", autoplay=True)
                with gr.Column(scale=1):
                    depth_video = gr.Video(label="Depth Video", autoplay=True)
            with gr.Row():
                with gr.Group():
                    output_model = gr.Model3D(
                        label="3D Dense Model under Gaussian Splats Formats, need more time to visualize",
                        interactive=False,
                        camera_position=[0.5, 0.5, 1],  # Slight offset for better model viewing
                        height=600,
                    )
                    gr.Markdown(
                        """
                        <div class="model-description">
                           &nbsp;&nbsp;Use the left mouse button to rotate, the scroll wheel to zoom, and the right mouse button to move.
                        </div>
                        """
                    )            
            with gr.Row():
                output_file = gr.File(label="PLY File")

    examples = gr.Examples(
        examples=[
            "sofa",
        ],
        inputs=[input_path],
        outputs=[image_gallery, rgb_video, depth_video, feature_video, output_model, output_file],
        fn=lambda x: process(inputfiles=None, input_path=x),
        cache_examples=True,
        label="Examples"
    )


    button_gen.click(
        process,
        inputs=[inputfiles], 
        outputs=[image_gallery, rgb_video, depth_video, feature_video, output_model, output_file],
    )

block.launch(server_name="0.0.0.0", share=False)