File size: 17,958 Bytes
57746f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
"""
Misc Hook

Author: Xiaoyang Wu ([email protected])
Please cite our work if the code is helpful to you.
"""

import sys
import glob
import os
import shutil
import time
import torch
import torch.utils.data
from collections import OrderedDict

if sys.version_info >= (3, 10):
    from collections.abc import Sequence
else:
    from collections import Sequence
from pointcept.utils.timer import Timer
from pointcept.utils.comm import is_main_process, synchronize, get_world_size
from pointcept.utils.cache import shared_dict
import pointcept.utils.comm as comm
from pointcept.engines.test import TESTERS

from .default import HookBase
from .builder import HOOKS


@HOOKS.register_module()
class IterationTimer(HookBase):
    def __init__(self, warmup_iter=1):
        self._warmup_iter = warmup_iter
        self._start_time = time.perf_counter()
        self._iter_timer = Timer()
        self._remain_iter = 0

    def before_train(self):
        self._start_time = time.perf_counter()
        self._remain_iter = self.trainer.max_epoch * len(self.trainer.train_loader)

    def before_epoch(self):
        self._iter_timer.reset()

    def before_step(self):
        data_time = self._iter_timer.seconds()
        self.trainer.storage.put_scalar("data_time", data_time)

    def after_step(self):
        batch_time = self._iter_timer.seconds()
        self._iter_timer.reset()
        self.trainer.storage.put_scalar("batch_time", batch_time)
        self._remain_iter -= 1
        remain_time = self._remain_iter * self.trainer.storage.history("batch_time").avg
        t_m, t_s = divmod(remain_time, 60)
        t_h, t_m = divmod(t_m, 60)
        remain_time = "{:02d}:{:02d}:{:02d}".format(int(t_h), int(t_m), int(t_s))
        if "iter_info" in self.trainer.comm_info.keys():
            info = (
                "Data {data_time_val:.3f} ({data_time_avg:.3f}) "
                "Batch {batch_time_val:.3f} ({batch_time_avg:.3f}) "
                "Remain {remain_time} ".format(
                    data_time_val=self.trainer.storage.history("data_time").val,
                    data_time_avg=self.trainer.storage.history("data_time").avg,
                    batch_time_val=self.trainer.storage.history("batch_time").val,
                    batch_time_avg=self.trainer.storage.history("batch_time").avg,
                    remain_time=remain_time,
                )
            )
            self.trainer.comm_info["iter_info"] += info
        if self.trainer.comm_info["iter"] <= self._warmup_iter:
            self.trainer.storage.history("data_time").reset()
            self.trainer.storage.history("batch_time").reset()


@HOOKS.register_module()
class InformationWriter(HookBase):
    def __init__(self):
        self.curr_iter = 0
        self.model_output_keys = []

    def before_train(self):
        self.trainer.comm_info["iter_info"] = ""
        self.curr_iter = self.trainer.start_epoch * len(self.trainer.train_loader)

    def before_step(self):
        self.curr_iter += 1
        # MSC pretrain do not have offset information. Comment the code for support MSC
        # info = "Train: [{epoch}/{max_epoch}][{iter}/{max_iter}] " \
        #        "Scan {batch_size} ({points_num}) ".format(
        #     epoch=self.trainer.epoch + 1, max_epoch=self.trainer.max_epoch,
        #     iter=self.trainer.comm_info["iter"], max_iter=len(self.trainer.train_loader),
        #     batch_size=len(self.trainer.comm_info["input_dict"]["offset"]),
        #     points_num=self.trainer.comm_info["input_dict"]["offset"][-1]
        # )
        info = "Train: [{epoch}/{max_epoch}][{iter}/{max_iter}] ".format(
            epoch=self.trainer.epoch + 1,
            max_epoch=self.trainer.max_epoch,
            iter=self.trainer.comm_info["iter"] + 1,
            max_iter=len(self.trainer.train_loader),
        )
        self.trainer.comm_info["iter_info"] += info

    def after_step(self):
        if "model_output_dict" in self.trainer.comm_info.keys():
            model_output_dict = self.trainer.comm_info["model_output_dict"]
            self.model_output_keys = model_output_dict.keys()
            for key in self.model_output_keys:
                self.trainer.storage.put_scalar(key, model_output_dict[key].item())

        for key in self.model_output_keys:
            self.trainer.comm_info["iter_info"] += "{key}: {value:.4f} ".format(
                key=key, value=self.trainer.storage.history(key).val
            )
        lr = self.trainer.optimizer.state_dict()["param_groups"][0]["lr"]
        self.trainer.comm_info["iter_info"] += "Lr: {lr:.5f}".format(lr=lr)
        self.trainer.logger.info(self.trainer.comm_info["iter_info"])
        self.trainer.comm_info["iter_info"] = ""  # reset iter info
        if self.trainer.writer is not None:
            self.trainer.writer.add_scalar("lr", lr, self.curr_iter)
            for key in self.model_output_keys:
                self.trainer.writer.add_scalar(
                    "train_batch/" + key,
                    self.trainer.storage.history(key).val,
                    self.curr_iter,
                )

    def after_epoch(self):
        epoch_info = "Train result: "
        for key in self.model_output_keys:
            epoch_info += "{key}: {value:.4f} ".format(
                key=key, value=self.trainer.storage.history(key).avg
            )
        self.trainer.logger.info(epoch_info)
        if self.trainer.writer is not None:
            for key in self.model_output_keys:
                self.trainer.writer.add_scalar(
                    "train/" + key,
                    self.trainer.storage.history(key).avg,
                    self.trainer.epoch + 1,
                )


@HOOKS.register_module()
class CheckpointSaver(HookBase):
    def __init__(self, save_freq=None):
        self.save_freq = save_freq  # None or int, None indicate only save model last

    def after_epoch(self):
        if is_main_process():
            is_best = False
            if self.trainer.cfg.evaluate:
                current_metric_value = self.trainer.comm_info["current_metric_value"]
                current_metric_name = self.trainer.comm_info["current_metric_name"]
                if current_metric_value > self.trainer.best_metric_value:
                    self.trainer.best_metric_value = current_metric_value
                    is_best = True
                    self.trainer.logger.info(
                        "Best validation {} updated to: {:.4f}".format(
                            current_metric_name, current_metric_value
                        )
                    )
                self.trainer.logger.info(
                    "Currently Best {}: {:.4f}".format(
                        current_metric_name, self.trainer.best_metric_value
                    )
                )

            filename = os.path.join(
                self.trainer.cfg.save_path, "model", "model_last.pth"
            )
            self.trainer.logger.info("Saving checkpoint to: " + filename)
            torch.save(
                {
                    "epoch": self.trainer.epoch + 1,
                    "state_dict": self.trainer.model.state_dict(),
                    "optimizer": self.trainer.optimizer.state_dict(),
                    "scheduler": self.trainer.scheduler.state_dict(),
                    "scaler": (
                        self.trainer.scaler.state_dict()
                        if self.trainer.cfg.enable_amp
                        else None
                    ),
                    "best_metric_value": self.trainer.best_metric_value,
                },
                filename + ".tmp",
            )
            os.replace(filename + ".tmp", filename)
            if is_best:
                shutil.copyfile(
                    filename,
                    os.path.join(self.trainer.cfg.save_path, "model", "model_best.pth"),
                )
            if self.save_freq and (self.trainer.epoch + 1) % self.save_freq == 0:
                shutil.copyfile(
                    filename,
                    os.path.join(
                        self.trainer.cfg.save_path,
                        "model",
                        f"epoch_{self.trainer.epoch + 1}.pth",
                    ),
                )


@HOOKS.register_module()
class CheckpointLoader(HookBase):
    def __init__(self, keywords="", replacement=None, strict=False):
        self.keywords = keywords
        self.replacement = replacement if replacement is not None else keywords
        self.strict = strict

    def before_train(self):
        self.trainer.logger.info("=> Loading checkpoint & weight ...")
        if self.trainer.cfg.weight and os.path.isfile(self.trainer.cfg.weight):
            self.trainer.logger.info(f"Loading weight at: {self.trainer.cfg.weight}")
            checkpoint = torch.load(
                self.trainer.cfg.weight,
                map_location=lambda storage, loc: storage.cuda(),
            )
            self.trainer.logger.info(
                f"Loading layer weights with keyword: {self.keywords}, "
                f"replace keyword with: {self.replacement}"
            )
            weight = OrderedDict()
            for key, value in checkpoint["state_dict"].items():
                if not key.startswith("module."):
                    key = "module." + key  # xxx.xxx -> module.xxx.xxx
                # Now all keys contain "module." no matter DDP or not.
                if self.keywords in key:
                    key = key.replace(self.keywords, self.replacement)
                if comm.get_world_size() == 1:
                    key = key[7:]  # module.xxx.xxx -> xxx.xxx
                weight[key] = value
            load_state_info = self.trainer.model.load_state_dict(
                weight, strict=self.strict
            )
            self.trainer.logger.info(f"Missing keys: {load_state_info[0]}")
            if self.trainer.cfg.resume:
                self.trainer.logger.info(
                    f"Resuming train at eval epoch: {checkpoint['epoch']}"
                )
                self.trainer.start_epoch = checkpoint["epoch"]
                self.trainer.best_metric_value = checkpoint["best_metric_value"]
                self.trainer.optimizer.load_state_dict(checkpoint["optimizer"])
                self.trainer.scheduler.load_state_dict(checkpoint["scheduler"])
                if self.trainer.cfg.enable_amp:
                    self.trainer.scaler.load_state_dict(checkpoint["scaler"])
        else:
            self.trainer.logger.info(f"No weight found at: {self.trainer.cfg.weight}")


@HOOKS.register_module()
class PreciseEvaluator(HookBase):
    def __init__(self, test_last=False):
        self.test_last = test_last

    def after_train(self):
        self.trainer.logger.info(
            ">>>>>>>>>>>>>>>> Start Precise Evaluation >>>>>>>>>>>>>>>>"
        )
        torch.cuda.empty_cache()
        cfg = self.trainer.cfg
        tester = TESTERS.build(
            dict(type=cfg.test.type, cfg=cfg, model=self.trainer.model)
        )
        if self.test_last:
            self.trainer.logger.info("=> Testing on model_last ...")
        else:
            self.trainer.logger.info("=> Testing on model_best ...")
            best_path = os.path.join(
                self.trainer.cfg.save_path, "model", "model_best.pth"
            )
            checkpoint = torch.load(best_path)
            state_dict = checkpoint["state_dict"]
            tester.model.load_state_dict(state_dict, strict=True)
        tester.test()


@HOOKS.register_module()
class DataCacheOperator(HookBase):
    def __init__(self, data_root, split):
        self.data_root = data_root
        self.split = split
        self.data_list = self.get_data_list()

    def get_data_list(self):
        if isinstance(self.split, str):
            data_list = glob.glob(os.path.join(self.data_root, self.split))
        elif isinstance(self.split, Sequence):
            data_list = []
            for split in self.split:
                data_list += glob.glob(os.path.join(self.data_root, split))
        else:
            raise NotImplementedError
        return data_list

    def get_cache_name(self, data_path):
        data_name = data_path.replace(os.path.dirname(self.data_root), "")
        return "pointcept" + data_name.replace(os.path.sep, "-")

    def before_train(self):
        self.trainer.logger.info(
            f"=> Caching dataset: {self.data_root}, split: {self.split} ..."
        )
        if is_main_process():
            dataset = self.trainer.train_loader.dataset
            for i in range(len(dataset)):
                data_dict = dataset[i]
                name = data_dict["name"]
                shared_dict(f"Pointcept-{name}", data_dict)
        synchronize()


@HOOKS.register_module()
class RuntimeProfiler(HookBase):
    def __init__(
        self,
        forward=True,
        backward=True,
        interrupt=False,
        warm_up=2,
        sort_by="cuda_time_total",
        row_limit=30,
    ):
        self.forward = forward
        self.backward = backward
        self.interrupt = interrupt
        self.warm_up = warm_up
        self.sort_by = sort_by
        self.row_limit = row_limit

    def before_train(self):
        self.trainer.logger.info("Profiling runtime ...")
        from torch.profiler import profile, record_function, ProfilerActivity

        for i, input_dict in enumerate(self.trainer.train_loader):
            if i == self.warm_up + 1:
                break
            for key in input_dict.keys():
                if isinstance(input_dict[key], torch.Tensor):
                    input_dict[key] = input_dict[key].cuda(non_blocking=True)
            if self.forward:
                with profile(
                    activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
                    record_shapes=True,
                    profile_memory=True,
                    with_stack=True,
                ) as forward_prof:
                    with record_function("model_inference"):
                        output_dict = self.trainer.model(input_dict)
            else:
                output_dict = self.trainer.model(input_dict)
            loss = output_dict["loss"]
            if self.backward:
                with profile(
                    activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
                    record_shapes=True,
                    profile_memory=True,
                    with_stack=True,
                ) as backward_prof:
                    with record_function("model_inference"):
                        loss.backward()
            self.trainer.logger.info(f"Profile: [{i + 1}/{self.warm_up + 1}]")
        if self.forward:
            self.trainer.logger.info(
                "Forward profile: \n"
                + str(
                    forward_prof.key_averages().table(
                        sort_by=self.sort_by, row_limit=self.row_limit
                    )
                )
            )
            forward_prof.export_chrome_trace(
                os.path.join(self.trainer.cfg.save_path, "forward_trace.json")
            )

        if self.backward:
            self.trainer.logger.info(
                "Backward profile: \n"
                + str(
                    backward_prof.key_averages().table(
                        sort_by=self.sort_by, row_limit=self.row_limit
                    )
                )
            )
            backward_prof.export_chrome_trace(
                os.path.join(self.trainer.cfg.save_path, "backward_trace.json")
            )
        if self.interrupt:
            sys.exit(0)


@HOOKS.register_module()
class RuntimeProfilerV2(HookBase):
    def __init__(
        self,
        interrupt=False,
        wait=1,
        warmup=1,
        active=10,
        repeat=1,
        sort_by="cuda_time_total",
        row_limit=30,
    ):
        self.interrupt = interrupt
        self.wait = wait
        self.warmup = warmup
        self.active = active
        self.repeat = repeat
        self.sort_by = sort_by
        self.row_limit = row_limit

    def before_train(self):
        self.trainer.logger.info("Profiling runtime ...")
        from torch.profiler import (
            profile,
            record_function,
            ProfilerActivity,
            schedule,
            tensorboard_trace_handler,
        )

        prof = profile(
            activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
            schedule=schedule(
                wait=self.wait,
                warmup=self.warmup,
                active=self.active,
                repeat=self.repeat,
            ),
            on_trace_ready=tensorboard_trace_handler(self.trainer.cfg.save_path),
            record_shapes=True,
            profile_memory=True,
            with_stack=True,
        )
        prof.start()
        for i, input_dict in enumerate(self.trainer.train_loader):
            if i >= (self.wait + self.warmup + self.active) * self.repeat:
                break
            for key in input_dict.keys():
                if isinstance(input_dict[key], torch.Tensor):
                    input_dict[key] = input_dict[key].cuda(non_blocking=True)
            with record_function("model_forward"):
                output_dict = self.trainer.model(input_dict)
                loss = output_dict["loss"]
            with record_function("model_backward"):
                loss.backward()
            prof.step()
            self.trainer.logger.info(
                f"Profile: [{i + 1}/{(self.wait + self.warmup + self.active) * self.repeat}]"
            )
        self.trainer.logger.info(
            "Profile: \n"
            + str(
                prof.key_averages().table(
                    sort_by=self.sort_by, row_limit=self.row_limit
                )
            )
        )
        prof.stop()

        if self.interrupt:
            sys.exit(0)