File size: 27,260 Bytes
57746f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
"""
Evaluate Hook

Author: Xiaoyang Wu ([email protected])
Please cite our work if the code is helpful to you.
"""

import numpy as np
import torch
import torch.distributed as dist
import pointops
from uuid import uuid4

import pointcept.utils.comm as comm
from pointcept.utils.misc import intersection_and_union_gpu

from .default import HookBase
from .builder import HOOKS


@HOOKS.register_module()
class ClsEvaluator(HookBase):
    def after_epoch(self):
        if self.trainer.cfg.evaluate:
            self.eval()

    def eval(self):
        self.trainer.logger.info(">>>>>>>>>>>>>>>> Start Evaluation >>>>>>>>>>>>>>>>")
        self.trainer.model.eval()
        for i, input_dict in enumerate(self.trainer.val_loader):
            for key in input_dict.keys():
                if isinstance(input_dict[key], torch.Tensor):
                    input_dict[key] = input_dict[key].cuda(non_blocking=True)
            with torch.no_grad():
                output_dict = self.trainer.model(input_dict)
            output = output_dict["cls_logits"]
            loss = output_dict["loss"]
            pred = output.max(1)[1]
            label = input_dict["category"]
            intersection, union, target = intersection_and_union_gpu(
                pred,
                label,
                self.trainer.cfg.data.num_classes,
                self.trainer.cfg.data.ignore_index,
            )
            if comm.get_world_size() > 1:
                dist.all_reduce(intersection), dist.all_reduce(union), dist.all_reduce(
                    target
                )
            intersection, union, target = (
                intersection.cpu().numpy(),
                union.cpu().numpy(),
                target.cpu().numpy(),
            )
            # Here there is no need to sync since sync happened in dist.all_reduce
            self.trainer.storage.put_scalar("val_intersection", intersection)
            self.trainer.storage.put_scalar("val_union", union)
            self.trainer.storage.put_scalar("val_target", target)
            self.trainer.storage.put_scalar("val_loss", loss.item())
            self.trainer.logger.info(
                "Test: [{iter}/{max_iter}] "
                "Loss {loss:.4f} ".format(
                    iter=i + 1, max_iter=len(self.trainer.val_loader), loss=loss.item()
                )
            )
        loss_avg = self.trainer.storage.history("val_loss").avg
        intersection = self.trainer.storage.history("val_intersection").total
        union = self.trainer.storage.history("val_union").total
        target = self.trainer.storage.history("val_target").total
        iou_class = intersection / (union + 1e-10)
        acc_class = intersection / (target + 1e-10)
        m_iou = np.mean(iou_class)
        m_acc = np.mean(acc_class)
        all_acc = sum(intersection) / (sum(target) + 1e-10)
        self.trainer.logger.info(
            "Val result: mIoU/mAcc/allAcc {:.4f}/{:.4f}/{:.4f}.".format(
                m_iou, m_acc, all_acc
            )
        )
        for i in range(self.trainer.cfg.data.num_classes):
            self.trainer.logger.info(
                "Class_{idx}-{name} Result: iou/accuracy {iou:.4f}/{accuracy:.4f}".format(
                    idx=i,
                    name=self.trainer.cfg.data.names[i],
                    iou=iou_class[i],
                    accuracy=acc_class[i],
                )
            )
        current_epoch = self.trainer.epoch + 1
        if self.trainer.writer is not None:
            self.trainer.writer.add_scalar("val/loss", loss_avg, current_epoch)
            self.trainer.writer.add_scalar("val/mIoU", m_iou, current_epoch)
            self.trainer.writer.add_scalar("val/mAcc", m_acc, current_epoch)
            self.trainer.writer.add_scalar("val/allAcc", all_acc, current_epoch)
        self.trainer.logger.info("<<<<<<<<<<<<<<<<< End Evaluation <<<<<<<<<<<<<<<<<")
        self.trainer.comm_info["current_metric_value"] = all_acc  # save for saver
        self.trainer.comm_info["current_metric_name"] = "allAcc"  # save for saver

    def after_train(self):
        self.trainer.logger.info(
            "Best {}: {:.4f}".format("allAcc", self.trainer.best_metric_value)
        )


@HOOKS.register_module()
class SemSegEvaluator(HookBase):
    def after_epoch(self):
        if self.trainer.cfg.evaluate:
            self.eval()

    def eval(self):
        self.trainer.logger.info(">>>>>>>>>>>>>>>> Start Evaluation >>>>>>>>>>>>>>>>")
        self.trainer.model.eval()
        for i, input_dict in enumerate(self.trainer.val_loader):
            for key in input_dict.keys():
                if isinstance(input_dict[key], torch.Tensor):
                    input_dict[key] = input_dict[key].cuda(non_blocking=True)
            with torch.no_grad():
                output_dict = self.trainer.model(input_dict)
            output = output_dict["seg_logits"]
            loss = output_dict["loss"]
            pred = output.max(1)[1]
            segment = input_dict["segment"]
            if "origin_coord" in input_dict.keys():
                idx, _ = pointops.knn_query(
                    1,
                    input_dict["coord"].float(),
                    input_dict["offset"].int(),
                    input_dict["origin_coord"].float(),
                    input_dict["origin_offset"].int(),
                )
                pred = pred[idx.flatten().long()]
                segment = input_dict["origin_segment"]
            intersection, union, target = intersection_and_union_gpu(
                pred,
                segment,
                self.trainer.cfg.data.num_classes,
                self.trainer.cfg.data.ignore_index,
            )
            if comm.get_world_size() > 1:
                dist.all_reduce(intersection), dist.all_reduce(union), dist.all_reduce(
                    target
                )
            intersection, union, target = (
                intersection.cpu().numpy(),
                union.cpu().numpy(),
                target.cpu().numpy(),
            )
            # Here there is no need to sync since sync happened in dist.all_reduce
            self.trainer.storage.put_scalar("val_intersection", intersection)
            self.trainer.storage.put_scalar("val_union", union)
            self.trainer.storage.put_scalar("val_target", target)
            self.trainer.storage.put_scalar("val_loss", loss.item())
            info = "Test: [{iter}/{max_iter}] ".format(
                iter=i + 1, max_iter=len(self.trainer.val_loader)
            )
            if "origin_coord" in input_dict.keys():
                info = "Interp. " + info
            self.trainer.logger.info(
                info
                + "Loss {loss:.4f} ".format(
                    iter=i + 1, max_iter=len(self.trainer.val_loader), loss=loss.item()
                )
            )
        loss_avg = self.trainer.storage.history("val_loss").avg
        intersection = self.trainer.storage.history("val_intersection").total
        union = self.trainer.storage.history("val_union").total
        target = self.trainer.storage.history("val_target").total
        iou_class = intersection / (union + 1e-10)
        acc_class = intersection / (target + 1e-10)
        m_iou = np.mean(iou_class)
        m_acc = np.mean(acc_class)
        all_acc = sum(intersection) / (sum(target) + 1e-10)
        self.trainer.logger.info(
            "Val result: mIoU/mAcc/allAcc {:.4f}/{:.4f}/{:.4f}.".format(
                m_iou, m_acc, all_acc
            )
        )
        for i in range(self.trainer.cfg.data.num_classes):
            self.trainer.logger.info(
                "Class_{idx}-{name} Result: iou/accuracy {iou:.4f}/{accuracy:.4f}".format(
                    idx=i,
                    name=self.trainer.cfg.data.names[i],
                    iou=iou_class[i],
                    accuracy=acc_class[i],
                )
            )
        current_epoch = self.trainer.epoch + 1
        if self.trainer.writer is not None:
            self.trainer.writer.add_scalar("val/loss", loss_avg, current_epoch)
            self.trainer.writer.add_scalar("val/mIoU", m_iou, current_epoch)
            self.trainer.writer.add_scalar("val/mAcc", m_acc, current_epoch)
            self.trainer.writer.add_scalar("val/allAcc", all_acc, current_epoch)
        self.trainer.logger.info("<<<<<<<<<<<<<<<<< End Evaluation <<<<<<<<<<<<<<<<<")
        self.trainer.comm_info["current_metric_value"] = m_iou  # save for saver
        self.trainer.comm_info["current_metric_name"] = "mIoU"  # save for saver

    def after_train(self):
        self.trainer.logger.info(
            "Best {}: {:.4f}".format("mIoU", self.trainer.best_metric_value)
        )


@HOOKS.register_module()
class InsSegEvaluator(HookBase):
    def __init__(self, segment_ignore_index=(-1,), instance_ignore_index=-1):
        self.segment_ignore_index = segment_ignore_index
        self.instance_ignore_index = instance_ignore_index

        self.valid_class_names = None  # update in before train
        self.overlaps = np.append(np.arange(0.5, 0.95, 0.05), 0.25)
        self.min_region_sizes = 100
        self.distance_threshes = float("inf")
        self.distance_confs = -float("inf")

    def before_train(self):
        self.valid_class_names = [
            self.trainer.cfg.data.names[i]
            for i in range(self.trainer.cfg.data.num_classes)
            if i not in self.segment_ignore_index
        ]

    def after_epoch(self):
        if self.trainer.cfg.evaluate:
            self.eval()

    def associate_instances(self, pred, segment, instance):
        segment = segment.cpu().numpy()
        instance = instance.cpu().numpy()
        void_mask = np.in1d(segment, self.segment_ignore_index)

        assert (
            pred["pred_classes"].shape[0]
            == pred["pred_scores"].shape[0]
            == pred["pred_masks"].shape[0]
        )
        assert pred["pred_masks"].shape[1] == segment.shape[0] == instance.shape[0]
        # get gt instances
        gt_instances = dict()
        for i in range(self.trainer.cfg.data.num_classes):
            if i not in self.segment_ignore_index:
                gt_instances[self.trainer.cfg.data.names[i]] = []
        instance_ids, idx, counts = np.unique(
            instance, return_index=True, return_counts=True
        )
        segment_ids = segment[idx]
        for i in range(len(instance_ids)):
            if instance_ids[i] == self.instance_ignore_index:
                continue
            if segment_ids[i] in self.segment_ignore_index:
                continue
            gt_inst = dict()
            gt_inst["instance_id"] = instance_ids[i]
            gt_inst["segment_id"] = segment_ids[i]
            gt_inst["dist_conf"] = 0.0
            gt_inst["med_dist"] = -1.0
            gt_inst["vert_count"] = counts[i]
            gt_inst["matched_pred"] = []
            gt_instances[self.trainer.cfg.data.names[segment_ids[i]]].append(gt_inst)

        # get pred instances and associate with gt
        pred_instances = dict()
        for i in range(self.trainer.cfg.data.num_classes):
            if i not in self.segment_ignore_index:
                pred_instances[self.trainer.cfg.data.names[i]] = []
        instance_id = 0
        for i in range(len(pred["pred_classes"])):
            if pred["pred_classes"][i] in self.segment_ignore_index:
                continue
            pred_inst = dict()
            pred_inst["uuid"] = uuid4()
            pred_inst["instance_id"] = instance_id
            pred_inst["segment_id"] = pred["pred_classes"][i]
            pred_inst["confidence"] = pred["pred_scores"][i]
            pred_inst["mask"] = np.not_equal(pred["pred_masks"][i], 0)
            pred_inst["vert_count"] = np.count_nonzero(pred_inst["mask"])
            pred_inst["void_intersection"] = np.count_nonzero(
                np.logical_and(void_mask, pred_inst["mask"])
            )
            if pred_inst["vert_count"] < self.min_region_sizes:
                continue  # skip if empty
            segment_name = self.trainer.cfg.data.names[pred_inst["segment_id"]]
            matched_gt = []
            for gt_idx, gt_inst in enumerate(gt_instances[segment_name]):
                intersection = np.count_nonzero(
                    np.logical_and(
                        instance == gt_inst["instance_id"], pred_inst["mask"]
                    )
                )
                if intersection > 0:
                    gt_inst_ = gt_inst.copy()
                    pred_inst_ = pred_inst.copy()
                    gt_inst_["intersection"] = intersection
                    pred_inst_["intersection"] = intersection
                    matched_gt.append(gt_inst_)
                    gt_inst["matched_pred"].append(pred_inst_)
            pred_inst["matched_gt"] = matched_gt
            pred_instances[segment_name].append(pred_inst)
            instance_id += 1
        return gt_instances, pred_instances

    def evaluate_matches(self, scenes):
        overlaps = self.overlaps
        min_region_sizes = [self.min_region_sizes]
        dist_threshes = [self.distance_threshes]
        dist_confs = [self.distance_confs]

        # results: class x overlap
        ap_table = np.zeros(
            (len(dist_threshes), len(self.valid_class_names), len(overlaps)), float
        )
        for di, (min_region_size, distance_thresh, distance_conf) in enumerate(
            zip(min_region_sizes, dist_threshes, dist_confs)
        ):
            for oi, overlap_th in enumerate(overlaps):
                pred_visited = {}
                for scene in scenes:
                    for _ in scene["pred"]:
                        for label_name in self.valid_class_names:
                            for p in scene["pred"][label_name]:
                                if "uuid" in p:
                                    pred_visited[p["uuid"]] = False
                for li, label_name in enumerate(self.valid_class_names):
                    y_true = np.empty(0)
                    y_score = np.empty(0)
                    hard_false_negatives = 0
                    has_gt = False
                    has_pred = False
                    for scene in scenes:
                        pred_instances = scene["pred"][label_name]
                        gt_instances = scene["gt"][label_name]
                        # filter groups in ground truth
                        gt_instances = [
                            gt
                            for gt in gt_instances
                            if gt["vert_count"] >= min_region_size
                            and gt["med_dist"] <= distance_thresh
                            and gt["dist_conf"] >= distance_conf
                        ]
                        if gt_instances:
                            has_gt = True
                        if pred_instances:
                            has_pred = True

                        cur_true = np.ones(len(gt_instances))
                        cur_score = np.ones(len(gt_instances)) * (-float("inf"))
                        cur_match = np.zeros(len(gt_instances), dtype=bool)
                        # collect matches
                        for gti, gt in enumerate(gt_instances):
                            found_match = False
                            for pred in gt["matched_pred"]:
                                # greedy assignments
                                if pred_visited[pred["uuid"]]:
                                    continue
                                overlap = float(pred["intersection"]) / (
                                    gt["vert_count"]
                                    + pred["vert_count"]
                                    - pred["intersection"]
                                )
                                if overlap > overlap_th:
                                    confidence = pred["confidence"]
                                    # if already have a prediction for this gt,
                                    # the prediction with the lower score is automatically a false positive
                                    if cur_match[gti]:
                                        max_score = max(cur_score[gti], confidence)
                                        min_score = min(cur_score[gti], confidence)
                                        cur_score[gti] = max_score
                                        # append false positive
                                        cur_true = np.append(cur_true, 0)
                                        cur_score = np.append(cur_score, min_score)
                                        cur_match = np.append(cur_match, True)
                                    # otherwise set score
                                    else:
                                        found_match = True
                                        cur_match[gti] = True
                                        cur_score[gti] = confidence
                                        pred_visited[pred["uuid"]] = True
                            if not found_match:
                                hard_false_negatives += 1
                        # remove non-matched ground truth instances
                        cur_true = cur_true[cur_match]
                        cur_score = cur_score[cur_match]

                        # collect non-matched predictions as false positive
                        for pred in pred_instances:
                            found_gt = False
                            for gt in pred["matched_gt"]:
                                overlap = float(gt["intersection"]) / (
                                    gt["vert_count"]
                                    + pred["vert_count"]
                                    - gt["intersection"]
                                )
                                if overlap > overlap_th:
                                    found_gt = True
                                    break
                            if not found_gt:
                                num_ignore = pred["void_intersection"]
                                for gt in pred["matched_gt"]:
                                    if gt["segment_id"] in self.segment_ignore_index:
                                        num_ignore += gt["intersection"]
                                    # small ground truth instances
                                    if (
                                        gt["vert_count"] < min_region_size
                                        or gt["med_dist"] > distance_thresh
                                        or gt["dist_conf"] < distance_conf
                                    ):
                                        num_ignore += gt["intersection"]
                                proportion_ignore = (
                                    float(num_ignore) / pred["vert_count"]
                                )
                                # if not ignored append false positive
                                if proportion_ignore <= overlap_th:
                                    cur_true = np.append(cur_true, 0)
                                    confidence = pred["confidence"]
                                    cur_score = np.append(cur_score, confidence)

                        # append to overall results
                        y_true = np.append(y_true, cur_true)
                        y_score = np.append(y_score, cur_score)

                    # compute average precision
                    if has_gt and has_pred:
                        # compute precision recall curve first

                        # sorting and cumsum
                        score_arg_sort = np.argsort(y_score)
                        y_score_sorted = y_score[score_arg_sort]
                        y_true_sorted = y_true[score_arg_sort]
                        y_true_sorted_cumsum = np.cumsum(y_true_sorted)

                        # unique thresholds
                        (thresholds, unique_indices) = np.unique(
                            y_score_sorted, return_index=True
                        )
                        num_prec_recall = len(unique_indices) + 1

                        # prepare precision recall
                        num_examples = len(y_score_sorted)
                        # https://github.com/ScanNet/ScanNet/pull/26
                        # all predictions are non-matched but also all of them are ignored and not counted as FP
                        # y_true_sorted_cumsum is empty
                        # num_true_examples = y_true_sorted_cumsum[-1]
                        num_true_examples = (
                            y_true_sorted_cumsum[-1]
                            if len(y_true_sorted_cumsum) > 0
                            else 0
                        )
                        precision = np.zeros(num_prec_recall)
                        recall = np.zeros(num_prec_recall)

                        # deal with the first point
                        y_true_sorted_cumsum = np.append(y_true_sorted_cumsum, 0)
                        # deal with remaining
                        for idx_res, idx_scores in enumerate(unique_indices):
                            cumsum = y_true_sorted_cumsum[idx_scores - 1]
                            tp = num_true_examples - cumsum
                            fp = num_examples - idx_scores - tp
                            fn = cumsum + hard_false_negatives
                            p = float(tp) / (tp + fp)
                            r = float(tp) / (tp + fn)
                            precision[idx_res] = p
                            recall[idx_res] = r

                        # first point in curve is artificial
                        precision[-1] = 1.0
                        recall[-1] = 0.0

                        # compute average of precision-recall curve
                        recall_for_conv = np.copy(recall)
                        recall_for_conv = np.append(recall_for_conv[0], recall_for_conv)
                        recall_for_conv = np.append(recall_for_conv, 0.0)

                        stepWidths = np.convolve(
                            recall_for_conv, [-0.5, 0, 0.5], "valid"
                        )
                        # integrate is now simply a dot product
                        ap_current = np.dot(precision, stepWidths)

                    elif has_gt:
                        ap_current = 0.0
                    else:
                        ap_current = float("nan")
                    ap_table[di, li, oi] = ap_current
        d_inf = 0
        o50 = np.where(np.isclose(self.overlaps, 0.5))
        o25 = np.where(np.isclose(self.overlaps, 0.25))
        oAllBut25 = np.where(np.logical_not(np.isclose(self.overlaps, 0.25)))
        ap_scores = dict()
        ap_scores["all_ap"] = np.nanmean(ap_table[d_inf, :, oAllBut25])
        ap_scores["all_ap_50%"] = np.nanmean(ap_table[d_inf, :, o50])
        ap_scores["all_ap_25%"] = np.nanmean(ap_table[d_inf, :, o25])
        ap_scores["classes"] = {}
        for li, label_name in enumerate(self.valid_class_names):
            ap_scores["classes"][label_name] = {}
            ap_scores["classes"][label_name]["ap"] = np.average(
                ap_table[d_inf, li, oAllBut25]
            )
            ap_scores["classes"][label_name]["ap50%"] = np.average(
                ap_table[d_inf, li, o50]
            )
            ap_scores["classes"][label_name]["ap25%"] = np.average(
                ap_table[d_inf, li, o25]
            )
        return ap_scores

    def eval(self):
        self.trainer.logger.info(">>>>>>>>>>>>>>>> Start Evaluation >>>>>>>>>>>>>>>>")
        self.trainer.model.eval()
        scenes = []
        for i, input_dict in enumerate(self.trainer.val_loader):
            assert (
                len(input_dict["offset"]) == 1
            )  # currently only support bs 1 for each GPU
            for key in input_dict.keys():
                if isinstance(input_dict[key], torch.Tensor):
                    input_dict[key] = input_dict[key].cuda(non_blocking=True)
            with torch.no_grad():
                output_dict = self.trainer.model(input_dict)

            loss = output_dict["loss"]

            segment = input_dict["segment"]
            instance = input_dict["instance"]
            # map to origin
            if "origin_coord" in input_dict.keys():
                idx, _ = pointops.knn_query(
                    1,
                    input_dict["coord"].float(),
                    input_dict["offset"].int(),
                    input_dict["origin_coord"].float(),
                    input_dict["origin_offset"].int(),
                )
                idx = idx.cpu().flatten().long()
                output_dict["pred_masks"] = output_dict["pred_masks"][:, idx]
                segment = input_dict["origin_segment"]
                instance = input_dict["origin_instance"]

            gt_instances, pred_instance = self.associate_instances(
                output_dict, segment, instance
            )
            scenes.append(dict(gt=gt_instances, pred=pred_instance))

            self.trainer.storage.put_scalar("val_loss", loss.item())
            self.trainer.logger.info(
                "Test: [{iter}/{max_iter}] "
                "Loss {loss:.4f} ".format(
                    iter=i + 1, max_iter=len(self.trainer.val_loader), loss=loss.item()
                )
            )

        loss_avg = self.trainer.storage.history("val_loss").avg
        comm.synchronize()
        scenes_sync = comm.gather(scenes, dst=0)
        scenes = [scene for scenes_ in scenes_sync for scene in scenes_]
        ap_scores = self.evaluate_matches(scenes)
        all_ap = ap_scores["all_ap"]
        all_ap_50 = ap_scores["all_ap_50%"]
        all_ap_25 = ap_scores["all_ap_25%"]
        self.trainer.logger.info(
            "Val result: mAP/AP50/AP25 {:.4f}/{:.4f}/{:.4f}.".format(
                all_ap, all_ap_50, all_ap_25
            )
        )
        for i, label_name in enumerate(self.valid_class_names):
            ap = ap_scores["classes"][label_name]["ap"]
            ap_50 = ap_scores["classes"][label_name]["ap50%"]
            ap_25 = ap_scores["classes"][label_name]["ap25%"]
            self.trainer.logger.info(
                "Class_{idx}-{name} Result: AP/AP50/AP25 {AP:.4f}/{AP50:.4f}/{AP25:.4f}".format(
                    idx=i, name=label_name, AP=ap, AP50=ap_50, AP25=ap_25
                )
            )
        current_epoch = self.trainer.epoch + 1
        if self.trainer.writer is not None:
            self.trainer.writer.add_scalar("val/loss", loss_avg, current_epoch)
            self.trainer.writer.add_scalar("val/mAP", all_ap, current_epoch)
            self.trainer.writer.add_scalar("val/AP50", all_ap_50, current_epoch)
            self.trainer.writer.add_scalar("val/AP25", all_ap_25, current_epoch)
        self.trainer.logger.info("<<<<<<<<<<<<<<<<< End Evaluation <<<<<<<<<<<<<<<<<")
        self.trainer.comm_info["current_metric_value"] = all_ap_50  # save for saver
        self.trainer.comm_info["current_metric_name"] = "AP50"  # save for saver